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Abstract

For diverse viruses, cellular infection with single vs. multiple virions can yield distinct biologi-

cal outcomes. We previously found that influenza A/guinea fowl/Hong Kong/WF10/99

(H9N2) virus (GFHK99) displays a particularly high reliance on multiple infection in mamma-

lian cells. Here, we sought to uncover the viral processes underlying this phenotype. We

found that the need for multiple infection maps to amino acid 26K of the viral PA protein. PA

26K suppresses endonuclease activity and viral transcription, specifically within cells

infected at low multiplicity. In the context of the higher functioning PA 26E, inhibition of PA

using baloxavir acid augments reliance on multiple infection. Together, these data suggest

a model in which sub-optimal activity of the GFHK99 endonuclease results in inefficient

priming of viral transcription, an insufficiency which can be overcome with the introduction of

additional viral ribonucleoprotein templates to the cell. More broadly, the finding that defi-

ciency in a core viral function is ameliorated through multiple infection suggests that the fit-

ness effects of many viral mutations are likely to be modulated by multiplicity of infection,

such that the shape of fitness landscapes varies with viral densities.

Author summary

Traditionally, a single virus particle is thought to be sufficient to initiate infection of a cell.

However, the importance of coordinated infection, in which multiple viruses infect the

same cell, has recently become apparent in diverse viral systems. With the goal of under-

standing how multiple infection increases the likelihood of productive infection, we inves-

tigated the traits that give rise to an extremely high reliance on multiple infection for

influenza A/guinea fowl/HK/WF10/99 (H9N2) virus. We found that the phenotype maps

to a single amino acid which results in a deficiency in transcription of viral mRNAs, a cen-

tral function in the viral life cycle. This discovery suggests that the deleterious effects of
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many mutations that arise randomly within the influenza A virus genome may be allevi-

ated when multiple viruses infect the same cell. In turn, coordinated infection is expected

to be a major factor defining the evolutionary trajectories of viruses.

Introduction

Cellular coinfection modulates the biology of diverse viruses. In VSV, inducing multiple infec-

tions via virion aggregation can accelerate viral production such that it outpaces innate antivi-

ral responses [1]. In HIV-1, delivery of multiple viral genomes through cell-to-cell

transmission of infection leads to more rapid onset of viral gene expression [2, 3]. For rotavirus

and norovirus, vesicle-bound packets of viral particles have enhanced infectivity relative to

free virions and are important vehicles for transmission [4, 5].

Similarly, in the case of influenza A viruses (IAVs), interactions between homologous coin-

fecting viruses can be highly biologically significant [6–8]. While most single infections are

abortive, delivery of multiple viral genomes to a cell strongly increases the likelihood of pro-

ductive infection and can augment both replication rate and yield [6, 7, 9]. In other words, the

virus-virus interactions that play out during cellular coinfection are typically beneficial and

often required for productive infection. Of note, this feature of IAV biology strongly increases

the frequency of reassortment, an important source of viral genetic diversity [10].

IAV reliance on multiple infection appears to be particularly acute under conditions that

are unfavorable for viral replication, such as in a new host species [7]. For a G1-lineage strain,

influenza A/guinea fowl/Hong Kong/WF10/99 (H9N2) virus (GFHK99, also referred to as

WF10), we found that coinfection with multiple homologous viruses was essential for robust

replication in mammalian cells, but not avian cells. While every IAV tested thus far has shown

some reliance on multiple infection, the strong host-specific reliance of GFHK99 was not

apparent for influenza A/mallard/Minnesota/199106/99 (H3N8) virus (MaMN99). Using gene

segment reassortments between these two IAVs, we found that the PA segment drives the high

reliance of GFHK99 virus on multiple infection. However, the functional basis for this genetic

association remained unclear.

The PA gene segment encodes two proteins: PA and PA-X. PA is one of three protein sub-

units that comprise the viral RNA-dependent RNA polymerase, along with PB2 and PB1. The

N-terminus of PA contains an endonuclease that cleaves cellular mRNAs 10–20 bases down-

stream of the 5’ cap, in a process termed cap-snatching [11, 12]. The resultant capped primer is

required for mRNA synthesis by the viral polymerase [13]. PA-X, discovered in the past

decade, is produced by ribosomal frame-shifting during translation of the PA mRNA [14]. The

N-terminal 191 amino acids of PA-X are identical to those of PA, while the C-terminal 41 or

61 amino acids are unique [15]. PA-X has been shown to contribute to the shutoff of host pro-

tein synthesis [16].

In this work, we sought to elucidate the drivers of the GFHK99 strain’s high reliance on

multiple infection, tied to the PA gene segment. Our data demonstrate that the phenotype

maps to residue 26K within the PA endonuclease. This amino acid lowers endonuclease activ-

ity, leading to inefficient viral transcription in cells infected at low multiplicity of infection

(MOI). Conditions conducive to cellular coinfection allow robust transcription by a PA 26K

virus in mammalian cells and support enhanced progeny production. Treatment of infected

cells with a PA endonuclease inhibitor, baloxovir acid, leads to a similar reliance on multiple

infection. These data suggest that cellular coinfection is beneficial because the delivery of mul-

tiple copies of the eight viral ribonucleoproteins (vRNPs) to the cell increases the frequency of
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successful transcription events, allowing infection to be initiated efficiently despite sub-opti-

mal conditions.

Results

Reliance on multiple infection of GFHK99 is linked to the endonuclease

region of PA

To determine which region of the PA gene segment contributed to the high reliance on multi-

ple infection seen in GFHK99, chimeric PA gene segments were created using GFHK99 PA

and MaMN99 PA. The segment was divided into three regions roughly corresponding to the

domains of the PA protein (Fig 1A). Each chimeric segment and the full-length GFHK99 PA

were incorporated into the MaMN99 background. To allow virus-virus interactions to be

monitored, homologous infection pairs, termed wildtype (WT) and variant (VAR) viruses,

were produced for each PA genotype. VAR viruses contained a synonymous mutation in each

of the eight gene segments to allow differentiation from WT segments in molecular assays. In

addition, WT and VAR virus HA proteins were differentially modified with epitope tags to

allow quantification of cellular infection at a protein level [7].

Using flow cytometry, the frequency of cellular coinfection between WT and VAR viruses

was evaluated. Since this assay detects viral protein, it measures the extent to which viral gene

expression relies on multiple infection. MDCK cells were coinfected with homologous WT

and VAR pairs and, to enable quantitative analysis, infections were limited to a single cycle

such that progeny viruses cannot be propagated onward. The relationship between the per-

centage of cells that stained with one or both epitope tags (total HA+) and the percentage of

cells staining with both tags (dual-HA+) was evaluated (Fig 1B). As seen previously, MaMN99

WT and VAR viruses produced distinct populations of singly-infected cells and coinfected

cells, with the frequency of coinfection increasing with total infection levels. Conversely, for

the GFHK99 PA in a MaMN99 background (GFHK99 PA virus), nearly all infected cells were

coinfected with both WT and VAR. Thus, a linear relationship was seen between dual-HA+

and total HA+, with a slope of 1.02 (95% C.I. 0.979 to 1.07, R2 = 0.981). Both the GFHK99

Arch PA and GFHK99 C-term PA viruses showed similar infection patterns to that of

MaMN99 virus. In contrast, the GFHK99 Endo PA virus displayed a linear relationship

between dual-HA+ and total HA+, like the GFHK99 PA virus. The slope obtained from a linear

regression of GFHK99 PA Endo was comparable to that of GFHK99 PA at 1.03 (95% C.I.

0.959 to 1.10, R2 = 0.971).

The prevalence of reassortant viruses within the progeny virus population was then deter-

mined. Since only cells coinfected with WT and VAR viruses can produce reassortants, this

assay gives an indication of the relative productivity of singly- and multiply-infected cells.

Reassortants were identified by deriving clonal isolates from the progeny population and then

genotyping each segment therein. The frequency of reassortants within MaMN99 progeny

virus populations was low at lower infection levels and increased as the percentage of HA+

cells increased. By comparison, GFHK99 PA virus coinfections resulted in high frequencies of

reassortment even at low levels of infection, signifying that most of the progeny viruses were

produced in cells infected with both WT and VAR (Fig 1C). WT-VAR coinfections with

GFHK99 Arch and GFHK99 C-term viruses exhibited similar reassortment outcomes as seen

with MaMN99 virus. Conversely, GFHK99 Endo PA coinfections displayed high percentages

of reassortant progeny, on par with those seen for GFHK99 PA. The high frequencies of reas-

sortant progeny and high levels of dual HA positivity observed in coinfections with GFHK99

Endo PA viruses indicate that the endonuclease region of GFHK99 PA confers a high reliance

on multiple infection.

PLOS PATHOGENS Viral inefficiencies can be overcome through cellular coinfection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010865 September 19, 2022 3 / 19

https://doi.org/10.1371/journal.ppat.1010865


Disruption of PA-X does not alter reliance on multiple infection

The endonuclease domain is shared by the PA and PA-X proteins. To determine whether

PA-X was the driving force behind high reliance on multiple infection, viruses were created in

which the PA-X reading frame was disrupted [16]. Because PA-X is difficult to detect by west-

ern blotting, the effectiveness of this disruption was verified at a functional level. Using plas-

mid transfection, the full length MaMN99 PA gene segment with or without mutations to

PA-X was introduced into cells together with a Renilla luciferase reporter construct. The wild

Fig 1. Replacement of the MaMN99 PA endonuclease region with that of GFHK99 PA increases reliance on multiple infection. (A) Chimeric PA gene

segments that introduce regions of the GFHK99 PA into the MaMN99 PA: the endonuclease (GFHK99 Endo), the middle region (GFHK99 Arch), and the C-

terminal domain (GFHK99 C-term). Amino acid positions are noted at the top of the figure. (B) The relationship between cells dually-infected with WT and

VAR and cells infected with WT, VAR, or both. Data shown for each virus are derived from three independent experiments. Curve similarity to GFHK99 PA is

determined by least sum-of-squares F test: GFHK99 PA Endo is represented by the same curve (p = 0.9385, F = 0.1356) while MaMN99, GFHK99 PA Arch and

GFHK99 C-term are represented by different curves (p< 0.0001, F = 47.59, 34.24, and 39.01) (C) The percentage of progeny viruses with any reassortant

genotype is plotted against the percentage of cells expressing hemagglutinin (HA). Curve similarity to GFHK99 PA is determined by least sum-of-squares F

test: GFHK99 PA Endo is represented by the same curve (p = 0.8962, F = 0.11.0) while MaMN99, GFHK99 PA Arch and GFHK99 C-term are represented by

different curves (p< 0.001, F = 23.73, 9.789, and 18.11) Data shown for each virus are derived from two independent experiments. The PA segment genotype

of WT and VAR viruses is indicated in the legend. All viruses carried the remaining seven segments from MaMN99 virus.

https://doi.org/10.1371/journal.ppat.1010865.g001
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type PA construct strongly suppressed the reporter signal relative to that seen with the ΔPA-X

construct, consistent with the host shut-off activity of PA-X [16] and confirming the effective-

ness of the mutations introduced (Fig 2A).

WT and VAR homologous pairs of these viruses were used to coinfect MDCK cells and the

frequencies of coinfected cells and reassortant viruses were examined across a range of MOIs

(Fig 2). By both measures, MaMN99 ΔPA-X and GFHK99 PA ΔPA-X viruses displayed similar

coinfection reliance phenotypes to their respective parental strain. Since expression of PA-X

did not modulate the extent of reliance on multiple infection in either strain, PA-X does not

appear to be a major driver of the high reliance phenotype displayed by GFHK99.

Reliance on multiple infection is dependent on PA 26 in the endonuclease

region

An alignment of the PA endonuclease regions of MaMN99 and GFHK99 showed five coding

differences at PA amino acids 20, 26, 85, 101, and 118 (Fig 3A). Owing to the charge difference

at PA 26, where MaMN99 has a glutamic acid (E) and GFHK99 has a lysine (K), we focused on

this position, which is located proximal to the active site of the endonuclease region (Fig 3B).

Reciprocal mutants were generated in the MaMN99 and GFHK99 PA segments and each was

incorporated into the MaMN99 background. WT and VAR homologous pairs of MaMN99

PA E26K and MaMN99: GFHK99 PA K26E (GFHK99 PA K26E) viruses were used in

coinfections.

The results showed that swapping the amino acid at PA 26 swapped the phenotypes dis-

played by MaMN99 and GFHK99 PA. Introduction of K26E within the GFHK99 PA

Fig 2. Disrupting PA-X does not alter reliance on multiple infection of GFHK99 and MaMN99 viruses. (A) Relative luciferase activity of cells co-

transfected with a Renilla luciferase expression plasmid and either MaMN99 PA or MaMN99 PA ΔPA-X expression plasmids. Values represent means ± SD of

three replicates. Statistical significance was analyzed by unpaired t-test. (B) The relationship between cells dually-infected with WT and VAR MaMN99 ΔPA-X

or GFHK99 PA ΔPA-X (dual-HA+) and cells infected with WT, VAR, or both (HA+). Data plotted are from three independent experiments. Curve similarity

to GFHK99 PA is determined by least sum-of-squares F test: GFHK99 PA ΔPA-X is represented by a similar curve (p = 0.38, F = 1.05) while MaMN99 ΔPA-X

is represented by a different curve (p< 0.0001, F = 51.4) (C) The percentage of progeny viruses with any reassortant genotype is plotted against the percentage

of cells expressing hemagglutinin (HA). Curve similarity was determined by least sum-of-squares F test: GFHK99 PA ΔPA-X is represented by a similar curve

to GFHK99 PA (p = 0.11, F = 2.8) while MaMN99 ΔPA-X is represented a similar curve to MaMN99 (p = 0.059, F = 3.4). Data shown are derived from two

independent experiments. The PA segment genotype of WT and VAR viruses is indicated in the legend. All viruses carried the remaining seven segments from

MaMN99 virus. Results for GFHK99 PA and MaMN99 viruses are reproduced from Fig 1 for comparison.

https://doi.org/10.1371/journal.ppat.1010865.g002
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Fig 3. PA 26K is associated with a higher reliance on multiple infection than PA 26E. (A) The MaMN99 and GFHK99 PA endonuclease regions differ by

five amino acids. (B) A model of the endonuclease domain of GFHK99 PA with the active site residues labeled in green and PA 26K labeled in cyan. (C) The

relationship between cells dually-infected with WT and VAR (dual HA+) and cells infected with WT, VAR, or both (HA+). Data plotted are from three

independent experiments. Significance of differences between the curves was evaluated by a least sum-of-squares F test: GFHK99 PA E26K differs from

GFHK99 PA (p< 0.0001, F = 65.5) and MaMN99 E26K differs from MaMN99 (p< 0.0001, F = 18.8). (C) The percentage of progeny viruses with any

reassortant genotype is plotted against the percentage of cells expressing hemagglutinin (HA+). Similarity between curves was assessed by least sum-of-squares

F test: GFHK99 PA E26K differs from GFHK99 PA (p = 0.0017, F = 8.7) and MaMN99 E26K can be represented by a similar curve as GFHK99 PA (p = 0.078,

F = 9.16). Data plotted are from two independent experiments. The PA segment genotype of WT and VAR viruses is indicated in the legend. All viruses carried

the remaining seven segments from MaMN99 virus.

https://doi.org/10.1371/journal.ppat.1010865.g003
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decreased frequencies of dually HA+ cells, while introduction of E26K into the MaMN99 PA

had the opposite effect (Fig 3C). In line with the coinfection results, GFHK99 PA K26E virus

yielded fewer reassortants than GFHK99 PA virus, while MaMN99 PA E26K infection progeny

were predominantly reassortant (Fig 3D). Thus, in both PA backgrounds, PA 26K was associ-

ated with higher reassortment than PA 26E. Taken together, the data show that viral gene

expression and progeny production were focused within coinfected cells to a greater extent for

viruses encoding PA 26K compared to those encoding PA 26E.

High reliance on multiple infection is associated with increased ratio of

genome copies to infectious units

A classical means of evaluating the efficiency of viral infection is to determine the specific

infectivity; that is, the relationship between infectious units and a measure of physical viral par-

ticles such as protein or RNA content. To relate the viral phenotypes observed during coinfec-

tion to specific infectivity, we determined the ratio of genome copy number to plaque forming

units (PFU) for MaMN99, GFHK99 PA, and GFHK99 PA K26E viruses (Table 1). As antici-

pated, each infectious unit of GFHK99 PA virus was associated with a higher number of

genome copies than the other two strains.

Endonuclease activity and transcript production are suppressed by PA 26K

We reasoned that the high reliance on multiple infection resulting from PA 26K might be a

result of reduced PA protein levels in infected cells or impeded functionality of the PA protein.

To evaluate the first possibility, PA protein levels in cells infected with GFHK99 PA or

GFHK99 PA K26E viruses were compared by western blotting (Fig 4A). GFHK99 PA virus did

not display less PA protein than GFHK99 PA K26E virus, indicating that PA 26K did not

reduce the accumulation of PA during infection.

To evaluate viral endonuclease activity of MaMN99 and GFHK99 PA, we assayed the extent

to which the corresponding PA-X proteins disrupted expression of Renilla luciferase in trans-

fected cells. This approach was used because PA and PA-X carry the same endonuclease

domain, but PA-X activity is more readily monitored in a cell-based assay. As expected based

on the mRNA-degrading function of PA-X, the activity of Renilla luciferase gradually

decreased with an increase in the amount of PA-X plasmid introduced into cells (Fig 5A). Of

note, the effect was markedly weaker with the GFHK99 PA-X than the MaMN99 PA-X, indi-

cating that the GFHK99 PA-X has lower endonuclease activity. Next, E26K or K26E variants

of MaMN99 and GFHK99 PA-X, respectively, were tested and PA-X expression of each was

verified by Western blot. The E26K mutation in MaMN99 PA-X reduced PA-X activity, show-

ing less reduction of Renilla luciferase activity than the wild-type (Fig 5B and 5D). Conversely,

the K26E mutation in GFHK99 PA-X enhanced PA-X activity (Fig 5C and 5E). Thus, position

26 within the viral endonuclease modulates its enzymatic activity.

Table 1. High reliance on multiple infection is associated with increased ratio of genome copies to infectious

units.

Virus Mean genome copy/PFU ratio (+/- SD)1

MaMN99 22.6 (0.51)

GFHK99 PA 97.9 (51)

GFHK99 PA K26E 26.3 (9.8)

1Genome copy / PFU ratio was determined for three replicate samples of virus stock

https://doi.org/10.1371/journal.ppat.1010865.t001

PLOS PATHOGENS Viral inefficiencies can be overcome through cellular coinfection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010865 September 19, 2022 7 / 19

https://doi.org/10.1371/journal.ppat.1010865.t001
https://doi.org/10.1371/journal.ppat.1010865


We further measured the effect of the E26K mutation in MaMN99 PA on viral transcription

during infection by measuring the accumulation of viral mRNA under low and high MOI con-

ditions in MDCK cells. At a low MOI, markedly less mRNA was produced in MaMN99--

PA-E26K infection compared to MaMN99 infection (Fig 5F). However, at a high MOI, mRNA

accumulated at a similar rate for MaMN99 and MaMN99-PA-E26K viruses (Fig 5H). These

data suggest that low endonuclease activity of PA carrying the 26K polymorphism suppresses

viral transcription at a low MOI but is compensated by multiple infection. Measurement of

viral genomic RNA (vRNA) in the same cells (Fig 5G and 5I) revealed similar patterns, indicat-

ing that the effects of PA 26K and multiple infection are also borne out at the level of viral

genome replication, most likely as a downstream consequence of the effects on viral

transcription.

Inhibition of endonuclease activity increases reliance on multiple infection

We postulated that inhibiting the PA endonuclease cap-snatching function would enforce an

increased reliance on cellular coinfection for productive replication. The drug baloxavir mar-

boxil (Xofluza) targets cap-snatching by chelating the ions in the active site of the PA protein

and baloxavir acid (BXA), the active form of the drug, is available for use in cell culture.

MaMN99 WT and VAR virus coinfections were treated with an intermediate dose of BXA

designed to handicap but not wholly abolish infection (Fig 6A). The frequency of reassortant

progeny resulting from these infections increased across the range of MOIs tested, indicating

that nearly all progeny arose from coinfected cells under BXA treatment. This outcome is in

stark contrast to that seen in mock-treated MaMN99 infections, where frequencies of reassort-

ment suggest that appreciable levels of virus emanate from singly infected cells.

Discussion

Although cellular coinfection can strongly impact infection outcomes in many virus-host sys-

tems, the mechanistic basis for these effects is generally poorly understood. Here we sought to

address this deficiency by focusing on GFHK99, an IAV that shows extremely high reliance on

cellular coinfection. We identified a polymorphism at position 26 within the PA endonuclease

domain as the driver of high reliance on multiple infection. Functionally, PA 26K reduces the

Fig 4. Levels of PA protein are not decreased by PA 26K. Western blot of cell lysates collected at 8 or 16 h post-infection with GFHK99 PA virus, GFHK99

PA K26E virus, or mock infected, as indicated above the blot. Blot was probed for PA, NP, and β-actin.

https://doi.org/10.1371/journal.ppat.1010865.g004
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Fig 5. 26K confers lower endonuclease activity than PA 26E. PA (A-C) Dose-dependent effect of PA-X protein on expression of Renilla luciferase in co-

transfected cells. Plots include data from three independent experiments, compared via 2-way ANOVA. ����p< 0.0001, �p = 0.020, ��p = 0.0017. (A) MaMN99

PA-X and GFHK99 PA-X. (B) GFHK99 PA-X and GFHK99 PA-X K26E. (C) MaMN99 PA-X and MaMN99 PA-X E26K. (D-E) Representative western blots

confirming expression of PA-X in transfected cells. Samples correspond to one of the replicates shown in panels A–C. Amount of PA-X plasmid transfected is

indicated underneath (ng). (F-I) Quantification of viral mRNA (F, H) and vRNA (G, I) in cells infected at low MOI of 0.5 RNA copies/cell (F,G) and high MOI

of 1000 RNA copies/cell (H, I). The mean log10 fold change relative to the 0 h time point is plotted, with error bars showing SD. vRNA and mRNA levels were

compared via unpaired Student’s t-test. ����p< 0.0001, ���p =< 0.001, ��p =< 0.01.

https://doi.org/10.1371/journal.ppat.1010865.g005
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activity of the endonuclease, lowering the efficiency of viral transcription and impacting the

host shutoff capabilities of the virus. Importantly, however, under high MOI conditions, the

inefficiency is overcome. Consistent with these results, BXA-imposed inhibition of the PA

endonuclease leads to a focusing of viral replication within cells that are multiply-infected.

Our data suggest a model in which the delivery of many viral genomes to the cell compensates

for inefficient cap-snatching by providing greater opportunity for that process to unfold

(Fig 7).

To successfully propagate its genome, an infecting virus must complete a number of dis-

crete steps of the early life cycle, many of which are the targets of cellular defense mechanisms.

For IAV, each barrier must be overcome by eight unique vRNP complexes. This process

appears to be prone to failure, such that the likelihood of a single IAV establishing an infection

is extremely low [9, 17]. Consistent with low rates of productive infection, IAV infected cells

typically support expression from and replication of fewer than eight segments [6, 9]. In the

case of GFHK99 virus, incomplete viral genomes were detected with a frequency of approxi-

mately 90% [7]. While high, this frequency is not sufficient to account for the extremely high

reliance on multiple infection exhibited by this strain in mammalian systems [7]. The data

reported here indicate that this additional reliance stems from a deficiency in viral cap-snatch-

ing, the process by which the IAV polymerase acquires capped RNA oligomers to prime tran-

scription [12]. With multiple viral genomes infecting together, the larger number of NP-RNA

templates and associated polymerases available for primary transcription appears to enable lev-

els of mRNA synthesis sufficient to sustain robust infection.

Fig 6. Inhibition of cap-snatching increases reliance on multiple infection. The MaMN99 PA endonuclease was inhibited using baloxavir acid (BXA) during a

coinfection with homologous WT and VAR viruses. (A) The relationship between percentages of HA+ cells and dual-HA+ cells. The curve representing BXA-

treated MaMN99 differs from that representing the untreated virus (p< 0.0001, F = 167.0, least sum-of-squares F test) (B) The percentage of progeny with

reassortant genotypes was plotted as a function of percent cells HA+. The curve representing BXA-treated MaMN99 differs from that representing the untreated

virus (p = 0.0077, F = 7.54, least sum-of-squares F test). Data from two independent experiments are plotted together.

https://doi.org/10.1371/journal.ppat.1010865.g006
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Our previous work revealed that the extent to which GFHK99 virus relies on multiple infec-

tion for productive infection is strongly dependent on host species: in avian systems, the need

for multiple infection was greatly diminished [7]. Since we focused our studies herein on

mammalian systems, our data do not reveal whether the GFHK99 PA enzyme is more active

in avian cells or whether this avian virus is simply less sensitive to the cap-snatching deficiency

in a host environment to which it is well-adapted. However, prior work suggests the latter

model is correct and that PA 26K is deleterious in both mammalian and avian hosts. First, PA

26K does not fall within interacting surfaces of defined cellular binding partners that might

differ with host species. Second, PA 26K occurs rarely in sequenced strains, including those of

Fig 7. Multiple infection allows a virus with an inefficient PA endonuclease to replicate. The PA protein, located within the

viral polymerase complex, cleaves host mRNAs to generate the capped primers needed for viral transcription. Our data show

that PA 26K has low cleavage activity compared with PA 26E. Under low multiplicity conditions, this deficiency results in

inefficient viral transcription. However, delivery of multiple copies of the viral genome to the cell allows a PA 26K polymerase to

produce high levels of viral mRNA, enabling successful completion of the viral life cycle. Figure was created with BioRender.

com.

https://doi.org/10.1371/journal.ppat.1010865.g007
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the G1 lineage of H9N2 viruses [18], suggesting its occurrence in GFHK99 is the result of

genetic drift. Third, introduction of PA K26E was seen to improve the kinetics and yield of

GFHK99 viral replication in chicken cells and eggs [18]. Fourth, GFHK99 variant viruses car-

rying PA K26E rapidly emerged and underwent positive selection in experimentally infected

quail [19]. Thus, while GFHK99 shows a reduced need for multiple infection in avian cells

compared to mammalian cells [7], there is a fitness cost of PA 26K even in avian systems. We

therefore suggest that PA 26K has a greater impact in mammalian systems owing to a conflu-

ence of mal-adaptions to the mammalian cellular environment.

In using BXA treatment to substantiate the link between deficient cap-snatching and the

need for many incoming viral genomes, we show that viral replication can proceed under anti-

viral treatment within multiply-infected cells. While potentially consequential for clinical use

of baloxavir marboxil and the development of resistance [20, 21], our data more broadly sug-

gest that the targeting of viral cap-snatching and other steps of the viral life cycle that precede

genome replication are likely to be efficient therapeutic strategies. This approach is expected to

increase the frequency of abortive infections, potentially pushing the rate of productive infec-

tions below a threshold needed to sustain viral propagation.

The viral population dynamics documented herein are consistent with the ecological prin-

ciple of positive density dependence and, more specifically, the Allee effect. Positive density

dependence is a situation in which increasing population density leads to a higher population

growth rate [22]. An Allee effect refers specifically to positive density dependence within low

density populations (such as in a low MOI viral infection). Allee effects occur when the mem-

bers of a species rely on intra-species interactions for survival or reproduction [23, 24]. For

example, predators may be more effective in packs and pollination may be more efficient

when individual plants are in close proximity [25, 26]. A similar dynamic appears to apply

within low density IAV populations: as more viruses are added to a cell, burst size increases.

We propose that the positive relationship between initial viral input and ultimate viral output

arises because essential steps of the early viral life cycle are less prone to stochastic failure when

the infecting population is larger. In unfavorable contexts—such as a new host species, antivi-

ral treatment or deleterious mutation—the frequency with which these essential steps fail may

be increased. In these situations, viral density would be expected to have a greater impact on

viral growth rates. The acute density dependence of GFHK99 in mammalian systems is well

explained by this paradigm and we expect these concepts apply broadly to IAV and many

other viruses.

This work reveals that, in the specific case of GFHK99, multiple infection mitigates the dele-

terious effects of a specific mutation affecting a core viral process–transcription. It further sug-

gests that multiple infection is likely to modulate the fitness effects of any mutation, such that

the topology of fitness landscapes vary with viral population density. Finally, this effect is

expected to be most potent under adverse conditions, such as in a new host species.

Methods

Cells and cell culture

Madin-Darby canine kidney (MDCK) cells and 293T cells (ATCC, CRL-3216) were main-

tained in minimal essential medium supplemented with 10% fetal bovine serum and 100 ug/

mL normocin. MDCK cells gifted by Peter Palese, Icahn School of Medicine at Mount Sinai

were used for experiments. MDCK cells gifted by Daniel Perez, University of Georgia, were

used for plaque assays. All cells were maintained at 37˚C and 5% CO2 in a humidified incuba-

tor and monitored monthly for mycoplasma contamination.
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Viruses

Influenza A viruses used in these experiments were generated via reverse genetics [27, 28].

Briefly, 293T cells transfected with ambisense plasmids encoding the eight viral gene segments

were injected 16–24 h after transfection into the allantoic cavity of 10–11 day-old embryonated

chicken eggs (Hyline International) and incubated for 32–36 h at 37˚C. Allantoic fluid was col-

lected and used as the virus stock for experiments. Infectious titers were determined by plaque

assay in MDCK cells and by flow cytometry targeting virally encoded epitope tags. Levels of

internally deleted defective interfering segments derived from PB2, PB1, PA, and NP segments

were confirmed to be minimal for each virus stock using previously-described procedures

[29]. Briefly, primers specific to terminal and internal regions of each segment were used in

digital droplet PCR. Stocks were deemed low in defective interfering segments if the terminal:

internal ratio was below a threshold of 4. All viruses used contained PB2, PB1, HA, NP, NA,

M, and NS segments derived from influenza A/mallard/Minnesota/199106/99 (H3N8) virus

(MaMN99). MaMN99 PA viruses contained the PA gene segment from MaMN99. MaMN99:

GFHK99 PA viruses contained the PA gene segment from influenza A/guinea fowl/Hong

Kong/WF10/99 (H9N2) virus. The N-terminus of the HA segment of each virus used was engi-

neered to contain either a 6xHIS or an HA epitope tag connected via a flexible GGGS linker

following the signal peptide. This approach was described previously and allows the signal to

be present on mature HA proteins without interfering with the folding [30]. Homologous WT

and VAR viruses were tagged with opposite epitopes to allow differentiation of infected cells

via flow cytometry. GFHK99 Endo PA and MaMN99 viruses were tagged WT as HIS-tag and

VAR as HA-tag. All other viruses were tagged WT as HA-tag and VAR as HIS-tag. Homolo-

gous VAR viruses included one synonymous mutation in each segment relative to the WT

strain, as detailed previously [7].

Generation of modified PA plasmids

Plasmids encoding chimeric PA gene segments were created using the NEBuilder HiFi DNA

Assembly Master Mix (New England Biosciences) according to the manufacturer’s instruc-

tions using the primers in S1 Table. PCR-amplified fragments encoding the endonuclease

region (GFHK99 Endo), linker and arch region (GFHK99 Arch), or C-terminal region

(GFHK99 C-term) of GFHK99 PA were combined with a fragment containing the rest of

the MaMN99 PA segment in a pDP2002 plasmid, a gift from Daniel Perez [31]. Mutations

to the PA 26 codon were introduced using site-directed mutagenesis (QuikChange, Agilent)

using primers listed in S2 Table. Two nucleotide changes were introduced to avoid rever-

sion. MaMN99 ΔPA-X and MaMN99:GFHK99 PA ΔPA-X were designed as described pre-

viously [16]: site-directed mutagenesis of three bases at the X-ORF (t597c, t600c, and t627a)

decrease the likelihood of frameshifting and add a TAG stop codon to truncate the C-termi-

nal region of PA-X. These mutations do not affect the PA coding frame. Sequences of puri-

fied plasmid preparations were verified by Sanger sequencing (Genewiz). WT and VAR

pairs of each recombinant virus were generated as described above. ΔPA-X segment loss-of-

function was verified via host shutoff capacity: 293T cells were transfected with 40 ng of

either pCAGGS-MaMN99-PA or pCAGGS-MaMN99-PA-ΔPA-X plasmids and 50 ng of

pRL-TK plasmid (Promega). At 24 h post-transfection, the transfected cells were lysed and

20 μl of lysate was transferred to a 96-well plate. 100 μl of Renilla luciferase assay reagent

(Promega) was added and then Renilla luciferase activity was measured on a BioTek Synergy

H1 Hybrid Reader. Renilla luciferase activity was plotted relative to empty vector transfected

cells.
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Infection of cells for quantification of cellular coinfection and viral

reassortment

Infections of cultured cells were performed as described previously [7, 32]. Briefly, homolo-

gous WT and VAR viruses were mixed in equivalent amounts based on infectious titers as

determined by flow cytometry, diluted serially in 1x PBS, and used to inoculate 80% confluent

MDCK cells in 6 well dishes. Synchronized single-cycle infection conditions were used: to syn-

chronize viral entry, virus was allowed to attach during a 45 min incubation at 4˚C before

addition of warm virus medium (1xMEM, 4.3% BSA, 100 IU penicillin/streptomycin) and

incubation for 2 h at 37˚C. At the end of this 2 h incubation, residual inoculum was inactivated

using a 5 min acid wash in PBS-HCl (pH = 3). Cells were then placed in virus medium

(pH = 7.1) supplemented with 20 mM NH4Cl and 50 mM HEPES and incubated at 37˚C. This

medium prevents endosomal acidification and therefore blocks any further viral entry, impos-

ing single cycle conditions [33, 34]. Released virus and cells were collected at 16 hpi (with 0 hpi

defined as the time of warming). Supernatant was stored at -80˚C until use in plaque assays.

To verify the effectiveness of our method for limiting an infection to a single round of repli-

cation, we set up an experiment in which cells were infected with MaMN99 virus either within

medium containing 20 mM NH4Cl and 50 mM HEPES or with standard medium supple-

mented with TPCK trypsin (i.e. the medium used to allow ‘multi-cycle conditions’). At 24 h

post-infection, cell culture supernatant was sampled and infectious titers were determined by

plaque assay. Results of this validation experiment showed that, in contrast to the multi-cycle

conditions, no viral propagation was detected when single cycle conditions were imposed

throughout the inoculation and growth stages of the experiment (S2 Fig).

Coinfections with baloxavir acid (MedChemExpress, CAS No. 1985605-59-1) were com-

pleted in the same manner as above, with 5nM BXA added to the virus medium both during

the 2 h viral entry period and the 14 h viral replication period.

Quantification of infection and coinfection

Frequencies of infection and coinfection in cell monolayers co-inoculated with WT and VAR

viruses were evaluated based on surface expression of HA- and HIS-tags. Samples were stained

for 45 min on ice with Penta HIS Alexa Fluor 647 conjugated antibody (5 ug/ml; Qiagen) and

Anti-HA-FITC Clone HA-7 (7 ug/ml; Sigma Aldrich). Cells were then washed and resus-

pended in PBS-2% FBS in cluster tubes for flow cytometry analysis on a BD-FACSymphony

A3 cytometer in the Emory University Flow Cytometry Core. Analysis was performed using

FlowJo 10.8.1 software. Non-linear regressions (least squares) and linear regressions of the

data were performed in Prism Graphpad.

Quantification of reassortment

The frequency of reassortant viruses was determined as described previously [35]. Plaque

assays were performed in 10 cm-diameter dishes to isolate viral clones and agar plugs were col-

lected with 1 mL serological pipettes into 160 μl PBS. vRNA was extracted using the Quick

RNA 96 extraction kit (Zymo) then reverse transcribed using Maxima reverse transcriptase

(Thermofisher) per the manufacturer’s instructions using the Universal F(A)+6 primer

(gcgcgcagcaaaagcagg). cDNA was diluted 1:4 in nuclease-free water and combined with seg-

ment-specific primers [7] to differentiate WT and VAR segments by high-resolution melt

analysis with Precision Melt Supermix (Bio-Rad) using a CFX384 Touch Real-time PCR detec-

tion system (Bio-Rad) and BioRad CFX Manager 3.1 software. Data were analyzed using Preci-

sion Melt Analysis 1.3 software (Bio-Rad) to assign a genotype based on the combination of
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WT and VAR segments in each isolate. Percent reassortment was calculated as the number of

viral isolates with any reassortant genotype divided by the number of isolates screened, multi-

plied by 100. Results were plotted as a function of percent HA+ cells as determined by flow

cytometry. Semi-log curves were fitted to the data in Graphpad.

Analysis of RNA copy number per infectious unit

Genome copy numbers were determined as follows. RNA was extracted from virus stocks

using the QIAamp Viral RNA Mini kit (Qiagen) and reverse-transcribed using Maxima RT

(Thermo Scientific) according to the manufacturer’s instructions and using the Universal F(A)

+6 primer (gcgcgcagcaaaagcagg). Viral cDNA was then quantified by digital droplet PCR

using primers targeting the NP segment (MaMN99 NP F: cgacaaagagatcagaagaagga, MaMN99

NP R: tcatcaaatgggtgagacca, GFHK99 NP F: gaaggagagacgggaaatg, GFHK99 NP R:

ggctcttgttctctggtatg) and QX200 ddPCR EvaGreen Supermix (BioRad) on a QX200 digital

droplet PCR instrument (BioRad). Infectious titers were determined by plaque assay and used

to calculate the genome copy:PFU ratio for each sample of virus. Three samples per virus stock

were analyzed in this way. The significance of differences between ratios were compared using

an unpaired, two-tailed t-test.

Analysis of the shutoff of cellular gene expression

250, 50, 10, 2, or 0.4 ng of MaMN99 or MaMN99 PA E26K plasmids were ectopically trans-

fected to 293T cells with 50 ng of pRL-TK plasmid using X-tremeGENE 9 (Roche). At 24 h,

the transfected cells were lysed and 20 μl of lysate was transferred to a 96-well plate. 100 μl of

Renilla luciferase assay reagent (Promega) was added and then Renilla luciferase activity was

measured on a Synergy H1 Hybrid Reader (BioTek).

Strand-specific quantification of vRNA and mRNA over time

MDCK cells (1 × 105 cells per well) were seeded onto 24-well plate and incubated at 37˚C for

24 h. The cells were washed three times with PBS, then chilled viruses were inoculated under

single cycle infection conditions, low MOI of 0.5 RNA copies/cell and high MOI of 1000 RNA

copies/cell. After 1h of absorption, the cells were washed three times with PBS. The cells were

collected at 0, 2, 8, and 12 h post-infection, and the RNA was extracted using RNeasy Mini kit

(Qiagen). To reverse-transcribe specific RNA species, two different primers targeting vRNA or

mRNA of NA segment were used (vRNA primer: ggccgtcatggtggcgaat; mRNA primer: cca-

gatcgttcgagtcgt) [7]. The quantitative PCR was conducted with Ssofast EvaGreen Supermix

(Bio-Rad) and specific primer set targeting vRNA or mRNA of NS using CFX384 Touch Real-

time PCR (Bio-Rad) (S3 Table) [36].

Western blotting

Western blotting was performed using the Thermo scientific miniblot module. SDS-PAGE of

reduced samples was run on Bolt Bis-Tris 4–12% premade gels in MOPS. Blotting was per-

formed onto 0.2nm nitrocellulose membranes at 15V for 30 minutes. Blots were blocked with

5% milk in PBS-0.05% Tween 20 for 1h at room temperature, then incubated overnight at 4˚C

with primary antibodies at 1:2,000: rabbit anti-PA polyclonal (Genetex), mouse anti-β-actin

(Sigma, clone AC-74), and mouse anti-influenza NP (Kerafast, clone HT103). Secondary anti-

bodies (1:3,000) goat anti-Rabbit IgG-HRP (Sigma) and goat anti-mouse IgG-HRP (Promega)

were incubated with the blots for 1h at room temperature and the blots were developed using
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Bio-Rad Clarity Western ECL Substrate. Images were taken on the Bio-Rad ChemiDoc MP

imaging system.

Protein modeling

Models of PA were created using the Phyre2 protein fold recognition server (http://www.sbg.

bio.ic.ac.uk/phyre2/) to predict structures based on the published sequence of GFHK99 PA

(Genbank accession # MN267497.1) [37]. Visualization was performed with UCSF Chimera

(https://www.rbvi.ucsf.edu/chimera/), developed by the Resource for Biocomputing, Visuali-

zation, and Informatics at the University of California, San Francisco, with support from NIH

P41-GM103311 [38].

Quantification and statistical analysis

Analysis of these data was performed using the GraphPad Prism statistical software. Replicate

sizes are indicated on figure legends where applicable. Linear and non-linear (least-fit) regres-

sions were performed on data collected via flow cytometry and curve similarity assessed via

least fit sum-of-squares F test. Semi-log lines were fitted to reassortment data. PA-X host shut-

off capacity was analyzed using unpaired Student’s t-tests and reported +/- SD for Fig 2A. Data

in Fig 5 were analyzed via 2-way ANOVA. Alpha = 0.05.

Supporting information

S1 Fig. Example gating strategy for quantification of coinfection frequencies. The ancestral

gates for flow cytometry analysis of coinfection are shown, gating on cells, single cells, and,

finally, sorting by epitope tag expression for uninfected, HA-tag+, HIS-tag+, and dual-tag

+ cells.

(TIF)

S2 Fig. Validation of inhibition of infection by addition of HEPES buffer and NH4Cl to

culture medium. To confirm that the addition of 20 mM NH4Cl and 50 mM HEPES blocks

infection, MDCK cells were inoculated with MaMN99 virus either in standard virus medium

supplemented with trypsin or in virus medium lacking trypsin but including 20 mM NH4Cl

and 50 mM HEPES. Viral replication was evaluated by titration of released virus sampled at 24

h post-inoculation. N = 3. Significance of differences was evaluated by unpaired, two-sided t-

test.

(TIF)

S1 Table. Primers used for chimeric PA segment Gibson Assembly.

(DOCX)

S2 Table. Primers for ΔPA-X site-directed mutagenesis.

(DOCX)

S3 Table. Primers used for strand-specific qPCR of MaMN99.

(DOCX)

S1 Data. Raw data corresponding to each of the main and supplementary figures and

Table 1 are compiled here.

(XLSX)
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