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Background: Aspirin intake reduces the risk of colorectal cancer (CRC), but the molecular underpinnings remain
elusive. Epidermal growth factor receptor (EGFR),which is overexpressed in about 80% of CRC cases, is implicated
in the etiology of CRC. Here, we investigated whether aspirin can prevent CRC by normalizing EGFR expression.
Methods: Immunohistochemistry staining was performed on paraffin-embedded tissue sections from normal
colon mucosa, adenomatous polyps from FAP patients who were classified as regular aspirin users or nonusers.
The interplay between cyclooxygenase-2 (COX-2) and EGFRwas studied in primary intestinal epithelial cells iso-
lated from ApcMinmice, immortalized normal human colon epithelial cells (HCECs) as well as murine embryonic
fibroblasts (MEFs).
Results: Immunohistochemistry staining results established that EGFR overexpression is an early event in colo-
rectal tumorigenesis, which can be greatly attenuated by regular use of aspirin. Importantly, EGFR and COX-2

were co-overexpressed and co-localized with each other in FAP patients. Further mechanistic studies revealed
that COX-2 overexpression triggers the activation of the c-Jun-dependent transcription factor, activator
protein-1 (AP-1), which binds to the Egfr promoter. Binding facilitates the cellular accumulation of EGFR and
lowers the threshold required for pre-neoplastic cells to undergo transformation.
Conclusion: Aspirin might exert its chemopreventive activity against CRC, at least partially, by normalizing EGFR
expression in gastrointestinal precancerous lesions.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Colorectal cancer (CRC) represents the third leading cause of cancer-
related death in the United States (Siegel et al., 2014). Consistent clinical
trial data strongly suggest that regular use of aspirin and other non-
steroidal anti-inflammatory drugs (NSAIDs) lowers the lifetime risk of
developing CRC (Algra and Rothwell, 2012; Arber et al., 2006; Chan
and Lippman, 2011; Chan et al., 2007; Rothwell et al., 2010). Based on
data from a variety of sources, COX-2 has long been suspected to be
the primary target for aspirin and NSAID-mediated CRC chemopreven-
tion (Chan and Lippman, 2011; Chulada et al., 2000; Markowitz,
2007). This idea is supported not only by compelling intervention trials
with various COX-2 inhibitors (Algra and Rothwell, 2012;Mitchell et al.,
nomatous polyposis; EGFR, epi-
PGs, prostaglandins.
versity of Minnesota, 801 16th
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1993), but also by the observed resistance to colorectal carcinogenesis
in the absence of ptgs-2 (gene coding for COX-2) in ApcMin mice (Chan
et al., 2007). However, COX-2 activation alone is insufficient to cause tu-
morigenesis, evidenced by the fact that COX-2 transgenic mice fail to
develop tumors spontaneously (Oshima et al., 1996). Collectively,
COX-2 might function as a tumor promoter rather than as an initiator,
but the mechanism of action by which COX-2 drives tumorigenesis re-
mains imperfectly understood.

The epidermal growth factor receptor (EGFR), a transmembrane re-
ceptor tyrosine kinase of the ErbB family, has recently been implicated
in the etiology of CRC (Repetto et al., 2005; Roberts et al., 2002;
Winder and Lenz, 2010). For example, the protein level of EGFR was el-
evated in up to 80% of CRC cases and is associated with clinical out-
comes. Transfer of the ApcMin allele onto a homozygous Egfrwa2

background resulted in a 90% reduction in intestinal polyp number rel-
ative to ApcMin mice carrying a wildtype Egfr allele. Notably, although
the EGFR level is frequently elevated in up to 80% of CRC cases, the
mechanism underlying such widespread overexpression remains elu-
sive. Here, we demonstrated that COX-2 might drive intestinal tumori-
genesis by up-regulating EGFR expression in familial adenomatous
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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polyposis (FAP) patients, an effect that could be attenuated by regular
aspirin use.

2. Materials and Methods

2.1. Clinical Study

2.1.1. Subjects
Familial adenomatous polyposis (FAP) patients were recruited by

the Gastroenterology and Hepatology group at Mayo Clinic, Rochester,
Minnesota. Through a protocol approved by the Mayo Clinic Rochester
MN IRB, all subjects with FAP seen at Mayo Clinic Rochester MN be-
tween January 1990 through May and from whom polyp tissue was
available were identified through a search of clinical diagnoses and pa-
thology reports in the electronic medical record (EMR). The EMR of the
identified FAP cases with available tissue (n = 178) was searched to
identify those with a history of NSAID use at the time that the available
polyp tissue was collected. Cigarette smoking and inflammatory bowel
diseases are independent risk factors for CRC, while FAP patients suffer-
ing hypertension or cardiovascular diseases might take additional anti-
coagulant drugs other than aspirin. Thus, exclusion criteria also included
cigarette smoking, inflammatory bowel diseases, hypertension, a history
of cardiovascular disease, and pregnancy and subjects were not on any
other pharmacological treatments. All clinical studies on human subjects
or humanmaterials were approved by the Mayo Clinic review board and
the ZhengzhouUniversity review board (#2014xjs28).Written, informed
consent was required for entry of any patient into this study.

2.1.2. Study Design
FAP patients who reported taking two or more standard (325 mg)

aspirin tablets per week within the previous 12 months were classified
as regular aspirin users (n = 25) and those reporting consumption of
less aspirin were classified as aspirin nonusers (n = 25) (Chan et al.,
2007). Individuals in the healthy control group (n = 25) were normal
subjects who underwent colonoscopy screening. The gender ratio in
each group was approximately 1:1.

2.1.3. Histology and Immunohistochemistry
Colonic mucosal biopsy samples were fixed in 10% formalin, embed-

ded in paraffin, sectioned at 5 μm, and stained with haematoxylin and
eosin (H&E) according to standard protocols. Immunohistochemistry
staining for COX-2 (#12282, Cell Signaling Technology, Beverly, MA; di-
lution 1:200) or EGFR (#4267, Cell Signaling Technology, Beverly, MA;
dilution 1:50) was performed using an ABC complex kit (PK-6100, Vec-
tor Laboratories, Burlingame, CA) following the manufacturer's instruc-
tions. Sections were counterstained with Harris's haematoxylin. For
antibody-negative controls, the primary antibodies were substituted
with normal rabbit serum. Colorectal cancer tissues known to highly
express both COX-2 and EGFR served as positive controls. Immunohisto-
chemistry staining intensity was quantified by calculating the integrated
optical density (IOD, sum)using the Image Pro-Plus 7.0 software program
(Media Cybernetics, Bethesda, MD).

2.2. Materials, Chemicals, and Reagents

Primary antibodies against Jun B, Fra1 and β-actin were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA). All other primary anti-
bodies were purchased from Cell Signaling Technology (Beverly, MA).
Full-length cDNAs for human cox-2, Jun B, c-Jun and Fra1 were from
Addgene Inc. (Cambridge, MA). All chemicals were obtained from
Sigma-Aldrich (St Louis, MO) unless otherwise specified.

2.3. Cell lines and Transfection

Primary mouse intestinal epithelial cells and adenoma cells were
isolated from C57BL/6-ApcMin mice (ApcMin mice) as reported (Zhang
et al., 2010). In brief, intestinal polyps or normal adjacent small
intestines were cut into 2–3 mm segments, transferred to a 50 mL tube,
washed at least 5 times in 20 mL of cold Hank's buffered salt solution
(HBSS) with vigorous shaking, and diced into b1 mm3 pieces using a
sharp scalpel blade, and incubated with enzyme solution (0.5 mg/mL
dispase type I and 300 U/mL collagenase type IV in HBSS) at 37 °C for
30 min. After enzymatic dissociation, the obtained tissue pieces were
transferred to a 50 mL tube with 20 mL Dulbecco's modified Eagle's
medium (DMEM) containing 100 mL−1 penicillin and 100 mL−1

streptomycin. The mixtures were allowed to settle under gravity for
1 min, and all but a small amount at the bottom was carefully
removed. This procedure was repeated 5 times. The mixtures
were then washed 3 times with DMEM and the pellet was resuspended
in epithelial cell medium containing equal volumes of DMEM and
Ham's F12 medium with the following additives: 5 μg mL−1 insulin,
10 ng mL−1 epidermal growth factor, 20 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), 2 mM glutamine, 100 U mL−1

penicillin, 100 μg mL−1 streptomycin, 0.2% D-glucose, and 2% FBS.
COX-2wildtype (COX-2+/+) andCOX-2 knockout (COX-2−/−)mouse

embryonic fibroblasts (MEFs) were kind gifts from Drs. Jeff Reese and
Sudhansu K. Dey (University of Kansas Medical Center). The cells were
derived from COX-2 knockout mice supplied by Drs. Joseph E. Dinchuk
and James M. Trzaskos (DuPont Merck Pharmaceutical Co.) The cells
were cultured inDMEMcontaining 10% fetal bovine serum (FBS), 1% pen-
icillin/streptomycin and 2 mM L-glutamine.

All other cell lines used were obtained from the American Type
Culture Collection (Manassas, VA) and maintained following ATCC
instructions. All cells were cytogenetically tested and authenticated be-
fore being frozen. The passage number was routinely limited to approx-
imately 20 and morphology monitored with each passage.

Transient and stable transfections were performed using jetPEI re-
agent (Qbiogen Inc., Montreal, Quebec, Canada) following the
manufacturer's instructions. For stable transfection, cells were tran-
siently transfected with either an empty vector (pcDNA3.1) or effector
plasmid. After 24 h, G418 was added for selection of stable subclones.
After 3weeks, the individual clones obtainedwere ring-isolated and ex-
panded in culture medium in the presence of G418. Expression of the
protein of interest was verified by Western blot.
2.4. Determination of Prostaglandin Production

The measurement of prostaglandins in the cell culture medium
was conducted using enzyme immunoassay kits from Cayman
Chemical Company (Ann Arbor, MI). Briefly, cells (6 × 105) were
plated in a 6-well-plate in the presence of 10% serum. When cells
reached 50–60% confluence, 1 mL fresh medium with or without
selected test agents was added and cells were further incubated
for different time periods. The supernatant fractions were then col-
lected for prostaglandin measurement following the manufacturer's
instructions.
2.5. Electrophoretic Mobility-shift Assay

Nuclear protein extracts were prepared using the NE-PER Nuclear
and Cytoplasmic Extraction Reagents kit (Thermo Scientific, Waltham,
MA) according to the manufacturer's protocol. The AP-1 DNA binding
reaction was performed at room temperature for 30 min in a mixture
containing 5mgnuclear protein and 1 μL IRDye 700AP-1 ConsensusOl-
igonucleotide (5′-CGCTTGATGACTCAGCCGGAA-3′; 3′-GCGAACTACTGA
GTCGGCCTT-5′). The sampleswere then fractionated through a 5% poly-
acrylamide gel and gels were analyzed using the Odyssey® Infrared Im-
aging System (LI-COR® Biosciences, Lincoln, NE). For the super-shift gel
assay, nuclear extracts were pre-incubated with 1 μg of the respective
antibody for 20 min before adding the DNA.
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2.6. RT-PCR Analysis

Total RNA was collected using the TriPure isolation reagent (Roche
Molecular Biochemicals, Indianapolis, IN) according to the
manufacturer's protocol. RT-PCR was performed on 1 μg of RNA using
the One-Step SuperScript RT Platinum TaqRT-PCR kit (Invitrogen). The
primer sequences used are as follows: EGFR forward: 5′-GTTATCCATC
CCTGACTCTCATCT-3′; EGFR reverse: 5′-ACCTGACAGGCTCATTCTATAT
CC-3′. PCR cycle number was 25 for Egfr, and 20 for β-actin. Products
were analyzed by gel electrophoresis, ethidium bromide staining and
a Digital Science IC440 camera system (Kodak, Rochester, NY).

2.7. Reporter Assays

The reporter plasmid, effector plasmid, and internal control plasmid
(Renilla luciferase reporter, pRL-SV40) were transfected using jetPEI re-
agent (Qbiogen) into cells following themanufacturer's instructions. At
24 h after transfection, cells were disrupted and collected for luciferase
activity assays using a Luciferase Assay System (Promega Corporation,
Madison, WI). Luciferase activity was measured by luminometer
(Monolight 2010, Analytical Luminescence Laboratory, Ann Arbor, MI).
All firefly luciferase reporter activities were normalized for transfection
efficiency by determining the ratio between firefly and Renilla luciferase
activity. The Col-Luc plasmid DNAwas used as the AP-1 luciferase report-
er plasmid and the pER1-Luc plasmid was used for measuring Egfr lucif-
erase reporter activity.

2.8. Western Blot Analysis

Protein samples (20 μg) were resolved by SDS-PAGE and transferred
to Hybond C nitrocellulose membranes (Amersham Corporation, Ar-
lington Heights, IL). After blocking with nonfat milk, the membranes
were probed with primary antibodies (1:1000) overnight at 4 °C. The
targeted protein bands were visualized by an enhanced chemilumines-
cence reagent (Amersham Corporation) after hybridization with a sec-
ondary antibody conjugated with horseradish peroxidase.

2.9. Statistical Analysis

Statistical analysis was performed using the Prism 5.0 statistical soft-
ware package. The Tukey's t-test was used to compare data between
two groups. One-way ANOVA and the Bonferroni correction were
used to compare data between 3 or more groups. Pearson correlation
was used tomeasure the strength of association between two variables.
Values are expressed asmeans±S.D. and a p value of b0.05was consid-
ered statistically significant.

3. Results

3.1. COX-2 and EGFR are Positively Correlated in FAP Patients

We first analyzed the profile of EGFR expression in the colon during
CRC progression. The transition of normal epithelial mucosa to polyps
(any grossly visible protrusion from the mucosal surface of the colon)
or adenomas (also known as adenomatous polyps) to adenocarcinomas
is well-established in patients with familial adenomatous polyposis
(FAP) (Tsao et al., 2004). Accordingly, we recruited FAP patients, sub-
grouped them based upon pathological disease stage, and determined
their colonic EGFR expression by immunohistochemistry staining
(Fig. 1A). EGFR stainingwaspositive in 13 (72%) of 18 adenocarcinomas,
20 (69%) of the 29 adenomas, and 6 (67%) of the 9 polyp tissue samples.
In contrast, only 1 (10%) of the 10 normal colorectal tissues stained pos-
itive for EGFR (Note: the lower panels of Fig. 1A are representative of
data shown in the upper table and graph).

Histopathologically, the positive regions of EGFR immunostaining
were mainly in colonic neoplastic tissue (such as polyps and adenomas),
but less in normal colonicmucosa tissues (Fig. 1A). Consistentwith previ-
ousfindings by others (Eberhart et al., 1994), we observed COX-2 overex-
pression in those premalignant lesions, too. Interestingly, our data
strongly suggested that EGFR and COX-2 were co-localized in the polyp
tissues in FAP patients (Fig. 1B). Inspired by the findings above, we exam-
ined the relationship between COX-2 and EGFR expression in colonic ad-
enomatous polyps from FAP patients. Results indicated that in 95% of the
FAP cases (19/20) exhibiting COX-2 overexpression, EGFRwas also highly
expressed (Fig. 1C). Further quantification analysis indicated that the ob-
served expression levels of COX-2 and EGFR were not independent of
each other but were highly and positively correlated (p = 0.0015; R =
0.7585) in adenomatous polyps from FAP patients (Fig. 1D).

We then compared the expression of COX-2 and EGFR in FAP pa-
tients who were classified as regular aspirin users or nonusers (Fig. 1E,
F). As expected, significantly decreased EGFR protein levels were ob-
served in the adenomatous polyps of regular aspirin users, suggesting
that aspirin exposure decreases the elevated EGFR levels in FAP patients.
Interestingly, regular aspirin users also exhibited a significantly lower
level of COX-2. Overall, these findings strongly indicated a functional
role for COX-2 in the regulation of EGFR during gastrointestinal
tumorigenesis.

3.2. Functional Relevance of COX-2 in the Regulation of EGFR

To study the interplay between COX-2 and EGFR in CRC, knowing
the specific cell types that overexpress these proteins would be essen-
tial. In this regard, we found that both COX-2 and EGFR are primarily
overexpressed and localized in the pre-malignant epithelial cells in
adenomas from FAP patients (Fig. 1E). Accordingly, we isolated primary
epithelial cells from mouse intestinal polyps and normal adjacent
intestinal tissues of ApcMin mice. Consistent with our observations
from immunohistochemistry analysis, COX-2 and EGFR were highly
expressed in intestinal adenoma epithelial cells, but not in normal intes-
tinal epithelial cells (Fig. 2A). Furthermore, treatment with either
aspirin or celecoxib, a well-known COX-2 inhibitor, lowered EGFR ex-
pression in intestinal adenoma epithelial cells (Fig. 2B).

To further characterize the role of COX-2 in the regulation of EGFR,
we successfully established a COX-2 overexpressing stable sub-clone
from an immortalized normal human colon epithelial cell line (HCEC).
Forced expression of COX-2 resulted in an increase in the protein level
of EGFR (Fig. 2C). Once again, treatment with aspirin or celecoxib
lowered EGFR expression levels (Fig. 2D).

Next,we determinedwhether deficiency of COX-2 could influence the
level of EGFR in murine embryonic fibroblasts (MEFs). Results clearly in-
dicated that compared with wildtype MEFs (COX-2+/+; Fig. 2E), MEFs
with cox-2 gene deficiency (COX-2−/−) have a much lower EGFR level.
Furthermore, typical COX-2 activators, including inflammatory cytokine
interleukin-1 beta (IL-1β) andbacterial lipopolysaccharide (LPS), dramat-
ically boosted both COX-2 and EGFR protein expression in COX-2
wildtype cells compared to knockout cells (Fig. 2F). These data indicate
that manipulating COX-2 activity dramatically affects the protein level
of EGFR.

3.3. COX-2 Modulates EGFR Transcription Through Activator Protein-1
(AP-1)

Generally, increased EGFR expression is either due to increased bio-
genesis, decreased degradation, or both. We hypothesized that COX-2
might modulate EGFR at the transcriptional level by activating the Egfr
promoter. This idea was supported by results showing that both Egfr
mRNA (Fig. 3A, left panel) and promoter activity (Fig. 3A, right panel)
were dramatically reduced in the absence of cox-2 gene expression. As-
pirin was previously reported as an inhibitor of the activity of activator
protein-1 (AP-1), one of the potential transcription factors for Egfr
(Dong et al., 1997; Johnson et al., 2000; Zenz et al., 2003). We then
hypothesized that COX-2 might present an unrecognized signaling



Fig. 1. Expression of COX-2 and EGFR is positively correlated in FAP patients. (A) EGFR is up-regulated during CRC progression. Immunohistochemistry of normal colonic epithelialmucosa
(Aa), polyps (Ab), adenomas (Ac), and adenocarcinomas (Ad). Normal colonic epithelial mucosa was isolated from healthy individuals who underwent routine colonoscopy screening,
whereas colonic neoplastic tissues were from FAP patients. Original magnification: 200×. (B) COX-2 and EGFR are co-overexpressed in colonic adenomatous polyps in FAP patients. Orig-
inal magnification: 40×. (C) Immunophenotyping of colonic adenomatous polyps shows negative or positive staining for COX-2 and EGFR. Immunostaining intensities are defined inMa-
terials and methods. FAP patients (aspirin nonusers), n = 25; double-positive cases, n = 19. (D) COX-2 and EGFR are correlated in colonic adenomatous polyps from FAP patients. FAP
patients (aspirin nonusers), n = 25. The positive correlation value (R = 0.7585) indicates a strong linear relationship. Data were analyzed using Prism 5.0 statistical software. (E) and
(F) Effects of regular aspirin use on EGFR and COX-2 expression in FAP patients. FAP patients who reported taking two or more standard (325mg) aspirin tablets per week were classified
as regular aspirin users and those taking less aspirin were defined as aspirin nonusers. Original magnification: 200×. Note: IOD (integrated optical density) units.
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pathway leading to AP-1 activation, which functionally couples with
Egfr transcription. Our data indicated that AP-1 activity (Fig. 3B, left
panel) as well as AP-1 DNA binding activity (Fig. 3B, right panel) was
markedly attenuated in the absence of cox-2 gene expression. Potential
AP-1 components were identified by Western blot (Fig. 3C) and
electrophoretic mobility-super shift assay (Fig. 3D). In this regard, over-
expression of Jun B and c-Jun increased Egfr promoter activity as well as
EGFR protein level (Fig. 3E). Moreover, we established that both the Egfr
promoter and AP-1 activity were suppressed by celecoxib treatment
(Fig. 3F).



Fig. 2. Functional relevance of COX-2 in the regulation of EGFR. (A) and (B) Primary epithelial cells were isolated frommouse intestinal polyps and normal adjacent intestinal tissues of
ApcMinmice and treatedwith aspirin (0, 1, 2, or 4mM) or celecoxib (0, 0.01, 0.02, or 0.04mM) for 72 h. After treatment, cells were disrupted and immunoblottedwith either anti-COX-2 or
anti-EGFR. Data is representative of 3 similar experiments. (C) and (D) Stable transfection of exogenous COX-2 results in EGFR up-regulation in an immortalized normal human colon ep-
ithelial cell line (HCEC), an effect that could be attenuated by aspirin and celecoxib treatment. At 50–60% confluence, HCEC cells were transiently transfected with either an empty vector
(pcDNA3.1) or a COX-2 plasmid (pcDNA3-Flag-COX-2). After 24 h, G418 (600 ng/mL)was added for the selection of stable subclones. After 3weeks, the stable clones obtainedwere treat-
ed with aspirin (0, 1, 2, or 4 mM) or celecoxib (0, 0.01, 0.02, or 0.04 mM) for 72 h. Data are representative of 3 similar experiments. (E) GENETIC deficiency of cox-2 is associated with a
lower level of EGFR inmurine embryonic fibroblasts (MEFs). Data are representative of 3 similar experiments. (F) MEFs were incubated with normal saline (NS), IL-1β (10 ng/mL) or LPS
(1 ng/mL). After treatment for 72 h, cells were disrupted and immunoblotted with either anti-COX-2 or anti-EGFR (upper panels). Supernatant fractions were collected for prostaglandin
E2 (PGE2)measurement (lower panel). Data are presented asmean values± S.D. (n= 4) of a representative experiment that was repeated 3 timeswith similar results. The asterisks (***)
indicate a significant (p b 0.001) difference compared to normal saline-treated COX-2+/+ MEFs (lower panel).
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Fig. 3. COX-2 modulates EGFR transcription through AP-1. (A) Effects of cox-2 gene deficiency on EGFR transcriptional activation in MEFs. (Left) RT-PCR analysis of EgfrmRNA levels. β-
Actin served as a loading control. (Right) Egfr promoter activity. (B) Effects of cox-2 gene deficiency on AP-1 activation. (Left) AP-1 activity. (Right) AP-1 DNA binding activity.
(C) Identification of potential AP-1 components by Western blot analysis. (D) AP-1 component candidates are identified by super-shift gel assay. (E) Effects of transient transfection of
respective AP-1 components on Egfr promoter activity and EGFR expression in NIH3T3 cells. Data are presented as mean values± S.D. (n= 4) and the asterisks (***) indicate a significant
(p b 0.001) increase compared to the Mock-transfected group. (F) COX-2 inhibition represses Egfr promoter activity as well as AP-1 activation. The data are expressed as percent activity
relative to untreated control. The asterisks (***) indicate a significant (p b 0.001) decrease compared to untreated control MEFs.
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3.4. COX-2 Amplifies EGFR Signaling to Facilitate Neoplastic Cell
Transformation

Based on the findings above, we determined whether COX-2 acti-
vation could facilitate neoplastic cell transformation by amplifying
EGFR signaling. JB6 cells, a promotion sensitive (P+) mouse epider-
mal cell line, has enabled the study of genetic susceptibility to
promotion of cell transformation, and thus provides a unique cell
model to characterize activated COX-2 in pre-neoplastic cells
(Dong et al., 1994). We found that compared with parent cells, stable
sub-clones overexpressing COX-2 were significantly more readily
transformed in the presence of EGF (Fig. 4A, B). We also evaluated
the effects of a pro-inflammatorymicroenvironment on cell transfor-
mation by treating cells with NS, IL-1β or LPS, and observed



453H. Li et al. / EBioMedicine 2 (2015) 447–455
increased transformation in the presence of COX-2 activation
(Fig. 4C). Further studies suggested that with EGF stimulation,
EGFR downstream signaling cascades were substantially amplified
in the presence of COX-2 forced expression (Fig. 4D). Additional re-
sults indicated that the contribution of COX-2 to transformation
was markedly attenuated by treatment with either aspirin or
celecoxib (Fig. 4E), at a clinically achievable serum concentration.

4. Discussion

Although widely accepted as a prognostic biomarker in advanced
CRC, our findings in this study clearly showed that EGFR protein expres-
sion was dramatically elevated in colonic adenomatous polyps in FAP
Fig. 4. COX-2 activation facilitates neoplastic cell transformation. (A) Stable transfection of exoge
cell line (JB6). (B) Effects of forced COX-2 expression on cell transformation. (C) Effects of typic
signal transduction cascade. (E) COX-2-mediated stimulation of cell transformation is decreas
indicate a significant (p b 0.001) decrease in NSAID-treated cells overexpressing COX-2 compa
patients, even at a very early stage. More importantly, a mechanistic
study indicated that the widespread overexpression of EGFR might
occur as a consequence of COX-2 activation, a common pathological
event in various gastrointestinal precancerous lesions. Coupled
with the fact that the absence of Egfr reduced intestinal polyps by 90%
in ApcMin mice (Roberts et al., 2002), these results indicated that COX-
2 might drive colon tumorigenesis, at least in partly, through up-
regulation of EGFR, which phenotypically facilitates neoplastic cell
transformation in precancerous lesions. As such, EGFR might be a
novel target for CRC chemoprevention.

Previously, PGE2, the major COX-2-derivated PG, was reported to
be capable of transactivating the EGFR kinase cascade in colon cancer
cells (Pai et al., 2002), whereas activation of EGFR could conversely
nous COX-2 results in EGFR up-regulation in a promotion sensitive (P+)mouse epidermal
al COX-2 activators on cell transformation. (D) The presence of COX-2 amplifies the EGFR
ed by NSAIDs. Data are presented as mean values ± S.D. (n = 12) and the asterisks (***)
red to the EGF-treated COX-2 overexpressing cells.
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stimulate COX-2 biosynthesis (Coffey et al., 1997). Taken together, a
positive feedback loop could possibly exist between COX-2 and EGFR
in intestinal tumorigenesis. In this regard, FAP patients whose colon-
ic polyps express high levels of both COX-2 and EGFR might be the
most likely to benefit from a combination anti-COX-2/EGFR therapy
(Torrance et al., 2000).

COX-2 is known to exert its biological function through its derivate
prostaglandins. If this is the case, identifying the specific prostaglandins
that act downstream of COX-2 would be essential for understanding
how COX-2 activation enhances EGFR expression. The most direct ex-
perimental approach is by examining PGs' biosynthesis upon COX-2 in-
hibition. However, the biosynthesis of all five of themajor bioactive PGs'
in primary intestinal adenoma epithelial cellswas suppressed by aspirin
or celecoxib treatment (Supplementary Fig. 1). An exception is the ef-
fect of aspirin on PGI2 production. The interpretation of such phenome-
non is still incomplete. Thus, further studies examining susceptibility to
intestinal polyps in mice with targeted deletions in specific prostaglan-
din synthases and receptors are needed.

Knowing the specific cell type that expresses COX-2would be essen-
tial for understanding how COX-2 promotes CRC progression. However,
no consensus exists at present as to which cell types within a colon
tumor specifically express COX-2. Some groups, including us, found
that COX-2 is primarily expressed in the epithelial cells of colon adeno-
mas and sporadic human colon cancers (Sano et al., 1995). Another
group has reported COX-2 expression in the stromal compartment of
polyps from ApcMin mice (Oshima et al., 1996). We are uncertain
whether these differences in COX-2 localization are due to experimental
artifacts or simply because of inherent variability within the sample.
Within a given tumor, COX-2 may also be expressed in more than one
cell type (Masferrer et al., 2000). The interpretation of this phenomenon
is still pending.

Although our findings are interesting, several questions remain
unanswered. For example, one caveat is that the doses of aspirin
and celecoxib used in in vitro studies are higher than their clinically
relevant concentration. Although aspirin exposure decreases the el-
evated EGFR levels in FAP patients, in the majority of individuals
who were aspirin users or non-users, the levels of EGFR were still
overlapping. This is consistent with the outcome of CRC chemopre-
vention in which aspirin benefits most but not all of the overall pop-
ulation. Another issue is that our sample size is small, and data
collection as well as the final conclusion might be limited only to
colonic adenoma in FAP patients. Although COX-2 and EGFR were
co-localized in colon adenocarcinomas from FAP patients, a function-
al association between them was not observed (Supplementary
Fig. 2A, B). Moreover, knockdown of COX-2 didn't or only weakly af-
fected the levels of EGFR in 4 colon cancer cell lines (Supplementary
Fig. 2C). All of these findings suggested that colon cancer cells have
already escaped from COX-2 dependence (Lev-Ari et al., 2007), but
the mechanism of action remains unclear.

In summary, this study revealed a previously unknown functional
association between COX-2 and EGFR during colorectal carcinogenesis,
and provided an explanation as to how aspirin intake can lower the
risk of CRC in FAP patients.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2015.03.019.
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