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Abstract
This study is a retrospective chart review of 200 clients who participated in a non-verbal restorative
cognitive remediation training (rCRT) program between 2012 and 2020. Each client participated in the
program for about 16 weeks, and the study as a whole occurred over a five-year period. The program was
applied to effect proper neural functional remodeling needed to support resilient, flexible, and adaptable
behaviors after encountering a mild closed head traumatic brain injury (mTBI). The rCRT program focused
on improving functional performance in executive cognitive control networks as defined by fMRI studies. All
rCRT activities were delivered in a semi-game-like manner, incorporating a brain-computer interface (BCI)
that provided in-the-moment neural network performance integrity metrics (nPIMs) used to adjust the level
of play required to properly engage long-term potentiation (LTP) and long-term depression (LTD) network
learning rules.

This study reports on t-test and Reliable Change Index (RCI) changes found within individual cognitive
abilities’ performance metrics derived from the Woodcock-Johnson Cognitive Abilities III Test. We compared
pre- and post-scores from seven cognitive abilities considered dependent on executive cognitive control

networks against seven non-executive control abilities. We observed significant improvements (p < 10-4)
with large Cohen’s d effect sizes (0.78-1.20) across 13 of 14 cognitive ability domains with a medium effect
size (0.49) on the remaining one. The mean percent change for the pooled trained domain was double that
observed for the pooled untrained domain, at 17.2% versus 8.3%, respectively. To further adjust for practice
effects, practice effect RCI values were computed and further supported the effectiveness of the
rCRT (trained RCI 1.4-4.8; untrained RCI 0.08-0.75).

Categories: Neurology, Psychology, Radiology
Keywords: cognitive remediation training, brain computer interface, bci, quantitative electroencephalography, qeeg,
traumatic brain injury, mtbi, executive cognitive control

Introduction
Mild traumatic brain injuries (TBIs) can lead to lingering changes in an individual’s neurologic performance,
resulting in debilitating and far-reaching consequences in adaptive cognitive functioning. Annually, as
many as 5.3 million people in the United States are thought to face challenges due to TBI-related disabilities
[1]. However, the actual number of chronic TBI (> 6 months post-injury time) may be greater. This is due to
the limited testing sensitivity of typical testing methods for TBI based on conventional neuropsychological
measures and/or conventional clinical imaging methods (e.g., CT, MRI scanning) coupled with a lack of
public awareness with regard to mTBI symptoms [2].

Concussions represent 80% of the traumatic brain injuries (TBI) occurring each year in the United States [3].
Concussions are often related to sports injuries, but the bulk of concussions are due to motor vehicle
accidents, falls, and situations involving sudden acceleration and/or deceleration of the head [3]. TBIs have
been long considered an injury with little recourse, but recent awareness of the long-term effects of
concussion has led to a renewed emphasis on treating TBI and concussions. If not treated properly, an
instantaneous insult can be the beginning of a chronic disease process rather than just an isolated event.
This disease process occurs across all levels of initial injury severity, from mild to severe. For example, TBIs
are implicated as a risk factor for cognitive impairments, reduced social functioning, psychiatric disorders,
and chronic traumatic encephalopathy.

TBI cognitive deficits
After a TBI, many major cognitive disruptions are triggered due to impaired gray matter or white-matter
connections, often incurred by diffuse axonal injuries (DAIs). DAIs foster disturbances to axons that provide
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the structural basis of spatially distributed brain networks [4,5]. Consequently, a DAI often leads to
interruptions in brain network connectivities, where these interruptions can be reflected in impaired
behavioral performance. In the context of rehabilitation, both active brain network performance and
resting-state functional connectivity (rsFC) metrics (measured using electroencephalography {EEG} or fMRI
methods) are promising tools to measure neuroplasticity changes within an injured brain after injury [6,7].
These metrics can therefore also provide evidence for experience-induced neuroplasticity changes acquired
using rCRT methods.

Brain network performance deficits and/or DAI dysfunctions are often rooted in neural networks that sub-
serve communications between larger networks. These larger networks support foundational
neurobehaviors such as attention, memory, and executive functioning. White matter (WM) substructures of
these networks and the efficiency of neural network hub connections (nodal connections within neural
networks) demonstrate significant relationships with behavioral performance scores on intelligence testing
[8-10]. Higher IQ scores correlate with higher nodal efficiency in the right anterior insula (AI) and dorsal
anterior cingulate cortex (dACC), two hub regions within the salience network, with both regions shown to
be vulnerable to mTBIs [9,10] and implicated in various mental health conditions [11,12]. Likewise, higher IQ
scores are linked to lower nodal efficiency in the left temporoparietal junction area (TPJ). Disruptions or lack
of resiliency within these foundational neurobehaviors can impact various cognitive functions and
emotional regulation abilities. Spontaneous neural network reorganization resulting in a partial motor and
cognitive recovery is commonly thought to occur in the first three to six months post-injury [13]. However,
recent studies indicate that many deficits linger and are present years later [14,15]. Equally important, EEG
studies indicate that the brain remodels or reorganizes to achieve a more normal behavioral performance;
the remodeling may or may not have a long-term negative impact, depending on how the remodeling occurs
[6,7]. Cognitive rehabilitation studies suggest that significant proper remodeling can be achieved by using
cognitive rehabilitation exercises to reduce the cognitive and behavioral consequences of an mTBI [15]. Such
exercises are the subject of this paper.

Restorative cognitive rehabilitation training
Cognitive rehabilitation training (CRT) methods are an organized, functionally oriented set of therapeutic
activities based on a neural assessment. CRT treatments target the patient’s cognitive and behavioral
deficits. Fundamental to the CRT process is the brain’s ability to be remodeled through behavioral
experience via neural plasticity changes, or the brain’s ability to reorganize and relearn, by redirecting
maladaptive plasticity towards a more functional neural growth state. CRT methods divide into restorative
interventions (rCRT) and compensatory methods (cCRT). rCRT principally intervenes in cognitive
disturbances or disrupted neural performance caused by brain impairment or disrupted function to promote
brain performance normalization. cCRT seeks to establish alternative patterns of cognitive activity or create
new patterns of movement through external support devices (e.g., adaptive aids, prostheses) to improve the
patient’s quality of life.

rCRT remediation change markers
Intelligence (cognitive ability) characterizes the ability to solve problems unrelated to previously learned
knowledge, an essential element in resilient behavioral expressions [16]. These abilities underwrite encoding
and use of new information with its efficient manipulation, representing a critical component of human
cognition [9,10,17,18]. Equally, these abilities strongly predict educational and professional success, making
the neural networks that support these operations obvious training targets [18]. 

Retrospective chart review study
This study reviewed 200 clients who participated in an rCRT-based program from 2012 to 2020 to promote
proper remodeling of neural function after a TBI. Each client participated in the program for an average of 16
weeks (range 12-26 weeks). The study included all clients who enrolled in the program, the first enrollment
occurring in January 2012 and the final occurring in December 2019. The approach employed the
NeuroCoach® Training System (NTLGroup, Inc., Scottsdale, AZ), an automated rCRT activity/brain-
computer interface system that develops targeted neural circuit responses towards resilient, flexible, and
adaptable behaviors. The approach applies algorithmically leveled brain training activities to support
psychological resilience, as described in greater detail below.

A previous version of this article was published as a preprint: Cripe CT, Mikulecky P, Cooper R, Eagan T.
Improved mTBI outcomes with a BCI amplified CRT training: a retrospective chart review.
medRxiv, September 13, 2020. (https://www.medrxiv.org/content/10.1101/2020.09.10.20192237v1.full.pdf)

Materials And Methods
The study design employed a retrospective chart review to formulate results derived from participants who
had previously participated in a BCI-augmented CRT program as a post-conventional treatment follow-on
component of their mTBI recovery program. Our study protocol, #20-NEUR-101, was determined by an
independent institutional review board to be exempt according to FDA 21 CFR 56.104 and 45CFR46.104(b)
(4). Our use of data was retrospective, and data were processed for analysis in a manner that precluded the
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identification of individuals. All individuals admitted to the study received identical treatment. Criteria for
admission are described below. To explore treatment effects, this study used a battery of Woodcock-Johnson
Cognitive Abilities III (WJ III CA) assessments. Participant testing record results obtained from WJ III CA
testing were structured with dependent pre- and post-test sampling using the same evaluation methods in
both pre and post-testing. Each participant received an individualized program designed to address
neurobehavioral imbalances in their executive function and emotional regulation. Targeted treatment
variables focused on remediating deficiencies observed in participants’ cognitive control, memory,
attention, and executive function. Neurobehavioral imbalances were addressed using an advanced form of a
CRT employing a BCI method to influence CRT activities based on the cognitive information processing
strength of each imbalance in real-time [19,20]. Collection of data and subsequent analyses of those data
were conducted by different persons, which helped both to ensure confidentiality and preclude bias from the
analysis.

Participants
The TBI treatment group was composed of 200 participant records (n=200; 110 males and 90 females). The
following training inclusion criteria were used: (1) mTBI derived from sports, motor vehicle accident, work-
related, and or recreational activity-related, with the classification of the brain injury as mTBI based on a
referral from a physician; (2) >180 days post-injury; and (3) no histories of schizophrenia, bipolar disorder,
eating or obsessive-compulsive disorder. Each group received the same pretest and posttest. Adult
participants (aged 18 years or older) previously classified with a closed head injury TBI were recruited from
outpatient programs and private practices. The mean age of participants was 31.3 years, with a standard
deviation of 12 years. All participants possessed at least a high school level of education. Times since injury
ranged from nine to 48 months, with a mean time of 16 months. The study included all clients who enrolled
in the program, the first enrollment occurring in January 2012 and the final occurring in December 2019. All
records were de-identified to protect the anonymity of individual health information. Participants
volunteered for pre- and post-testing with treatment based on a deliberate self-selection convenient sample
method. Volunteering did not affect the type of treatment received; specifically, those who did not volunteer
or qualify for the study received the same BCI Amplified CRT Training as those who did. The treatment group
was tested before treatment and upon treatment completion. Treatment sessions occurred over periods
ranging from 12 to 26 weeks, with a mean period of 16 weeks. All participants paid identical fees for
treatment.

Pre- and post-test measures
This study employed neurophysiological performance, neurocognitive behavioral, and psychometric
measurements. The neurophysiological performance metrics were derived from resting and active state EEG
imaging methods, classic cognitive abilities task measures, and the Connor-Davidson Resilience Scale. Pre
and post-behavioral (classic task scores) and neural performance markers (age-normed power spectral
density {PSD} from resting-state and event-related potentials) were obtained during the evaluation. The
resting-state neurometrics were derived from two FDA-registered databases (BrainDx, Neuroguide), using a
z-score method (z-transformed to age expected normal values) to evaluate neurophysiological performance
metrics. Active event-related potential neurometrics and z-score decision training metrics were obtained
using a non-published proprietary database compiled from previous clinical and non-clinical cases
(developed by the lead author). Access to the proprietary database for conducting neurometrics can be
obtained by arrangement with the lead author at NTL Group, Inc.

Tables 1, 2 depict the dependent (i.e., treatment) measures chosen primarily from the Woodcock-Johnson
Cognitive Abilities III (WJ III CA) assessment battery and four additional neurocognitive task measures
derived from neurophysiological performance metrics [21]. These measures were used to aid in rCRT
exercise selection and in evaluating post-training effectiveness. The WJ III battery is a set of cognitive
ability sub-tests based on the Cattell-Horn-Carroll (CHC) theory of cognitive abilities. The CHC theory
provides a comprehensive framework for understanding the structure of cognitive information processing
and the cognitive abilities required to support proper function. Five neurophysiological tasks were chosen to
illuminate source-reconstructed neural network metric performance. These tasks included eyes-closed and
eyes-open resting states, flanker task, Sternberg working memory task, and an auditory event potential task
[22-26].
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Areas Trained by rCRT Pre-Mean (SD) Post-Mean (SD) Change (SD) t-Stat P2tail Cohen's d RCIpe3.75 RCIpe5.00

General Intellectual Ability 100.35 (12.73) 115.64 (12.78) 15.29 (7.67) 28.13 < 10-4 1.2 3.14 2.8

Thinking Efficiency 100.05 (15.32) 113.42 (14.89) 13.37 (10.03) 18.86 < 10-4 1.04 1.92 1.67

Concept Formation 102.42 (15.74) 113.17 (12.16) 10.75 (7.79) 13.41 < 10-4 1.18 1.36 1.12

Working Memory 102.08 (17.49) 117.21 (17.80) 15.13 (12.64) 16.94 < 10-4 1.04 1.8 1.67

Numbers Reversed 101.46 (19.60) 119.54 (19.01) 18.08 (15.20) 15.78 < 10-4 1.13 1.88 1.72

Visual Auditory Learning 95.63 (18.52) 113.96 (19.05) 25.24 (25.31) 16.91 < 10-4 1.21 2.23 2.03

Visual Audio Delayed 74.4 (33.62) 103.65 (31.81) 29.25 (15.32) 16.91 < 10-4 1.11 4.83 4.6

TABLE 1: Summary of the pre- and post-treatment training results

P-values for individual cognitive domains ranged from 1 x 10-30 to 5 x 10-5.

rCRT = restorative cognitive remediation training; RCI = Reliable Change Index

Area Untrained by rCRT Pre-Mean (SD) Post-Mean (SD) Change (SD) t-Stat P2tail Cohen's d RCIpe3.75 RCIpe5.00

Verbal Ability 97.62 (9.74) 105.135 (11.05) 7.52 (7.02) 15.13 < 10-4 0.76 0.63 0.42

Phonemic Awareness 104.93 (13.00) 114.83 (13.53) 9.9 (8.74) 16.01 < 10-4 0.87 0.66 0.52

Verbal Comprehension 97.59 (9.76) 105.25 (11.08) 7.66 (7.33) 14.78 < 10-4 0.85 0.65 0.44

Incomplete Words 101.16 (18.00) 113.14 (18.94) 11.99 (14.27) 11.88 < 10-4 0.92 0.88 0.75

Sound Blending 106.28 (11.82) 113.47 (11.31) 7.19 (7.90) 12.87 < 10-4 0.78 0.48 0.31

Spatial Relations 103.70 (12.74) 112.22 (11.38) 8.52 (9.78) 12.32 < 10-4 1 0.52 0.38

Visual Matching 98.73 (12.12) 104.22 (12.88) 5.49 (8.06) 9.64 < 10-4 0.49 0.27 0.08

TABLE 2: Summary of the pre- and post-treatment training results for domains not explicitly
trained by rCRT

P-values for individual cognitive domains ranged from 1 x 10-30 to 5 x 10-5.

rCRT = restorative cognitive remediation training; RCI = Reliable Change Index

Neurophysical/neurocognitive (NeuroCodex®) pre-post evaluation
To obtain behavioral and temporal neural performance metrics, CHC tasks were presented to participants by
the EventIDE task management program (OkazoLab, Delft, The Netherlands). Participants were seated in
front of a computer screen and performed a battery of tasks derived from the WJ III battery. Each participant
performed the cognitive battery while attached to a 19-channel EEG monitor (impedance below 5 kOhms) to
record neuroelectric measures of EEG during the testing activities. Sensor positions employed were FP1,
FP2, F3, Fz, F4, F7, F8, C3, C4, Cz, T3, T4, P3, Pz, P4, T6, T8, O1, and O2, using a BrainMaster 24E acquisition
system with sampling at 256Hz. Artifacts were detected and removed by using the artifact subspace
reconstruction (ASR) artifact algorithm (EEGLAB; Swartz Center for Computational Neuroscience, San
Diego, CA). After artifact rejection was performed on the EEG, behavioral and temporal neural metric
measures were computed using classical ICA/PCA methods to obtain metrics for each test listed in Figure 1.
The testing procedure began with a resting state eyes-closed and eyes-open condition as a baseline measure.
Classical age-normed neurometrics were obtained based on standardized resting-state quantitative EEG
(qEEG) measures [27]. These age-normed measures were included as baselines, compared against active ERP
task measures as outlined in Figure 1.
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FIGURE 1: Neurocognitive functions of interest and canonical networks
Large-scale intrinsic and task-evoked circuits.

Fronto-parietal network (FPN): DLPFC = dorsolateral prefrontal cortex; IPL = inferior parietal lobule; DFC =
dorsal frontal cortex; IPS = intraparietal sulcus; Precuneus; MCC = middle cingulate cortex.

Cingulo-opercular network (CON): APFC = anterior prefrontal cortex; AI/FO = anterior insula/frontal
operculum; dACC/MFSC = dorsal anterior cingulate cortex and medial superior frontal cortex; Thalamus*.

Salience network (SN): dACC = dorsal anterior cingulate cortex; aI = anterior insula; TP = temporal pole;
SLEA = seblenticular extended amygdala*.

Default mode network (DMN): aMPFC = anterior medial prefrontal cortex; AG = angular gyrus; PCC =
posterior cingulate cortex (includes precuneus).

Working memory network (WMN): SPL = superior parietal lobule; DLPFC = dorsolateral prefrontal cortex;
MPFC = medial prefrontal cortex; VAC = ventral anterior cingulate area; AR = agranular retrolimbic area; DPC
= dorsal posterior cingulate area; dACC = dorsal anterior cingulate cortex; pregenual area (ACC): SG =
supramarginal gyrus; Hip = hippocampus*.

*Subcortical areas are unlikely to be reliably measured using electrocardiography (EEG) and may be
excluded from our analysis.

To further support changes in resilient function, neural metric performance measures were obtained from
five key source-reconstructed canonical networks that are considered to fine-tune behavior under variable
environmental conditions. These networks are implicated in maintaining proper task performance and in
general mental health preservation. The program uses the Gordon et al. description of three distinct sets of
connector hubs that integrate brain functional activities to model neurofunctional interactions [24]. These
three are control-default hubs, cross-control connector hubs, and control-processing hubs.

The five key networks include: working memory - the primary network that supports reasoning, expanded
thought, and awareness by providing the mind a conscious workspace for information; cognitive control
networks (CCN) - cognitive control incorporates processes involved in producing and preserving appropriate
task goals, including suppressing irrelevant mental and physical activities that distract from achieving the
desired set of task; CCN subdivisions: (1) the frontal-parietal network (FPN) provides active online control,
allowing it to adaptively initiate and adjust control; (2) the cingulate-opercular network (CON) provides
stable "set-maintenance" (state maintenance) over the entire task epoch or behavioral strategy; (3) the
salience network (SN, the attention networks plus insula network) is involved in rapid detection of goal-
relevant events and facilitation of access to appropriate cognitive resources by interacting with multiple
functional systems, thereby supporting a wide range of cognitive processes [24,25]. The default mode
network (DMN) is implicated in the brain's default resting-state conditions and in its ability to sustain task
performance. The DMN is composed of functionally specialized subsystems, with the anterior DMN (i.e.,
medial prefrontal cortex {PFC}) associated with identifying stimuli as self-salient, whereas the posterior
DMN region (with the parahippocampal gyrus) is involved in autobiographical search and memory retrieval.
Mechanisms within the DMN are implicated in regulating emotional reactivity and may play a key role in the
empathic process by establishing a distinction between other- and self-related feelings [24-26,28].
Regarding congruent cognitive/behavioral health performance, a close relationship exists between empathy
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and executive regulatory mechanisms. Sluggish and/or poor (dis)engagement of the DMN is a noted
biomarker within several mental health conditions, including depression and attention deficit disorders
[24,28]. The opposing relationship between DMN and cognitive control networks may influence the ability to
exert cognitive control [24,28] and play an important role in the regulation of mind-wandering and
rumination that impacts task performance [28].

Training procedure
Immediately after initial evaluation, participants used the NeuroCoach® Training System three times per
week for 12 weeks (approximately 30-40 minutes per session); participants were then reassessed. All
participants completed a non-verbal cognitive enhancement treatment program that monitors and evaluates
a user’s defined neural network system performance status in real-time. Between 48 and 80 sessions of
extensive training (approximately 30-40 minutes per session) were completed before final re-evaluations
were completed. The training system is rooted in modern rCRT methods, incorporating a neural network BCI
monitoring interface. The BCI provides neural network performance integrity metrics (nPIMs), originated
from one or more of the three control connector hub systems. The nPIMs inform the leveling training
algorithm as it adjusts program training intensity levels. nPIMs are propriety metrics that use an adaptive
algorithm focused on EEG transfer information. This information is derived from EEG measurements as they
transfer between the cognitive control hubs related to cognitive load and task engagement. The BCI adjusts
the difficulty level for each training activity based on in-the-moment brain performance metrics. Individual
nPIMs are derived from the neural network systems that support various cognitive functions being trained
and are user-selectable. The rCRT methodology is implemented through a selectable set of computer
activities specific to individual needs and engages the desired brain network systems and cognitive
functions. Each activity is based on classic neuroscience paradigms. The BCI interface informs the trainer,
the user, the rCRT activity in real-time the current neural network performance integrity status based on the
user’s present nPIMs state. 

Each rCRT activity incorporates a performance leveling algorithm (PLA) to adjust the intensity of the activity
by rendering the pursuit to be either more or less intense. Unique in our method is that the PLA
encompasses both nPIMs and behavioral responses (e.g., response times, accuracy) to adjust the level of
intensity of the activity. This adjustment is based on the real-time performance ability of the user and
targets the intensity required to properly engage long-term potentiation (LTP) and long-term depression
(LTD) network learning rules [29,30]. The difficulty is adjusted based upon current responses, with the goal
of a proper ratio of neurocircuit engagement as opposed to a certain level of correct responses. The
performance-leveling algorithm intends to adjust the level of pursuit play to a comfortable level, allowing
the user to progress through the activity successfully while simultaneously focusing on developing and/or
strengthening the performance integrity of the neural system being trained. 

NeuroCoach® training module example and description
The split-attention application (NeuroCoach® training module) is an adaptive process-based, nonverbal
training technique designed to aid in re-setting/enhancing attention (ATN), working memory (WMN),
frontal-parietal (FPN), and salience networks (SN). Split-attention uses a relaxation and restorative
framework that allows the trained networks to regain or obtain a natural homeostatic balance needed to
maintain a desired level of performance as it drives the user towards increased capacity, neural efficiency,
and performance resilience. Neurobehaviorally, the application focuses on training the useful field of view
(visual attention), working memory, cognitive speed, task switching, and multiple attention abilities, all in
one application.

The lead author has used this application clinically for 10 years with brain-injured and learning-disabled
populations. The application promotes a relaxed sustained attentional focus in professional athletes and
supports restorative cognitive enhancement. The split-attention exercise satisfies The Institute of
Medicine’s Checklist criteria for brain training [8].

Analysis of pre- and post-rCRT scores
Scoring data for all participants were loaded within a Pandas DataFrame and analyzed by cognitive domain
tested for means, standard deviations, and pre/post-rCRT changes by means of a Python script. Group
means were compared via t-tests and Cohen's d values. P-values comparing pre/post-rCRT subject scores for
each domain, separately, were calculated from two-tailed t-tests for paired means (n=200), based on the
mean and standard deviation for scores in each cognitive domain before and after the rCRT treatment. 

Analysis of practice effects: RCI calculations
The RCI technique used to correct for practice effects and measurement error is defined as ({X2−X1} −

{M2−M1})/SDD, where X1 is the measured pretest score, X 2 the post-test score, SDD the standard deviation of

the group test-retest difference, M1 the control group mean pretest score, and M2 the control group mean
post-test score [29]. As a retrospective chart review, the study did not use control subjects, and therefore
obtaining measures of M1 and M2 are not directly available. However, several studies have determined that
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the estimated change in cognitive test-retest scores ranges between 0.25 and 0.33 of a typical standard
deviation [29,31]. Applied to standard scores, M1, M2 values would range between 3.75 and 5.0. 

Results
Subjects completed identical Woodcock-Johnson III assessments before and after rCRT treatment. The
battery included 14 assessments in the following areas: general intellectual ability, thinking efficiency,
concept formation, working memory, numbers reversed, visual-auditory learning, visual audio delayed,
verbal ability, phonemic awareness, verbal comprehension, incomplete words, sound blending, spatial
relations, and visual matching. rCRT treatment explicitly targeted development in neurocircuits related to
the first seven of these areas but did not explicitly target development in the second seven areas. Given the
absence of a control group in this retrospective chart review study, measuring performance in both targeted
and untargeted areas provided some assessment of the magnitude of specific treatment effects.

Tables 1, 2 summarize the pre- and post-treatment results across all Woodcock-Johnson III

assessments. Notably, we observed significant improvements (all p-values < 10-4) across all Woodcock-
Johnson III areas, as might be expected after many sessions of intensive rCRT. To assess the differential
impact of explicitly targeting an area within the rCRT program, we adjusted these observed improvements to
reflect the percent change within each area and compared the pooled percent changes observed in trained
areas against those observed for untrained areas. Figure 2 displays histograms for these pooled changes. The
mean percent change for trained areas was double that observed for untrained areas, at 17.2% versus 8.3%,
respectively. Figure 3 shows percent changes observed across each area, ranked by magnitude, and
highlights how consistently trained areas received a greater percent change than those observed for
untrained areas.

FIGURE 2: Histogram of pooled changes
Histograms show the distribution of percent changes observed for domains that received explicit training
(blue) and for domains that did not receive training (orange). Overlap between the two distributions is visible
in brown.
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FIGURE 3: Percent changes observed across each area

The scoring did not vary with subject sex. We observed no significant correlation in pre-training, post-
training, or change scores as a function of subject age (all Pearson's R values lay within -0.2 to 0.2),
regardless of the area assessed.

Discussion
Previous mTBI CRT program meta-analyses report medium effect size training improvements [28,29]. As
such, the study authors recommend CRT methods as a viable method for treating mTBIs [28,29]. Traditional
mTBI treatment programs generally begin with neuropsychological behavioral testing that does not include
a neuroimaging examination. As a result, training is focused on behavioral deficits found within attentional,
memory, or other executive domains, without considering possible neural network performance
interruptions nor possible reduced neural integrative effects. In contrast, this study explored possible neural
network performance interruptions by choosing training targets based on a standardized cognitive task-
based neuroimaging examination. Each training activity was guided by network performance nPIMs
provided by a BCI interface. More expressly, the rCRT program focused on improving neural network
functional performance to support long-term potentiation (LTP) and long-term depression (LTD) network
learning rules during the training process.

Group level t-test and practice effect RCI value changes support significant positive changes within
important cognitive abilities’ performance metrics known to support executive cognitive control abilities
needed in resilient, flexible, and adaptable behavioral expressions. rCRT target selection focused on
cognitive control training activities. We anticipated a positive training effect to occur in all measured
cognitive domains due to general cognitive improvement in cognitive network efficiency. However, we
further expected a greater improvement in the executive function metrics due to the focus on the training.
Pre- and post-scores from seven cognitive abilities considered dependent on executive cognitive control
networks were compared against seven non-executive control abilities and supported our expectations. We

observed significant improvements (p < 10-4) with large Cohen’s d effect sizes (0.78-1.20) across
13 cognitive ability domains with a medium effect size (0.49) on the remaining. The mean percent change for
the pooled trained domain was double that observed for a pooled untrained domain, at 17.2% versus 8.3%,
respectively, although the two distributions exhibit significant overlap, as seen in Figure 2. To further adjust
for practice effects, practice effect RCI values (based upon literature known adjustments) were computed and
further supported the effectiveness of the rCRT (trained RCI 1.4-4.8; untrained RCI 0.08-0.75) on the
executive control networks.

This retrospective chart review was limited by the lack of a control group, although comparing explicitly
trained versus untrained cognitive areas provided some measure of the effect of treatment. Future work will
further “mine” retrospective data to inform the design and focus of controlled, prospective studies. In
addition, customized individual rCRT programs will benefit from the insights gleaned from the analysis of
our database of retrospective data.

Conclusions
In summary, this mTBI study demonstrates a strong training effect obtained with an rCRT driven by a BCI.
This was achieved by first using a neuroelectric imaging examination (a qEEG brain map) to select target
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networks for rCRT. Second, we augmented individual rCRT activities with a BCI interface to monitor and
compute in-the-moment neural network performance integrity metrics (nPIMs) needed to align the level of
activity engagement. Activity level computations were used to properly manage cognitive loads. From our
experience, this automated approach to classical rCRT methods offers two extensions over traditional pen
and pencil, or computer game CRT approaches: (1) tailoring the selection of the rCRT procedures based on
neural network performance metrics derived from EEG source reconstruction neuroelectric imaging
evaluations to isolate underlying neural network disruptions; (2) amplifying neural network regional
training by means of BCI treatment amplification.

In general, the training program assumes that coupling key, resilience-supporting neural circuits with proper
problem-solving skills promotes the emergence of resilient, adaptive behaviors. Based upon program
participant subjective reports, we found that in the context of daily living, this emergence means proper
brain-based behavioral health expressions that allow the return to productive work, social reintegration, and
improvement in one’s quality of life. In other contexts, such as in sports, this emergence means increased
sports performance for both injured and non-injured athletes.
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