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Abstract: Lactobacillus gasseri is one of the most likely probiotic candidates among many Lactobacillus
species. Although bile salt resistance has been defined as an important criterion for selection of
probiotic candidates since it allows probiotic bacteria to survive in the gut, both its capability and
its related enzyme, bile salt hydrolase (BSH), in L. gasseri is still largely unknown. Here, we report
that the well-known probiotic bacterium L. gasseri JCM1131T possesses BSH activity and bile salt
resistance capability. Indeed, this strain apparently showed BSH activity on the plate assay and highly
tolerated the primary bile salts and even taurine-conjugated secondary bile salt. We further isolated
a putative BSH enzyme (LagBSH) from strain JCM1131T and characterized the enzymatic function.
The purified LagBSH protein exhibited quite high deconjugation activity for taurocholic acid and
taurochenodeoxycholic acid. The lagBSH gene was constitutively expressed in strain JCM1131T,
suggesting that LagBSH likely contributes to bile salt resistance of the strain and may be associated
with survival capability of strain JCM1131T within the human intestine by bile detoxification. Thus,
this study first demonstrated the bile salt resistance and its responsible enzyme (BSH) activity in strain
JCM1131T, which further supports the importance of the typical lactic acid bacterium as probiotics.

Keywords: bile salt hydrolase; Lactobacillus gasseri; Ntn-hydrolase family protein; probiotics

1. Introduction

Lactobacillus species have been considered as one of the major targets of probiotic
research. Several Lactobacillus species provide positive impacts on human health; symp-
tomatic improvements by probiotics have been reported in cases of various hard-to-heal
diseases, e.g., allergy [1], diarrhea [2], Helicobacter pylori infection [3], and irritable bowel
syndrome [4]. These probiotic effects are generally strain-specific and differ depending
on each strain even among Lactobacillus strains of same species [5–9]. Among the several
criteria for selecting candidate probiotic strains of Lactobacillus spp., bile salt resistance is
one of the most important selective criteria, since bile salts are well known as strong surfac-
tants and bile exposure in gastrointestinal tract is intensely toxic for probiotic Lactobacillus
species to survive and retain activity in human intestine [10,11].

Bile salt resistance is mainly provided by bile salt hydrolase (BSH, EC3.5.1.24), an
enzyme that deconjugates glycine and/or taurine-conjugated bile salts [12], though other
resistance mechanisms (i.e., efflux pumps, stress response proteins, and cell wall mod-
ifications) have been reported [13]. Genes encoding BSH have been found in various
Lactobacillus species [14], and the number of bsh gene orthologs vary in accordance with
species and strains [11,14–17]. BSH enzymes perform a crucial role in bile detoxification
and thereby improve the colonization and survival of host probiotic bacteria in the human
gastrointestinal tract [18]. In addition, BSH enzymes are known to involve in the reduction
of blood cholesterol levels, the regulation of lipid absorption, glucose metabolism, and
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energy homeostasis in humans [19], which means that the bile salt deconjugation ability
through the enzyme BSH has been widely recognized as a probiotic biomarker [20].

Lactobacillus gasseri type strain JCM1131T is commensal, produces lactic acid, and is
widely known as a typical probiotic bacterium. In fact, several probiotic properties of this
strain have been reported [21–23]. However, it has remained largely unclear whether strain
JCM1131T has BSH activity and bile salt resistance capability. In the present study, we
demonstrated the BSH activity and bile salt resistance ability in L. gasseri strain JCM1131T.
We found the putative bsh gene in the genome and determined that its recombinant protein
could functionally act as BSH mediating the bile salt resistance in the strain through
molecular cloning, biochemical characterization, and transcriptional analyses.

2. Materials and Methods
2.1. Bacterial Strains Used in This Study

A probiotic lactic acid bacterium, Lactobacillus gasseri JCM1131T (=DSM20243T=ATCC
33323T), was obtained from the Japan Collection of Microorganisms (RIKEN BRC, Tsukuba,
Japan). This strain was cultivated using Gifu anaerobic medium (GAM, Nissui Phar-
maceutical Co., Ltd., Tokyo, Japan) and de Man–Rogosa–Sharpe medium (MRS, Difco
Laboratories, Detroit, MI, USA) with headspace gas of N2/CO2 (80:20, v/v) at 37 ◦C under
anaerobic conditions. Escherichia coli strain BL21 (DE3) ChampionTM21 (SMOBIO Tech-
nologies, Hsinchu City, Taiwan) was used for heterologous expression experiments. E. coli
was cultured in LB broth supplemented with 50 µg/mL kanamycin (FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan) at 37 ◦C with shaking.

2.2. Cloning and Heterologous Expression of a Putative Bile Salt Hydrolase Gene

Based on the sequence analyses and homology searches using NCBI BLAST pro-
gram (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (accessed on 8 June 2020), UniProt BLAST
tool (https://www.uniprot.org/blast/) (accessed on 8 June 2020), InterProScan (http:
//www.ebi.ac.uk/interpro/search/sequence-search) (accessed on 8 June 2020), and Pfam
(http://pfam.xfam.org/) (accessed on 8 June 2020), we screened a gene encoding putative
BSH from the complete genome sequence of strain JCM1131T (accession number CP000413).
A putative bsh gene (named as lagBSH) was commercially synthesized with codon op-
timization for heterologous expression in E. coli (GenScript, Piscataway, NJ, USA). The
lagBSH gene was subcloned into the NdeI and EcoRI sites of pET28-b (Novagen, Madison,
WI, USA) expression vector.

The heterologous gene expression and protein purification experiments were per-
formed according to our previous study with slight modifications [24]. In brief, the con-
structed plasmid was transformed into E. coli BL21 (DE3) ChampionTM21 competent cells
and E. coli strain was cultured on LB broth at 37 ◦C until OD600 reached 0.4–0.6. Isopropyl-
β-D-thiogalactopyranoside (IPTG, Nacalai Tesque, Kyoto, Japan) was added at the final
concentration of 100 µM to the culture medium. After adding of IPTG, the E. coli cells were
incubated at 20 ◦C for overnight with shaking. The cells were harvested by centrifugation
at 5800× g for 10 min, suspended in buffer (20 mM Tris, 150 mM NaCl, 5% glycerol, 5 mM
imidazole, pH 7.5), and disrupted for 5 min by sonication using an ultrasonic disintegrator
(Sonicator Branson Sonifier 250 (Branson, Danbury, CT, USA); output control: 5, duty cycle:
50) in an ice-water bath. The cell debris were removed by centrifugation and the result-
ing supernatant was mixed with Ni-NTA Agarose HP (FUJIFILM Wako Pure Chemical
Corporation). The His6-tagged recombinant protein was washed and eluted according to
the previous study [24]. The eluted fraction was further dialyzed with buffer (20 mM Tris,
150 mM NaCl, 5% glycerol) using semipermeable membrane (Spectra/Por 3 membrane
MWCO: 3500, Repligen, Waltham, MA, USA) and concentrated using Amicon Ultra cen-
trifugal filter devices (30,000 MWCO, Millipore, Billerica, MA, USA). The purified protein
was treated with sample buffer (Bio-Rad, Hercules, CA, USA), heat-denatured at 95 ◦C
for 5 min, and analyzed on sodium dodecyl sulfate polyacrylamide gel electrophoresis
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(SDS-PAGE) using 12% Mini-PROTEAN TGX precast polyacrylamide gel (Bio-Rad) [24].
The gel was stained with QC Colloidal Coomassie Stain (Bio-Rad) through gentle agitation.

2.3. Bile Salt Hydrolase Activity

The bile salt hydrolyzing activity of purified LagBSH was determined as described
previously [25]. In brief, purified protein was mixed with 0.24 mg/100 µL of conjugated bile
salts (glycocholic acid (GCA, Sigma-Aldrich, St. Louis, MO, USA), glycodeoxycholic acid
(GDCA, Sigma-Aldrich), taurocholic acid (TCA, Nacalai Tesque), taurochenodeoxycholic
acid (TCDCA, Sigma-Aldrich), and taurodeoxycholic acid (TDCA, Nacalai Tesque)) and
incubated at 37 ◦C. The reaction was stopped by adding 15% trichloroacetic acid (FUJIFILM
Wako Pure Chemical Corporation) and the resulting solution was centrifuged at 10,000× g
for 15 min at 20 ◦C. The supernatant was then mixed with 0.3 M borate buffer with 1% SDS
(pH 9.5), and 0.3% 2,4,6-trinitrobenzenesulfonic acid solution (Tokyo Kasei Kogyo Co., Ltd.,
Tokyo, Japan). The resulting mixture was incubated for 30 min at room temperature under
dark condition, and then 0.6 mM HCl was added to stop the reaction. The absorbance
at 416 nm was measured using a SPARK 10M multimode microplate reader (TECAN,
Männedorf, Switzerland). The assays were performed in eight replicates. Student’s t-test
was used to assess the presence of statistically significant differences (α = 0.05) using
GraphPad Prism version 8.0 software program (GraphPad Software, San Diego, CA, USA).
As a negative control, a bile salt solution was reacted with buffer instead of purified protein.

2.4. Biochemical Characterization

The optimum pH and temperatures of LagBSH were determined according to the
methods described [20] with slight modifications as follows. The purified LagBSH protein
was mixed with taurocholic acid (TCA) at selected temperatures (10–90 ◦C, in intervals of
10 ◦C) and pH (pH 3.0–pH 10.0, in intervals of pH 1.0) ranges. To determine the effects of
pH on enzyme activity of LagBSH, we used various Good’s buffer solution based on the
pH range (acetate buffer [CH3COONa·3H2O] pH 3.0–4.0; MES buffer [C6H13NO4S·H2O]
pH 5.0–6.0; HEPES buffer [C8H18N2O4S] pH 7.0–8.0; CAPS [C9H19NO3S] pH9.0–10.0). Af-
ter incubation for 6 h, the released taurine was detected as described above. All experiments
were performed in eight replicates.

2.5. Bile Salt Tolerance Test

The bile salt tolerance ability of Lactobacillus gasseri JCM1131T was estimated and
calculated from its survival rates according to the previous study [26]. In brief, a full-
grown culture of strain JCM1131T was mixed with GCA, GDCA, TCA, and TDCA at final
concentrations of 0.05%. Cells were anaerobically incubated at 37 ◦C for 6 h, and the
optimal densities (OD600) were measured every hour using an Ultrospec 500 Pro visible
spectrophotometer (GE Healthcare Life Sciences, Buckinghamshire, UK). As a negative
control, strain JCM1131T was incubated in GAM medium without bile salt. The assays
were performed in triplicates.

Minimum inhibitory concentrations (MICs) were determined as the lowest concen-
tration of bile salts preventing visible growth of L. gasseri JCM1131T on MRS agar. Strain
JCM1131T was cultivated in MRS broth and inoculated on MRS agar plate with a selected
bile salt. Plates were anaerobically incubated at 37 ◦C for 5 days. The tested bile salts were
GCA, GDCA, TCA, and TDCA at final concentrations of 0.01%, 0.05%, 0.1%, 0.25%, and
0.5%. All experiments were carried out in triplicates.

2.6. Structural Modeling

Three-dimensional conformations of LagBSH were predicted using Swiss-Model
workspace (https://swissmodel.expasy.org/) (accessed on 8 June 2020). [27]. The superpo-
sition analyses were performed and visualized using UCSF Chimera software [28]. Crystal
structure of a known BSH enzyme, CpBSH from Clostridium perfringens 13 [29], was pro-
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vided by Protein Data Bank (http://www.rcsb.org/pdb/home/home.do) (accessed on
8 June 2020).

2.7. Transcriptional Analysis

Reverse transcription polymerase chain reaction (RT-PCR) analyses of the lagBSH
gene were performed as follows. Strain JCM1131T was cultured on MRS broth with or
without TCA and TDCA at final concentration of 0.05%. The total RNA samples were
isolated using the RNeasy Mini Kit (Qiagen, Germantown, MD, USA), and the resulting
RNA samples were treated with TURBO™ DNase (Thermo Fisher Scientific, Waltham,
MA, USA) to remove contaminated genomic DNA. The presence of chromosomal genomic
DNA was confirmed by PCR analysis with the 16S rRNA gene universal PCR primers
530F and 907R using each RNA samples as template. Reverse transcription reactions
were performed using SuperScript IV Reverse Transcriptase (Thermo Fisher Scientific) in a
25 µL reaction volume according to the manufacturer’s instruction. The synthesized cDNA
samples were used as the PCR template with the following two PCR primer sets: lagBSH-
Aset (5’-TCACACCACGCAACTATCCTC-3’ and 5’-GTTGCCAAGGTTAGTAAGATGCC-
3’, amplicon size: 467 bp) and lagBSH-Bset (5’-TTAGCTTCTTACGAAATTATGC-3’ and
5’-GAATGCTATCACCTGGTAAAC-3’, amplicon size: 376 bp). The PCR products were
analyzed using agarose gel electrophoresis in 2.0% agarose and were stained with Gelred
(Fujifilm Wako Pure Chemical Corporation).

3. Results and Discussion

3.1. Identification of BSH Activity and Bile Salt Resistance of Lactobacillus gasseri JCM1131T

In the present study, we first investigated whether L. gasseri JCM1131T shows BSH
activity using the standard plate assay method. We observed that the visible halo surround-
ing colonies and the white precipitates with colonies when strain JCM1131T was cultured
on an MRS agar plate supplemented with taurodeoxycholic acid (TDCA), one of the major
conjugated bile salts in human gastrointestinal tract (Figure 1). These characteristics (i.e.,
halo and white precipitates) are the well-known indicators of BSH activity [19,30], clearly
suggesting that strain JCM1131T represents BSH activity, though the previous study re-
ported that L. gasseri ATCC33323T (=JCM1131T) showed no significant BSH activity [31].
Importantly, Allain et al. demonstrated that L. gasseri strain CNCM I-4884 with strong
BSH activity exhibited significant antiparasitic ability that antagonizes growth of the most
common waterborne parasite (Giardia) [32] and further revealed that the antiparasitic ef-
fects of Lactobacillus spp. were well correlated with the expression of BSH activities [32].
Based on this fact, we expect that L. gasseri JCM1131T with BSH activity may also exhibit
antiparasitic activity as well as strain CNCM I-4884, though future study needs to clarify
this point.
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Figure 1. Bile salt hydrolase activity in Lactobacillus gasseri JCM1131T. Full-grown culture of L. gasseri
JCM1131T was streaked on an MRS agar plate (A) or an MRS agar plate supplemented with 0.25%
taurodeoxycholic acid (B). The plates were anaerobically incubated at 37 ◦C for 5 days. The visible
halo surrounding colonies and the white precipitates with colonies are the well-known indicator of
bacterial BSH activity [19,30].
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We further determined the survivability of L. gasseri JCM1131T against four different
conjugated bile salts (GCA, GDCA, TCA, and TDCA) at final concentration of 0.05%. As
shown in Figure 2, strain JCM1131T showed high survivability toward primary bile salts
(TCA and GCA) and the survival rates of strain JCM1131T against TCA and GCA reached
above 90% after exposed to the bile salts for 6 h. Additionally, this strain also exhibited
moderate and low survivability toward TDCA and GDCA (secondary bile salts), and the
survival rates against TDCA and GDCA were above 70% and below 60%, respectively
(Figure 2).
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Figure 2. Bile salt tolerance activity in Lactobacillus gasseri JCM1131T. Full-grown culture of strain JCM1131T was mixed
with GCA, GDCA, TCA, and TDCA at final concentrations of 0.05% and incubated anaerobically at 37 ◦C. The optimal
density (OD600) was measured every hour and survival rates were calculated as described previously [26]. The survival rate
of control (without bile salt) was defined as 100%. Results indicated mean ± SD obtained in triplicate experiments.

We further investigated the bile salt tolerance capacity of L. gasseri JCM1131T by
determining the minimum inhibitory concentrations (MICs). As shown in Table 1, this
strain showed low MIC value (0.05%) to GDCA, indicating that GDCA is toxic to strain
JCM1131T. De Smet et al. suggested that the high toxicity of GDCA would be caused by its
weak acid property (TDCA is strong acid property) [33]. They further hypothesized that the
protonated form of bile salts exhibited toxicity as it imported protons in the cell [33]. This
hypothesis seems to be reasonable since weak acids are pretty much easier to protonate
than strong acids. However, strain JCM1131T displayed a higher resistance ability (MICs
were >0.5%) to a secondary bile salt (TDCA) as well as the primary bile salts (TCA and
GCA) (Table 1), despite the fact that secondary bile salts have been known to be more toxic
than primary bile salts [34]. Since the average bile concentration in human intestine has
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been estimated to be 0.3% w/v [35], our findings suggest that strain JCM1131T could have
bile salt tolerance ability toward TCA, GCA, and TDCA. Previous studies reported that
other strains of L. gasseri (BGHO89, 4M13, and FR4) showed high bile salt resistance ability
(toward more than 0.3% bile salts) [36–38], suggesting that gut-derived L. gasseri strains
would generally have bile salt resistance ability to survive and colonize the mammalian
digestive tracts. Interestingly, these L. gasseri strains (BGHO89, 4M13, and FR4) with
high bile salt resistance capacity further exhibited some probiotic functions including acid
tolerance, bacteriocin production, antioxidation, and cholesterol-lowering activity [36–38].
Thus, although it has been reported that some other strains of L. gasseri show bile salt
tolerance so far [21,36,37], the correlations between their bile salt tolerance ability and BSH
activity have not been well demonstrated. In the present study, we first revealed both bile
salt tolerance capability and its related key enzymatic function (BSH activity) in L. gasseri
JCM1131T, and these findings provide additional insights into the probiotic function in a
well-known representative of the probiotic lactic acid bacterium.

Table 1. Minimum inhibitory concentrations of bile salts against strain JCM1131T a.

Strain

Minimum Inhibitory Concentrations (%)

Substrates

TCA TDCA GCA GDCA

JCM1131T >0.5 >0.5 >0.5 0.05
a TCA, taurocholic acid; TDCA, taurodeoxycholic acid; GCA, glycocholic acid; GDCA, glycodeoxycholic acid.
The tested concentrations of bile salts were 0.01, 0.05, 0.1, 0.25, and 0.5%.

3.2. Sequence and Phylogenetic Analyses of a Putative BSH Gene

Since both BSH activity and bile salt resistance capability of L. gasseri JCM1131T were
revealed, we then performed cloning and heterologous expression of the gene candidates
associated with BSH activity. We herein found a putative bile salt hydrolase gene (desig-
nated as lagBSH) in L. gasseri JCM1131T genome (CP000413) based on the sequence analyses
and homology searches (Figure 3A). The putative lagBSH gene comprises 951 bp. The
deduced amino acid sequence of LagBSH (316 amino acids) was related to the cholylglycine
hydrolase family of the Ntn-hydrolase superfamily proteins based on the domain and
sequence comparison. The multiple amino acid sequence alignments revealed that LagBSH
protein shared five residues (Cys, Arg, Asp, Asn, and Arg) associated with active site
with previously identified BSHs from Lactobacillus species (Figure 3B). Three-dimensional
superposition analyses further revealed that the overall structure of LagBSH is composed
of well-known αββα-sandwich folds of cholylglycine hydrolase proteins (Supplementary
Figure S1A), which are similar to the structure of CpBSH, BSH from Clostridium perfringens
13 [29]. The putative LagBSH further conserved the catalytic active site structure identified
with CpBSH (Supplementary Figure S1B). It has been reported in previous studies that
N-terminal cysteine residue (Cys-2) plays a critical role in the BSH activity as catalytic
nucleophile [29], and thus the putative protein would function as the BSH enzyme.

Amino acid sequence comparison analyses using the standard BLASTP protein–
protein BLAST search revealed that LagBSH exhibited high similarity (~93.99% amino
acid sequence homology) to known BSHs, especially BSHs from L. johnsonii strain 100-100
(93.99%), strain NCC533 (93.67%), and strain PF01 (93.35%) (Supplementary Table S1).
LagBSH exhibited significantly lower similarity to LgBSH form L. gasseri FR4 (39.94%) [20],
despite the fact that both BSH enzymes are commonly derived from L. gasseri. The phy-
logenetic analysis demonstrated that the cholylglycine hydrolase family proteins were
subdivided into several groups (Figure 4), and we found that LagBSH was classified
into the L. johnsonii BSH subgroup (Figure 4). LgBSH was categorized into the L. aci-
dophilus/johnsonii BSH subgroup, indicating that LagBSH are phylogenetically distinct
from LgBSH. These sequence, structural, and phylogenetic analyses further suggested that
LagBSH would have BSH activity as well as known BSHs from other Lactobacillus species.
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species. The black and gray shading indicates identical and similar amino acid residues, respec-
tively. The conserved residues (Cys, Arg, Asp, Asn, and Arg) relevant to the predicted active site 
are indicated by black asterisks. Abbreviations: LaBSH (AAV42923) from Lactobacillus acidophilus 
NCFM; LgBSH (WP_020806888) from Lactobacillus gasseri FR4; LjBSH (AAC34381) from Lactobacillus 
johnsonii 100-100; LsBSH (JX120368) from Lactobacillus salivarius B-30514. 

Figure 3. (A) Physical map of the predicted bsh gene on the genome sequence of Lactobacillus gasseri
JCM1131T (accession number CP000413). The scale bar indicates a 1 kb length of nucleotide. A
putative bsh gene (lagBSH) and its surrounding ORFs are represented by filled and open symbols,
respectively. Brief annotation and protein ID were provided. MegG, demethylmenaquinone methyl-
transferase; MP, membrane protein. (B) Multiple alignment of amino acid sequences of BSHs. Amino
acid sequence of LagBSH was aligned and compared with known BSHs from Lactobacillus species.
The black and gray shading indicates identical and similar amino acid residues, respectively. The
conserved residues (Cys, Arg, Asp, Asn, and Arg) relevant to the predicted active site are indicated
by black asterisks. Abbreviations: LaBSH (AAV42923) from Lactobacillus acidophilus NCFM; LgBSH
(WP_020806888) from Lactobacillus gasseri FR4; LjBSH (AAC34381) from Lactobacillus johnsonii 100-100;
LsBSH (JX120368) from Lactobacillus salivarius B-30514.
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greater than 50% are shown by circle symbols whose size correlates with the bootstrap values. CpBSH, BSH from Clostridium
perfringens 13, was used as an outgroup.

3.3. Heterologous Expression of the Putative BSH Gene in E. coli

To obtain the recombinant protein, lagBSH gene was commercially synthesized with
codon optimization for heterologous expression in Escherichia coli and subcloned into
the NdeI and EcoRI sites of pET28-b expression vector. The gene was overexpressed in
E. coli BL21 (DE3) ChampionTM21 and recombinant protein was purified by Ni-affinity
chromatography. Based on sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) analysis, the molecular weight of purified His6-LagBSH protein was approx-
imately 35.0 kDa in size (Supplementary Figure S2), which is nearly identical with the
theoretical molecular weight based on its amino acid sequence.

3.4. Bile Salt Hydrolase Assay

The bile salt hydrolyzing activity of the purified LagBSH was determined by detecting
the released glycine or taurine from conjugated bile salts as described previously [25]. We
selected five major mammalian conjugated bile salts (TCA, TDCA, TCDCA, GCA, and
GDCA) as substrates. The recombinant LagBSH clearly exhibited significant BSH activity
toward all substrates tested. In particular, as shown in Figure 5A, LagBSH showed its high
activity toward TCA and TCDCA. The BSH activities toward the other three substrates
(TDCA, GCA, and GDCA) are relatively low, suggesting that LagBSH is a functional BSH
enzyme, particularly showing high specificity for taurine-conjugated bile salts (TCA and
TCDCA). Such substrate specificity of LagBSH was consistent with the previous studies.
In fact, the previously identified BSH from L. johnsonii PF01 sharing high homology with
LagBSH (93.35% homology) exhibited deconjugation activity against taurine-conjugated
bile salts, but not glycine-conjugated bile salts [40], though most BSHs from lactic acid
bacteria are more likely to deconjugate glycine-conjugated bile salts rather than taurine-
conjugated bile salts [40]. LgBSH from L. gasseri FR4 showed higher BSH activity toward
glycine-conjugated bile salts than taurine-conjugated ones [20], indicating that the sub-
strate specificity were also quite different between LagBSH and LgBSH, even though both
enzymes are derived from the same species, L. gasseri. These enzymatic characteristics
agree well with the previous report that the substrate specificity of BSH enzymes may be
strain-specific [41]. Further structural and site-directed mutagenesis analyses of LagBSH
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would perhaps lead to a better understanding of its substrate preference. In total, LagBSH
has apparent BSH activity, and this functional enzyme would confer bile detoxification on
the host microorganism L. gasseri JCM1131T.
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Figure 5. Bile salt hydrolase activity and biochemical characterization of LagBSH. (A) BSH activities
were measured toward five human bile salts: glycocholicacid (GCA), glycodeoxycholic acid (GDCA),
taurocholic acid (TCA), taurodeoxycholic acid (TDCA), and taurochenodeoxycholic acid (TCDCA).
Values are indicated as means for eight technical experiments (n = 8). Error bars represent standard
deviation (SD). (B) Effect of temperature (10–90 ◦C) and (C) pH (pH 3.0–pH 10.0) on BSH activity
toward TCA of LagBSH. Each value is expressed as means for eight technical replicates (n = 8).
Maximum activity was taken as 100%.

3.5. Biochemical Characterization of LagBSH

The optimum temperature and pH of LagBSH were determined. The purified LagBSH
protein was mixed with taurocholic acid (TCA) at selected temperature (10–90 ◦C, in inter-
vals of 10 ◦C) and pH (pH 3.0–pH 10.0, in intervals of pH 1.0) ranges. The maximum BSH
activity was observed at 37 ◦C (Figure 5B). We confirmed that LagBSH exhibited high BSH
activity in wide temperature range (at 10–50 ◦C) and it retained above 80% of its original ac-
tivity, whereas the enzyme activity significantly declined with higher temperature (>60 ◦C)
(Figure 5B). In addition, the maximum BSH activity of LagBSH was observed at pH 6.0
(Figure 5C). LagBSH exhibited stable activity and retained approximately above 80% of
their original activity at broad pH range (pH 3.0–8.0), whereas significant decreases in
enzyme activities were observed at more than or equal to pH 9.0 (Figure 5C). The optimum
temperature and pH of LagBSH (37 ◦C and pH 6.0) are highly consistent with conditions
of the human small intestine (around 37 ◦C and pH 5.0–8.0) and the growth condition of
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strain JCM1131T in MRS broth (pH 6.0–6.5, 37 ◦C) according to the website of the Japan
Collection of Microorganisms (https://jcm.brc.riken.jp/en/) (accessed on 8 June 2020).
These biochemical features of LagBSH further support our hypothesis that this enzyme
may contribute to bile detoxification of L. gasseri JCM1131T.

3.6. Transcriptional Analysis of lagBSH Gene

To determine the regulation of gene transcription of the lagBSH gene, reverse tran-
scription polymerase chain reaction (RT-PCR) analyses were conducted. We found that
the lagBSH gene was constituently expressed in L. gasseri JCM1131T (Figure 6, lane 1). In
addition, the lagBSH gene transcription was also observed in this strain exposed to TCA
(Figure 6, lane 2) and TDCA (Figure 6, lane 3), suggesting that the exposure to TCA and
TDCA may have little effect on the lagBSH gene transcription in strain JCM1131T. Since bile
salt concentrations reach the millimolar level in the human small intestine and it should be
toxic to the intestinal bacteria [12], strain JCM1131T seems to constantly produce LagBSH
enzyme to tolerate high concentration of bile salts and survive in the gut.
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were used as the template for PCR, respectively. The 16S rRNA gene (378 bp) was used as internal standard control. Lane
M, molecular size markers (100 bp DNA ladder, Promega, Madison, WI, USA).

4. Conclusions

In this study, we identified that Lactobacillus gasseri JCM1131T displayed bile salt resis-
tance capacity toward primary bile salts and taurine-conjugated secondary bile salt. The
present study further demonstrated that strain JCM1131T exhibited apparent BSH activity,
although this strain has been considered to be a non-BSH-producer so far. Moreover, we
clarified the correlations between bile salt resistance and BSH activity in L. gasseri, which
has been rarely investigated and poorly understood; indeed, only two strains (L. gasseri FR4
and L. gasseri CNCM I-4884 isolated from chicken and carious tooth, respectively [20,32])
have been reported to show both bile salt resistance ability and BSH activity by producing
their BSH enzymes (LgBSH isolated from strain FR4 [20]) among L. gasseri isolates. In the
present study, we also found that BSH enzyme from L. gasseri JCM1131T (LagBSH) was sig-
nificantly different from LgBSH in terms of their amino acid sequence homology, substrate
specificity, and phylogenetic position. Since strain JCM1131T is a human-derived lactic acid
bacterium that exhibits oxalate-degradation activity [23] and increases in interleukin-10
production [22], this study could further expand and deepen the understanding of this
beneficial probiotic bacterium.

In addition, we performed the enzymatic, transcriptional, and phylogenetic char-
acterization of LagBSH isolated from strain JCM1131T. LagBSH could function as BSH
enzyme able to hydrolyze conjugated bile salts especially against taurocholic acid and
taurochenodeoxycholic acid. We further demonstrated that the lagBSH gene was constantly
transcribed in L. gasseri JCM1131T. Therefore, this functional enzyme would confer a
survival advantage on strain JCM1131T within the human intestine by bile detoxification.

https://jcm.brc.riken.jp/en/
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Because BSH activity exert further positive effects on human health such as weight loss and
cholesterol lowering [19], future studies need to examine the probiotic effects related to the
BSH activity of L. gasseri JCM1131T by in vivo animal model study. Altogether, our findings
provide additional insights into the probiotic function in a well-known representative of
probiotic lactic acid bacterium L. gasseri JCM1131T.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9051011/s1, Figure S1: Structural analyses of LagBSH, Figure S2: SDS-PAGE
analysis of purified LagBSH, Table S1, The BSH sequence homology among Lactobacillus species.
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