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I was greatly honored by the invitation to give the Cutter 
Lecture, and following the practice of some other Cutter 
Lecturers I would like to offer some reflections on my career 
in Epidemiology, and draw some lessons about best practices 
that I wish I had known 35 years ago when I first considered 
this career. I will mention along the way some mentors and 
colleagues, but I apologize in advance to the many I will not 
name who have my gratitude and respect.

Like many Australian physicians of the era, I was first 
properly exposed to population health during elective term 
experiences in Papua New Guinea, and subsequently in Dar-
es-Salaam, Tanzania. After some clinical training, I enrolled 
in the MPH program at HSPH, vaguely expecting to wind up 
working for an NGO in a refugee camp. I had never really 
thought much about research, although an interest in trek-
king in the Himalayas and some minimal mountaineering 
experience had me reading papers on altitude sickness, and 
resulted in a co-authored review in the 1984 Christmas edi-
tion of the Medical Journal of Australia [1]. It was readily 
apparent that altitude sickness resulted from a combination 
of extreme environment, and inter-individual susceptibility, 
so I suppose the die was cast for a career investigating the 
inter-individual variation of environmental response.

My thesis in the Nurses’ Health Study was on risk factors 
for non-melanoma skin cancer, again a combination of envi-
ronmental exposure and susceptibility. Using the relatively 
crude graphics programs of the time, the papers featured 
a series of three-dimensional plots showing the relation 

between the two (Fig. 1) [2]. The Nurses’ Health Study 
held (and still holds) a weekly meeting of faculty, students 
and staff that were a model of collaborative development of 
questionnaires, grants and analysis plans. I probably learned 
as much about Methods in those meetings as I did in the 
classroom.

My interest in what was then called International Health 
was still present, and towards the end of my doctorate I 
worked with Lincoln Chen as Executive Director of the 
AIDS and Reproductive Health Network. We developed a 
series of studies on HIV prevalence and incidence, and I 
collaborated with colleagues in Kenya and Tanzania examin-
ing HIV risk factors among women [3, 4]. We found to our 
horror that the prevalence was much higher than expected, 
meaning that studies initially designed as cross-sectional 
screens designed to facilitate case-control studies could be 
analyzed using prevalence risk ratios and then turned into 
prospective studies with annual incidence rates of several 
percent. Laptop computers had been recently introduced, 
and I spent many happy evenings in Nairobi and Dar-es-
Salaam watching logistic models that would now converge in 
seconds gradually converging over hours, all the while hop-
ing the electricity did not suddenly fail. A blackout would 
crash the program; a power surge might fry the laptop. I still 
recommend some international work to anyone early in their 
career who has the freedom to experience it.

Meanwhile, a project had been rather grudgingly funded 
by the site visitors to Walter Willett’s otherwise enthusiasti-
cally received Program Project, and we assembled an all-star 
cast of nutritional epidemiologists who were willing to share 
data post-publication, initially on diet and breast cancer. This 
became the Pooling Project of Prospective Studies of Diet 
and Cancer. In retrospect, we should have had a nifty acro-
nym and logo, but consortium acronyms were not yet de 
rigueur. It was a great way to work with an international cast 
of epidemiologists and thus hear a diversity of opinions and 
approaches. We published a string of largely null papers [5] 
with the exception of a pooled analysis of alcohol and breast 
cancer [6]. For our annual meetings we would assemble a 
set of data tables the size of a phone book, and spend a day 
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rather mind-numbingly working through them. Significant 
tests for heterogeneity were very rare, but study-specific 
significant relative risks not uncommon—and it was only 
seeing these as outliers among otherwise null findings and 
a null pooled relative risk that brought home to me the mes-
sage of the play of chance. In essence we were learning the 
desirability of replication to weed out false positives, at the 
expense of study-specific findings that would make a good, 
and publishable, story.

Of course, there is still much skepticism about nutritional 
epidemiology. It is possibly the branch of our discipline that 
has the most potential for false positives because of the num-
ber of foods, nutrients, diseases, and potential interactions, 
combined with multiple studies often with small sample 
sizes. A common interpretation—that diet is too complex 
for people to report—does not seem justified by the devel-
opment of the field and its successes in defining dietary 
risks for heart disease and diabetes. It is perhaps ironic that 
much of the work in nutritional epidemiology in the US was 
funded by the National Cancer Institute as the consensus 
finding is that if toxic agents such as aflatoxin and arsenic 
are excluded, there is not a strong connection between diet 
in middle life and the short-to-medium term risk of most 
cancers [7].

Reinforcement of the need for replication would come 
with the second grant—that funded a nested case-control 
study of plasma pesticide levels and breast cancer in the 
Nurses’ Health Study. A small, apparently exemplary, 
study in the New York University Women’s Health Study 
cohort had reported an association [8]. We failed to repli-
cate this in the Nurses’ Health Study [9] and then in a col-
laboration of four other nested case-control studies [10]. 
Again, the lessons were that collaboration, to increase 

sample size and assess the reproducibility of findings was 
essential.

John Cairns, a Professor of Cancer Biology at HSPH, 
had been on my doctoral thesis committee, and was kind 
enough to engage in mechanistic discussions of carcinogen-
esis, amplifying the material in his lectures that were deliv-
ered with chalk and multiple blackboards, before the days of 
Powerpoint made giving a lecture rather less spontaneous. I 
decided to switch focus to genetics.

Starting with a small lab in the basement of the Channing 
Laboratory funded by Frank Speizer and collaborating with 
Karl Kelsey, we began to extract DNA’s from the Nurses’ 
Health Study buffy coats, and experimented with collect-
ing cheek cell swabs from women who had not given blood 
samples. Genotyping was painfully slow using restriction 
fragment length polymorphisms generated by cutting with 
restriction enzymes and running fragments on gels. A good 
day’s work for a technician was a single genotype on two 
12-lane gels from 24 women, but it all seemed quite high-
tech. Most of my elders and betters considered this a waste 
of an epidemiologist’s time—lab work could be farmed out 
to multiple laboratories who would often do the work “for 
free”. Immersion in the lab world did help the studies how-
ever, notably in reducing the amount of DNA we needed, 
and understanding the quality control issues of genotyping. 
I would recommend that anyone using laboratory results at 
least visits the laboratory in question, but better still embeds 
for some time.

The real problem was that we were testing “hypotheses”, 
often without any idea whether the RFLP was generated by 
a functional variant in the gene. The genes were selected 
from “pathways” that were thought to be relevant to the dis-
ease under study, so-called “candidate genes”. The usual 
metaphor is that we were “looking for our keys under the 
lampposts in a darkened street”, but looking for needles 
in a haystack is a more apt description. Nevertheless, we 
acquired the ability to extract, store and reliably archive 
DNA samples, and a familiarity with the concepts and lan-
guage of the genetic epidemiology of the time. At the time 
there were still many prominent geneticists who maintained 
that it was hopeless to study disease genetics outside family-
based designs, and that conventional case–control studies 
would never have any place in human genetics.

By and large, we did not find many genetic main effects 
that were reproducible, and we were mainly involved in pub-
lishing refutations of previously published, and probably 
publication-biased “positive” studies. Exceptions included a 
small handful of functional variants for example in MTHFR 
and colorectal cancer [11], MC1R and skin cancer [12], and 
PPAR gamma and diabetes [13].

The other misapprehension under which we labored 
was that there would be many gene-environment interac-
tions to discover, by which we meant situations in which the 

Fig. 1   Interaction of natural hair color (inherited) and lifetime num-
ber of severe sunburns (sun exposure and susceptibility) in the Nurses 
Health Study using the crude graphics packages of 1988
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joint effect of gene and environment led to synergy and the 
effect of the environmental factor was much stronger in, or 
even restricted to, a specific genotype. To be fair, this was 
the experience of animal studies, and some human para-
digms such as the “inborn errors of metabolism” (a phrase 
coined by Archibald Garrod in 1908). The search for gene-
environment interactions led to a burst of funding, as well 
as prioritization of cohort studies in which, of course, the 
environmental factor could be measured more reliably than 
in case-control studies. Spearheaded by Bob Hoover of the 
NCI intramural program, cohort consortia were assembled to 
assess reproducibility and to attempt to have adequate power 
for interactions and I became co-chair with Elio Riboli of 
the NCI Breast and Prostate Cancer Cohort Consortium 
(BPC3—acronyms now being mandatory). Rather than 
analyzing individual level data from previously published 
studies, we were now pooling data prior to publication, a 
much more efficient and expedient way of getting to the sum-
mary results.

Meanwhile a revolution in genotyping technology was 
occurring. Machines had been introduced that turned the 
12-lane gel into 24, then 48, then 96, then 394 sample for-
mats, but this was scaling up one variant at a time. In about 
2005 new “single-nucleotide polymorphism” (SNP) chip 
technologies became available that could measure first, 
100,000, then 300,000 or more variants from a single DNA 
sample. These numbers enabled “genome-wide association 
studies” (GWAS), essentially lighting up the street with 
300,000 lamps to increase the probability of finding our 
keys. SNP chips were expensive at first (over $1000 each) 
so studies were split into discovery (using the SNP chip) and 
replication studies (taking the small number of significant 

“hits” into larger samples. A twist of fate led to the design, 
along with Stephen Chanock of the NCI intramural program, 
of the CGEMS (Cancer-Genetic Markers of Susceptibility) 
program, mainly composed of studies from the BPC3. We 
co-discovered, along with a group of mostly case–control 
studies led by Doug Easton [14], the strongest common 
genetic variant associated with breast cancer [15] (Fig. 2), 
going on to other discoveries in breast and prostate can-
cer. Within three years we could show that the “genetic risk 
score” (now called polygenic risk score or PRS), derived by 
adding up the number of risk variants a women carried, out-
performed the previous “clinical” risk scores derived from 
the “classical” breast cancer risk factors [16].

What we had not appreciated was that the established 
pecking order of epidemiological study designs i.e. cohort 
studies were superior to case–control studies, did not apply 
to the genetic epidemiology of main effects. Robustly 
estimating small relative risks is a matter of power, and 
thus sample size, and therefore a large series of case con-
trol studies was ultimately more informative than smaller 
nested case-control studies. Indeed, large case series could 
be compared with “public” controls derived from different 
studies with relative safety once methods were developed to 
statistically control for any subtle differences in population 
structure. Since there were many more case series and case-
control studies available, the case-control consortia soon 
out-performed the cohort consortia (albeit it was always 
reassuring when there was no heterogeneity between the 
case-control meta-analyses and the cohort meta-analyses). 
This work has proceeded in large international consortia, and 
there are now over 180 robust genetic variants of weak effect 
associated with breast cancer. Collectively, when combined 

Fig. 2   “Manhattan Plot” from 
the first CGEMS whole genome 
scan of approximately 500,000 
DNA variants and breast cancer 
risk with smaller P values 
represented higher up on the Y 
axis. The smallest P values were 
in the FGFR2 gene on chromo-
some 10
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in a PRS, these lead to relative risks of approximately three-
fold for women in the top five percent of the risk distribution 
compared with the middle quintile, and six-fold for the top 
versus the bottom five percent [17]. Along the way, Epidemi-
ology provided some of the key evidence that overturned the 
dogma that inherited variation was principally due to vari-
ants in DNA that altered the structure of a protein. Many of 
the GWAS hits were in intergenic regions or “gene deserts”, 
previously called “junk DNA”. The biologists thought we 
were doing something wrong, but the discovery of “per-
vasive transcription” i.e. that much of the DNA outside 
protein coding regions was transcribed into RNA suggested 
the functional importance of these intergenic regions, now 
assumed to be controlling the developmental coordination 
and expression of genes.

But what of the interaction paradigm that average genetic 
risks varied substantially according to exposures (and vice 
versa, that environmental effects concealed a spectrum of 
highly susceptible to non-susceptible people)? In brief, 
these have been vanishingly rare for most chronic diseases. 
In the BPC3 none of the tests for multiplicative interaction 
between classical breast cancer risk factors and the increas-
ing number of GWAS hits survived correction for multiple 
comparisons [18]. This is the story for most other cancers 
and for heart disease and diabetes. By and large, the com-
mon genetic factors and environmental relative risks simply 
multiply together, without cancelling each other out, or giv-
ing evidence of supra-multiplicative synergy. This has been 
disappointing to those of us trained to hunt for statistical 
interactions on the multiplicative scale, however, interac-
tions on the additive scale are many, thus, there is still clini-
cal and public health relevance to the joint consideration of 
genes and environment. The absence of synergy actually 
simplifies life with respect to risk prediction as we do not 
often have to always account for unusually susceptible or 
resistant individuals.

Some of this story matured while I was taking a time-out 
from full-time research as Dean for Academic Affairs at the 
Harvard School of Public Health (now the Chan School), 
focused on faculty development, our strategic research plan, 
and how to take advantage of the new opportunities offered 
by Massive Online Open Courses. I was fortunate that Peter 
Kraft took over the work and pushed it forward. It also left 
me somewhat freer from the SNP by SNP discovery effort to 
consider the wider implications, and the state of epidemiol-
ogy in general. Interestingly, despite the focus in modern 
genetic epidemiology on gathering large numbers of cases 
and controls of the various diseases, very few of the most 
successful groups have been led by epidemiologists. The 
key skills are organization of consortia, managing complex 
data transfer agreements, keeping up with and interpreting 
the latest gene chip technology, development of statistical 
methods to handle millions of data points, and interpreting 
the results in the light of the rapidly evolving knowledge of 
genome structure and function. Thus, knowledge of bioin-
formatics and genomic biology became more important than 
classical epidemiological skills. Many epidemiologists did 
acquire this cross-training of course, and I would like to 
think the Program on Genetic Epidemiology and Statistics 
in the HSPH Epidemiology Department contributed to this. 
However, this was a new world where hypotheses were a 
distraction, “agnostic” analyses triumphed, and sample size 
supplanted study design.

It is notable that, with the exception of studies based 
in administrative databases such as Medicare, epidemiol-
ogy has not made the more than seven orders of magnitude 
leaps in throughput that genetics has, or that computers have. 
There has been no Moore’s Law for epidemiological sample 
sizes. Indeed, since Doll and Hill put together their study of 
24,389 male doctors using index cards to sort lung cancer 
cases and controls by smoking status, the largest prospec-
tive studies are less than two orders of magnitude larger 

Fig. 3   Approximate sample 
sizes of some of the major 
prospective cohort studies on a 
log scale. BD = British Doctors 
study, NHS = Nurses Health 
Study, NHS2 = Nurses Health 
Study 2, HPFS = Health Profes-
sionals Study, EPIC = Euro-
pean Prospective Investigation 
into Cancer and Nutrition, 
AARP = American Association 
of Retired Persons Diet and 
Health study, MW = Million 
Women Study, CKB = China 
Kadhoorie Biobank, UKB = UK 
Biobank, AOU = All of Us 
Research Program (proposed 
sample size)
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(Fig. 3). The question for epidemiology is whether we can 
construct larger, but still rigorous, studies, using modern 
technologies. In previous prospective cohorts we had the 
choice of small studies with a lot of detail, or large studies 
with skimpy detail. Can we construct large studies with even 

more detailed exposure information, potentially including 
‘omic analyses at scale?

After as a final year as Acting Dean at the Chan School 
I took a year’s sabbatical then moved to Oxford as the 
Richard Doll Professor with the intention of contributing 

Fig. 4   Comparison of potential prospective cohorts using 20th Century and 21st Century technologies
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to development of a large prospective studies in the context 
of the National Health System in which some of the hard 
work of ascertaining and validating disease diagnoses it 
done for us. The exemplar, of course, is the UK Biobank of 
500,000 UK residents now followed for over ten years. The 
next step is to approximate “whole-country” prospective 
studies integrating self-reported exposures, primary care 
information, genetics, and disease outcomes supplemented 
by data from geographic information systems and environ-
mental monitoring. This has been pioneered at a smaller 
scale in the Scandinavian countries The smartphone gives 
us the means to ask people about themselves remotely, and 
perhaps, with their consent, to monitor physical activity, 
geolocation, and other factors such as heart rate and cogni-
tive function. In the 20th Century the tradeoff was almost 
always between having a large sample size with little indi-
vidual information. In the 21st Century we should be able 
to combine large sample sizes with much richer exposure 
assessment (Fig. 4). In my Inaugural Lecture at Oxford I 
posed the question “Is Bigger Epidemiology Better Epi-
demiology?” The answer, of course, is “not always”, but 
it is notable that for the rare diseases we still have limited 
power even in consortia of cohorts, and to address risk 
factors for these we still need much larger studies. Finally, 
the PRS give us the means to identify people at high risk 
of many common diseases early in adult life—can we use-
fully intervene to lower risk in these large studies, combin-
ing observation and intervention?

In a sense this is returning Epidemiology to its roots. 
John Snow’s study base was almost the entire population 
of London (or at least the fraction that drew its water from 
the Thames). Whether or not taking the handle off the 
pump made a difference, he used his observations to inter-
vene. Since Doll, epidemiologists have discovered a wide 
range of environmental risk factors for many diseases. In 
the last decade tens of thousands of genetic variants have 
been associated with common diseases and other pheno-
types. We have begun to understand how exposure and 
inherited risk intersect. New tools are becoming available 
that permit us to scale up our studies and follow partici-
pants at low costs. The challenge is to integrate this infor-
mation into clinical and public health practice in manner 
that promotes health. The Adventure continues.
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