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Vaginal microbiota diverges in sows 
with low and high reproductive 
performance after porcine 
reproductive and respiratory 
syndrome vaccination
L. P. Sanglard1, S. Schmitz-Esser1,2, K. A. Gray3, D. C. L. Linhares4, C. J. Yeoman5, 
J. C. M. Dekkers1, M. C. Niederwerder6 & N. V. L. Serão1*

Previous studies have demonstrated evidence for a relationship between the vaginal microbiome and 
reproductive performance, suggesting the vaginal microbiota may serve as a tool to predict farrowing 
outcomes in commercial pigs. In this study, we compared the vaginal microbiome in sows with low and 
high farrowing performance and used it to classify animals with contrasting reproductive outcomes 
in commercial sows following immune challenge with porcine respiratory and reproductive syndrome 
(PRRS) vaccination. Eighteen microbes were differentially abundant (q-value < 0.05) between the Low 
and High farrowing performance groups. Among them, Campylobacter, Bacteroides, Porphyromonas, 
Lachnospiraceae unclassified, Prevotella, and Phascolarctobacterium were also selected in the 
discriminant and linear regression analyses, and could be used as potential biomarkers for reproductive 
outcomes. The correct classification rate in the two groups was 100%. In conclusion, this study 
demonstrates that vaginal microbiota collected after PRRS vaccination could be potentially used to 
classify sows into having low or high farrowing performance in commercial herds.

Farrowing performance in commercial sows is a key component of cost-effectiveness in the swine industry. 
Reproductive technologies (e.g., artificial insemination) have allowed producers to maximize the use of existing 
resources in the production systems to improve reproductive efficiency1. Strategies such as selection have allowed 
the genetic improvement of sows to exhibit enhanced farrowing performance2. However, variation in these traits 
is little explained by the individual’s genetic, creating challenges for rapid improvements in farrowing perfor-
mance. Recently, it has been shown that host-associated microbiota plays a role in shaping phenotypes of humans 
and animals3. For example, the vaginal microbiota has been shown to impact preterm birth and neonatal health4. 
In beef cattle, the vaginal microbiota was used to distinguish between heifers that were able to establish preg-
nancy from those that were not2, suggesting its potential to be used to identify animals with favorable reproduc-
tive performance. In addition, relationships between the microbiota and immune response have been previously 
observed5. Therefore, microbiota collected after modified live virus (MVL) porcine reproductive and respiratory 
syndrome (PRRS) vaccination may be an alternative indicator of reproductive performance in commercial sows. 
In addition, the microbiota is relatively easy to collect and can be profiled with considerable ease using current 
molecular techniques6, making it a potential candidate phenotype to predict reproductive outcomes in commer-
cial sows. Therefore, the objectives of this study were to identify differences in composition and alpha diversity of 
vaginal microbiota between sows with low and high farrowing performance, and to use the vaginal microbiota to 
classify animals with contrasting reproductive outcomes following PRRS vaccination.
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Results
Identification of DAMs and alpha diversity between sows with Low and High farrowing per-
formance.  Differences in microbiota (q-value < 0.05) relative abundances were identified for the interaction 
between farrowing performance group and day of collection (Fig. 1) and for the main effect of farrowing perfor-
mance group (Fig. 2).

For the interaction, differentially abundant microbes (DAMs) were identified for total number born 
(TNB), number born alive (NBA), number of piglets weaning (NW), number born dead (NBD), number of 
piglets mummified (MUM), and pre-weaning mortality (PWM; Fig. 1). For TNB (Fig. 1a), Fusobacterium_1, 
Phascolactobacterium, Atopobium, Eryspelotrichaceae, and Pophyromonas had higher abundance in the High 
farrowing performance group compared to the Low with the log2 fold change (log2FC) being larger on day 4 
(D4) compared to day 52 (D52). In contrast, Lactobacillus had lower abundance in the High farrowing group 
compared to the Low farrowing group on D4 but did not differ on D52. For NBA (Fig. 1b), the identified DAMs 
Atopobium, Bacteroides_1, Phascorlactobacterium, Bacteroidales_unclassified, Erysipelotrichaceae_unclassified, 
Anaerococcus_1, Prevotella_1, and Prevotella_2 had higher abundance in the High group compared to the Low 

Figure 1.  Differentially abundant microbes for the interaction between farrowing performance group and day 
of microbiome collection. The groups were defined based on the best/worst performance of (a) total number 
born, TNB; (b) number born alive, NBA; (c) number of weaning, NW; (d) number born dead, NBD; (e) number 
of piglets mummified, MUM; and (f) pre-weaning mortality, PWM. Positive and negative values represent 
higher abundance in the groups with high and low farrowing performance, respectively. Bar colors represent 
collections of days 4 (D4; gray) and 52 (D52; white) after vaccination to porcine respiratory and reproductive 
syndrome. The errors bars correspond to 95% confidence interval.
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group on D4 compared to D52, when the abundance in the Low group compared to the High group increased. For 
NW (Fig. 1c), Prevotella_3, Prevotella_4, Treponema_1, Oscillospira, Faecalibacterium, Blautia, Lachnospiraceae_
unclassified_1, Oscillibacter, Ruminococcus, and Lachnospiraceae_UCG-004 had lower abundance in the High 
group compared to the Low group on D4. They had higher abundance in the High group on D52. For NBD 
(Fig. 1d), Fusobacterium_1, Bacteroides_2, and Campylobacter had lower abundance in the High group compared 
to the Low group on both D4 and D52, but the difference in abundance decreased from D4 to D52. There was 
lower abundance of Family XIII and Streptococcus in the High group compared to the Low group on D4 compared 
to D52, when the abundance in the High group compared to the Low group increased. Finally, Lactobacillus was 
more abundant in the High group compared to the Low group on D4 compared to D52, when the abundance in 
the High group compared to the Low group decreased. For MUM (Fig. 1e), Pasteurellaceae_unclassified_1 and 
Pasteurellaceae_unclassified_2 had greater abundance in the Low compared to the High group on D4 and on D52 
the abundance in the High group compared to the Low group increased. Filifactor had lower abundance in the 
High group compared to the Low group on D52 and on D4. Faecalibacterium and Acinetobacter_1 had higher 
abundance in the High group compared to the Low group on D4 compared to on D52, when the abundance in 
the Low group compared to the High group increased. For PWM (Fig. 1f), Campylobacter had higher abundance 
on High group on D4 but not on D52 and Veillonellaceae unclassified had higher abundance on Low group on D4 
and the opposite on D52.

For the main effect of farrowing performance group, DAMs were identified (q-value < 0.05) for TNB, NW, 
NBD, number of stillborn piglets (NSB), MUM, PWM, and Join (representing joint analysis of NBA and NBD), 
as depicted in Fig. 2. Positive and negative log2FCs refer to higher and lower abundance on High compared to the 
Low farrowing performance groups, respectively. For TNB (Fig. 2a), 2 DAMs were identified: Fusobacterium_2 
(log2FC = 3.11) and Treponema_2 (log2FC = −3.57). For NW (Fig. 2b), Psychrobacter (log2FC = −3.13), 
Acinetobacter_2 (log2FC = −5.12), and Kurthia (log2FC = −3.85) showed greater abundance in the Low per-
formance group compared to the High. Six DAMs between sows from High and Low groups were identified 
when the groups were defined based on NBD (Fig. 2c). For NBD, all DAMs were more abundant in the Low 
group compared to the High group: Parvimonas (log2FC = −2.11), Prevotella_5 (log2FC = −2.13), Bacteroides_2 
(log2FC = −3.35), Phascolarctobacterium (log2FC = −2.79), Filifactor (log2FC = −3.07), and Lachnospiraceae_
unclassified_2 (log2FC = −2.19). For NSB (Fig. 2d) and MUM (Fig. 2e), Staphylococcus and Acinetobacter_2 
were more abundant in the High group, with log2FC of 2.93 and 5.11 for NSB, respectively, and 3.04 and 
4.89 (Acinetobacter_2) and 5.26 (Acinetobacter_1) for MUM, respectively. For PWM (Fig. 2f), Empedobacter 
(log2FC = −5.49) was more abundant on the Low group compared to the High. For Join (Fig. 2g), the DAMs were 
represented by Anaerococcus_2 (log2FC = 2.35), Treponema_3 (log2FC = −2.97), Lachnospiraceae_unclassified_2 

Figure 2.  Differentially abundant microbes (DAMs) between groups of animals classified as High or Low 
farrowing performance. (a) Total number born, TNB; (b) number weaning, NW; (c) number born dead, NBD; 
(d) number of stillborn, NSB; (e) number of piglets mummified, MUM; (f) pre-weaning mortality; and (g) NBA 
associated with NBD, Join. The errors bars correspond to 95% confidence interval. The colors represent greater 
(white) or lower (gray) abundance in High performance group compared to the Low performance group.
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(log2FC = 2.66), Pasteurellaceae_unclassified_1 (log2FC = 5.56), Pasteurellaceae_unclassified_2 (log2FC = 4.34), 
and Pasteurellaceae_unclassified_3 (log2FC = 4.32), being Treponema_3 the only one more abundant in the Low 
compared to the High group. No DAMs (q-value > 0.05) were identified for NBA. For the effect of day, 180, 
250, 106, 8, 60, 41, 96, and 179 DAMs were identified (q-value < 0.05) for TNB, NBA, NW, NBD, NSB, MUM, 
PWM, and Join, respectively (Supplementary Table S1).The operational taxonomic units (OTUs) that were dif-
ferentially abundant in most analyses performed (5 out of 8) were Anaerococcus, with higher abundance on D4 
compared to D52 (range log2FC = 1.30 to 5.16); Ruminococcaceae, with higher abundance on D52 compared to 
D4 (range log2FC = −0.81 to −5.48); Clostridium sensu stricto, with higher abundance on D52 compared to D4 
(range log2FC = −0.79 to −4.56); Lachnospiraceae unclassified, with higher abundance on D52 compared to D4 
(range log2FC = −1.39 to −5.29); and Prevotellaceae, with higher abundance on D52 compared to D4 (range 
log2FC = −1.16 to −4.11).

Differences in the microbiota alpha-diversity between farrowing performance groups are presented on Fig. 3. 
Differences were only observed in Join, NBA, and TNB (P-value < 0.05) for Fisher alpha-diversity. There was a 
higher Fisher alpha-diversity in the Low performance group compared to the High performance. For TNB, there 
was also a tendency (P-value < 0.10) for higher alpha-diversity based on Shannon and Simpson measurements in 
the Low performance group compared to the High group.

Classification of gilts into farrowing performance groups based on OTU abundance.  The 
selected OTUs, along with their standardized coefficients, are shown in Supplementary Table S2. The number 
of selected (P-value < 0.05) OTUs ranged from 14 to 16. The OTUs classified as Lachnospiraceae unclassified and 
Ruminococcaceae were selected in the analyses based on all traits. Porphyromonas, Campylobacter, Fillifactor, 
Prevotella, Actinobacillus, and Fusobacterium were selected in at least 3 analyses. All linear discriminant analyses 
(LDA) had R2 > 0.99 and P-value < 0.001. The leave-one-out cross-validation resulted in a correct classification 
rate of 100% for all analyses.

Figure 3.  Alpha-diversity measurements for Low and High farrowing performance groups. The alpha-diversity 
measurements are (a) abundance-based coverage estimator (ACE), (b) Chao1, (c) Fisher, (d) Inverse Simpson 
(InvSimps), (e) Shannon, and (f) Simpson. Farrowing performance groups were defined based on the 
best/worst performance of total number born (TNB), number born alive (NBA), number weaned (NW), 
number born dead (NBD), number of stillborn (NSB), number of piglets mummified (MUM), pre-weaning 
mortality (PWM), and combination of NBA and NBD (Join). The errors bars correspond to 95% confidence 
interval. Means lacking common lower- and uppercase letters are statistically different at P < 0.05 and <0.10, 
respectively.
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The LDA was also performed for each day separately and the selected OTUs along with their standardized 
coefficients can be seen on Supplementary Table S3. For this, the leave-one-out cross-validation resulted in a cor-
rect classification rate of 100% for all analyses, with exception of NBA and MUM on D4, and NW on D52, which 
had a correct classification rate of 95% (i.e., only one sample was misclassified). In these cases, the accuracies of 
the classification [i.e., area under the receiver operating characteristic (ROC) curve; AUC] were 0.95, 0.89, and 
0.95, respectively, as can be observed on Supplementary Fig. S1.

Prediction of farrowing performance based on OTU.  The stepwise linear regression (Fig. 4; 
Supplementary Table S4) reveled that a moderate linear relationship between reproductive traits and vaginal 
microbiota, with R2 ranging from 0.19 (NBD) to 0.46 (NSB). The number of OTUs selected (P-value < 0.15) 
ranged from 4 (NBD) to 16 (NSB) across both days and the most frequently included OTUs were Lachnospiraceae, 
Ruminococcaceae, Ruminiclostridium, Subdoligranulum, and Alloprevotella, which were selected for 6, 5, 2, 3, 
and 2 analyses, respectively. These analyses were also performed for each day separately and can be seen on 
Supplementary Table S5 and Supplementary Fig. S2.

Discussion
Previous studies have shown that antibody response to PRRS virus following PRRS infection is associated with 
reproductive outcomes during natural PRRS infection7,8. In addition, a relationship between the microbiota and 
immune response has been observed5. We, therefore, hypothesized that microbiota collected after MLV PRRS 
vaccination may be an alternative indicator of reproductive performance in commercial sows. In addition, the 

Figure 4.  Stepwise linear regression of operational taxonomic units (OTUs) on farrowing performance traits: 
(a) total number born, TNB; (b) number born alive, NBA; (c) number weaning, NW; (d) number born dead, 
NBD; (e) number of stillborn, NSB; (f) number of piglets mummified, MUM; and (g) pre-weaning mortality, 
PWM. The x-axis represents the predicted values and the y-axis represents the adjusted phenotype. R-squares 
correspond to the coefficient of determination (R2).
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vaginal microbiota has been shown to be associated to reproductive outcomes in humans and cattle4 and has the 
advantage of being relatively easy to collect and possible to be collected at early ages. Therefore, in this work, we 
assessed and corroborated the possibility of using vaginal microbiota to identify animals with contrasting repro-
ductive performance in commercial sows.

The vaginal microbiota was collected at 4 and 52 days following the MLV PRRS vaccination. The development 
of immune response to PRRS occurs late, with production of neutralizing antibodies peaking at 9 to 11 weeks 
(Lopez & Osorio)9. However, initial response can be observed as early as 2 days post infection with the induc-
tion of interleukin-10 (IL-10) associated with the generation regulatory T cells. In addition, PRRS outbreaks 
can be identified within a few days. Thus, by investigating the microbiota on days 4 and 52 after vaccination, we 
focused on collection of data soon after a PRRS MLV challenge has occurred (day 4), as well during peak antibody 
response (day 52)10. In this study, we had no intention to assess the effect of vaccination on the microbiota, which 
would have required evaluation of a control group on non-vaccinated gilts; however, we recognize that, given the 
relationship between the microbiota and immune response11, the infection with PRRS virus through vaccination 
during period of collection may be playing a role in the modulation of the vaginal microbiota. It should be noted 
that the interactions identified between days of collection and farrowing performance group on OTU abundance 
may be the result of modulation of the immune response on the microbiota, together with the effect of time and 
age.

The microbiota has been associated with several phenotypic outcomes (i.e., diseases, stress, reproduction); 
however, the mechanisms involved in the interaction between the host and the microbiota is still unclear. One 
possible mechanism that relates the microbiota to reproduction appears to involve hormones12. Indeed, the gut 
microbiota can produce and secrete hormones, while hormones can stimulate or inhibit the development of 
specific microbes, characterizing a bidirectional relationship12. Previous studies of the gut microbiota in mice 
have found correlations of some of the microbes identified in this study, such as Lachnospiraceae, Clostridium, 
Prevotella, and Ruminococcaceae, with circulating hormones (i.e., leptin and urinary estrogen;13). Also, 
Oscillibacter has been associated with higher levels of glucocorticoid in the gut microbiota of gorillas14. Thus, 
exploring the host microbiota and relating it to phenotypes of interest could help the swine industry improve 
animal reproductive performance.

A total of 50 unique DAMs were identified across all analyses. Of these, Phascolarctobacterium, Filifactor, 
Atopobium, Campylobacter, Staphylococcus, Treponema, Erysipelotrichaceae unclassified, Acinetobacter, and 
Faecalibacterium were identified in multiple analyses. Phascolarctobacterium, which was identified in the analyses 
based on TNB, NBA, and NBD, was more abundant in the Low performance group. Similarly, relative abundance 
of Phascolarctobacterium was negatively correlated with the litter weight of piglets at day 21 of lactation15 and 
higher abundance of Phascolarctobacterium was associated with gestational diabetes mellitus in pregnant women 
(Cortez et al., 2018). Uterine Filifactor, which had higher abundant in the Low group compared to the High 
group, as showed in the analyses based on NBD and MUM, has been demonstrated to be a predictor of metritis in 
dairy cows16. In addition, there are evidences that Filifactor and Campylobacter are important oral pathogens and 
are associated with infection-related preterm birth in humans17. Staphylococcus was more abundant in the High 
group in the analyses based on NSB and MUM, contrasting with some finding in the literature which associated 
high Staphylococcus abundance with lower pregnancy rate in humans18. This bacteria genus was identified as a 
DAM in the analyses of NSB and MUM. Many species of Treponema have been reported to be a pathogenic bac-
teria19. This bacterium was more abundant in the Low group as in the analyses of TNB and Join. To the best of our 
knowledge, there is no information associated with reproductive performance on Erysipelotrichaceae unclassified, 
Acinetobacter, and Faecalibacterium. Other bacteria, such as Fusobacterium, Bacteroides, and Lachnospiraceae. 
Fusobacterium, which was identified to be more abundant in the High group when the groups were defined based 
on TNB, is a dysbiosis-associated pathogen20. Bacteroides and Lachnospiraceae were more abundant in the Low 
group compared to the High when the groups were defined based on NBD. Bacteroides has been associated with 
bacterial vaginosis infertility in humans and reproductive disorders in cattle2. Lachnospiraceae has been shown to 
be associated with prediction of pregnancy status2 and, similar to Phascolarctobacterium, its abundance was neg-
atively correlated with the litter weight of piglets at day 21 of lactation15. In general, there was a higher abundance 
of noxious bacteria in the Low performance group compared to the High. Interestingly, among these bacteria 
genera, the abundance of Bacteroides and Phascolarctobacterium in the vaginal microbiome of commercial gilts 
has been shown to be moderately heritable using the same data presented in this study21, suggesting the possibility 
of performing genetic selection over specific bacteria in the microbiota. For the effect of time, the great majority 
of the microbes differentially expressed between days had higher relative abundance on D52 compared to D4, 
including the main microbes that were identified in several analysis: Ruminococcaceae, Clostridium sensu stricto, 
and Lachnospiraceae. Factors such as age and development of immune defense against the virus after vaccination 
may be associated with these changes; however, they are completely confounded limiting our conclusion on these 
findings.

Greater microbiota diversity was observed in the Low group compared to the High group for some of the 
traits used to define groups. These differences were identified for Fisher, Shannon and Simpson diversities, which 
account for the total number of species, the proportions of those species, and community evenness. Interestingly, 
Wang et al.15 reported low diversity in the group of sows with low litter performance based on the litter weigh at 
21 days of lactation. Therefore, it is possible that a higher abundance of noxious bacteria in the vaginal microbiota 
of Low performance sows generated the increase in alpha-diversity in this group. On the other hand, in humans, 
bacterial vaginosis, which decreases fertility, has been associated with greater alpha-diversities22.

The LDA revealed that the vaginal microbiota was able to distinguish between Low and High groups of far-
rowing performance. When using microbiome information from both days, all LDA had correct classification 
rates of 100%, indicating that the use of OTUs to classify animals with contrasting farrowing performance is very 
promising. For the analyses performed by day, the worst accuracy of classification (AUC = 0.89) was obtained 
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when the groups were based on MUM (using D4 OTU data). This may be due to the fact that the average far-
rowing performance between the two groups was not very different for this trait (1.1 vs. 0 piglets for the Low and 
High-performance groups, respectively). In addition to MUM, NBA (using D4 OTU data) and NW (using D52 
OTU data), had one misclassified sample (out of 20). In two of these cases (NBA and NW), a sample from the 
High performance group was incorrectly classified into the Low performance group sample, suggesting that the 
chance of a gilt with Low performance being classified as High performance is minimal. The bacteria with higher 
influence on classification into groups in the LDA were very similar to those identified as DAMs in the univariate 
analyses: Campylobacter, Bacteroides, Porphyromonas, Lachnospiraceae unclassified, Anaerococcus, Filifactor, and 
Prevotella. This suggests that these bacteria could be used as potential biomarkers between the Low and High per-
formance groups.

The use of vaginal microbiota to classify gilts into farrowing performance groups would enhance the process 
of culling, allowing the identification of low reproductive producers at an early age prior to breeding. The clas-
sification based on the microbiota data from D4 had slightly worse performance than from D52; however, this 
difference was not large enough to discard the possibility of obtaining the microbiota earlier measures of the vag-
inal microbiome for diagnostic purposes. Therefore, collection on D4 seems to be promising to identify gilts with 
better future farrowing performance. In addition, vaginal swabs collected after PRRS virus vaccination shown to 
be a good tool to obtain the microbiota since it is minimally invasive and can be performed at early ages.

The LDA was effective in identifying additional influential OTUs that were not identified in the univariate 
analyses (i.e., identification of DAMs). The LDA is a multivariate approach, which allows the relationship within 
the microbiota to be accounted for, enhancing the understanding behind the association between the microbiota 
and phenotypes of interest.

The stepwise regression analyses showed that there is a moderate relationship between vaginal microbiota 
and farrowing performance, with the vaginal microbiota explaining up to 46% (i.e., NSB) of the variation (i.e., 
R2) in subsequent farrowing performance. Lachnospiraceae was identified in most of the analyses (6 in total), 
corroborating the relationship of this bacteria general with farrowing performance in pigs15 (Fig. 5). In addition, 
Ruminococcaceae, Subdoligranulum, and Alloprevotella were selected in most (~four analyses) of the stepwise 
regression analyses (Fig. 5). These results were not as promising as those from the LDA. While sows with extreme 
performance were used for the LDA, all animals were used to perform regression analyses of OTUs on farrow-
ing performance. Hence, in these analyses, we evaluated the impact of OTUs across all values of performance. 
Therefore, based on these results, although there is potential in identifying contrasting performance with OTU 
data, the use of these data needs to be further evaluated before they can be used to predict overall farrowing 
performance.

The vaginal microbiota of commercial replacement gilts was associated with subsequent farrowing perfor-
mance. In this study we identified major differentially abundant microbes in vaginal samples obtained at the com-
mercial level between gilts that were subsequently classified as having Low and High farrowing performances. 

Figure 5.  Overall view of the bacteria genera identified for each analysis: differentially abundant microbes 
(DAM), linear discriminant analyses (LDA), and stepwise regression (Regression). Blue and red represent the 
positive and negative effects, respectively, of a given bacteria on the farrowing performance: total number born, 
TNB; number born alive, NBA; number weaned, NW; number of stillborn, NSB; number born mummified, 
MUM; number born dead, NBD; pre-weaning mortality, PWM; combination of NBA and NBD (Join).
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Gilts with lower subsequent reproductive performance had higher microbiota diversity, suggesting a state of 
dysbiosis in low-performing animals. High accuracy (100%) can be obtained by using vaginal microbiome data 
to classify sows into Low and High farrowing performance groups. In contrast, the vaginal microbiota had lim-
ited impact in explaining variation in reproductive performance when the whole data set was used, with R2 up 
to 0.46 for number of stillborn. Particularly, few genera, such as Campylobacter, Bacteroides, Porphyromonas, 
Lachnospiraceae unclassified, Prevotella, and Phascolarctobacterium were identified as potential biomarkers of far-
rowing performance in pigs. In conclusion, this study demonstrates that there is potential in using vaginal micro-
biota data collected after MVL PRRS vaccination to classify sows with Low and High farrowing performance. 
Future work should focus on validating bacteria associated with farrowing performance identified in this study, 
evaluating classification of animals with contrasting performance across multiple parities, as well evaluating the 
use of vaginal microbiota data collected at different time points and without vaccination.

Methods
All methods described in this study were approved by the Institutional Animal Care and Use Committee at 
Iowa State University (IACUC# 6-17-8551-S), following the guidelines and regulations according to the Animal 
Welfare Act (AWA).

Animals, sample collection, and reproductive performance traits.  Ninety-six F1 (Landrace x Large 
White) replacement gilts from a commercial farm in North Carolina, USA, were vaccinated (133 ± 11 days old) 
intramuscularly with a commercial MLV PRRS vaccine (Ingelvac PRRS MLV, Boehringer Ingelheim Animal 
Health), following the manufacturer’s guidelines. Prior to sample collection, the vulva was cleaned to minimize 
contamination from skin bacteria into the vagina using water and 70% ethanol. Vaginal swabs were then collected 
from all gilts using ESwabs (COPAN Diagnostics Inc., Murrieta, CA) at D4 and D52 after vaccination. These 
96 animals were selected from a larger pool of 302 sows (described in Sanglard et al.21) that had first-farrowing 
performance from January to June 2018 (~150 days post second microbiome collection). In order to work with 
a more homogeneous dataset (with regards to the time of farrowing), we identified a narrower period of time 
(March 2018) that included a larger subset of these 302 animals. Subsequent analyses were done using this subset 
of 96 animals. These animals had data recorded for NBA, NW, MUM, NSB, and PWM. Number born dead was 
calculated as the sum of MUM and NSB, and TNB was calculated as the sum of NBA and NBD. Summary statis-
tics of the data are presented in Table 1.

Vaginal microbiota data.  The vaginal microbiota data has been previously described in Sanglard et al.21. 
DNA from the vaginal swabs was extracted to profile the vaginal microbiota by 16S rRNA gene sequencing. 
Bacterial DNA was extracted using the Qiagen DNeasy PowerSoil (QIAGEN Inc., Valencia, CA), extraction kit. 
Briefly, PCR amplicon libraries targeting variable region 4 (V4) of the 16S rRNA gene were produced using a 
barcoded primer set adapted for Illumina HiSeq. 2000 and MiSeq.23. DNA sequence data were generated using 
Illumina MiSeq paired-end sequencing at the Environmental Sample Preparation and Sequencing Facility (ESPSF) 
at Argonne National Laboratory (Lemont, IL). Specifically, 515F and 806R primers that included the sequencer 
adaptor sequences used in the Illumina flow cell were used to PCR amplify the V4 region of the 16S rRNA gene23. 
The 515F amplification primer also contained a twelve base barcode sequence that supported pooling and subse-
quent demultiplexing of up to 2,167 samples in each lane were included23,24. Each 25 µL PCR reaction contained 
9.5 µL of MO BIO PCR Water (Certified DNA-Free), 12.5 µL of QuantaBio’s AccuStart II PCR ToughMix (2x con-
centration, 1x final), 1 µL Golay barcode tagged forward primer (5 µM concentration, 200 pM final), 1 µL reverse 
primer (5 µM concentration, 200 pM final), and 1 µL of template DNA. The conditions for PCR were as follows: 
94 °C for 3 minutes to denature the DNA, with 35 cycles at 94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s; with a final 
extension of 10 min at 72 °C to ensure complete amplification. Amplicons were then quantified using PicoGreen 
(Invitrogen) and a plate reader (Infinite 200 PRO, Tecan). Once quantified, volumes of each of the products were 
pooled into a single tube so that each amplicon was represented in equimolar amounts. This pool was then cleaned 
up using AMPure XP Beads (Beckman Coulter), and then quantified using a fluorometer (Qubit, Invitrogen). After 
quantification, the molarity of the pool was determined and diluted down to 2 nM, denatured, and then diluted to 
a final concentration of 6.75 pM with a 10% PhiX spike for sequencing on the Illumina MiSeq. Amplicons were 

Traitsa Nb Mean SD Min Max

Mean (SD) per groupc

Low (n = 10) High (n = 10)

TNB 96 12.4 3.1 2 19 6.4 (2.5) 17.7 (1.3)

NBA 96 11.6 3.2 1 19 4.4 (2.3) 16.5 (1.4)

NW 93 11.5 1.7 5 15 9.7 (0.7) 13.3 (0.8)

NBD 96 0.8 1.4 0 12 5.1 (2.7) 0.0 (0.0)

NSB 96 0.5 0.9 0 8 3.4 (1.9) 0.0 (0.0)

MUM 96 0.3 0.8 0 7 1.1 (1.6) 0.0 (0.0)

PWM 69 2.7 1.8 1 10 5.1 (2.7) 1.1 (0.3)

Table 1.  Descriptive statistics of the farrowing performance data. aTNB, total number born; NBA, number 
born alive; NW, number weaned; NBD, number born dead; NSB, number of stillborn; MUM, number born 
mummified; PWM, pre-weaning mortality; bN: number of records. cMean and standard deviation (SD) from 
Low and High farrowing performance groups.
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sequenced on a 151 bp MiSeq run using customized sequencing primers and procedures23. Mothur was used for 
sequencing analysis25, which followed mothur’s MiSeq standard operating protocol. Barcode sequences, primer and 
low-quality sequences were trimmed using a minimum average quality score of 35, with a sliding window size of 
50 bp. Chimeric sequences were removed using Chimera Uchime. For alignment and for taxonomic classification, 
the SILVA SSU NR reference database v13226 provided by the mothur website was used. The sequences were clus-
tered into OTUs with a cutoff of 99% 16S rRNA gene similarity. The OTUs were numbered in order of abundance 
(i.e., OTU1 corresponds to the most abundant OTU). More than 2,000 OTUs were obtained, but after removing 
OTUs that were absent in more that 10% of the samples, 1,386 OTUs were used for microbial analyses. For analyses 
purposes, the relative abundance of the OTUs was calculated by dividing the counts of each OTU by the total num-
ber of counts for a given sample. Alpha-diversity was obtained for each day separately, and measured as: Chao1, 
inverse Simpson, Simpson, Shannon, Fisher, and abundance-based coverage estimator. Analyses of microbiota 
diversity were performed in R27 using the microbiome package28.

Statistical analyses.  Identification of animals with contrasting reproductive performance.  In order to assess 
the difference in microbial composition and diversity between sows with contrasting farrowing performance, the 
sows were split into two farrowing performance groups (Low and High). The phenotypes NW and PWM were 
pre-adjusted for the number of piglets fostered at birth by adding this in the model. Then, sows were identified as 
Low (bottom 10) or High (top 10) performers after being ranked based on each of these traits separately: NBA, 
NBD, TNB, NW, MUM, NSB, PWM, and a combination of high farrowing performance for NBA and NBD (Join). 
Join was created by double-sorting the sows by the NBA and, then, by the NBD in opposite directions to obtain 
groups with high and low farrowing outcomes. Since microbiota data were collected at D4 and D52, a total of 40 
samples (20 animals with two samples representing each time point) were used in these analyses (combination 
between farrowing performance group and collection day). The average farrowing performance of each group is 
given in Table 1.

Identification of differentially abundant microbes (DAM), and assessment of microbial alpha-diversity between sows 
with Low and High farrowing performance.  For the identification of DAMs, the following repeated measure-
ments negative binomial mixed model was used:

µ β= + + + ∗ + + +y group day group day age animal log L( ) ( ) (1)ijk i j ij k k ijk1

where yijk is the raw count for the OTU analyzed; µ is the overall mean; groupi is the fixed effect of the ith farrowing 
performance group (Low or High); dayj is the fixed effect of the jth day of collection (D4 or D52); β1 is the partial 
regression coefficient for the covariate age at collection for the kth animal (agek); animalk is the random effect of 
the kth animal, assuming σ∼ Ianimal N(0, )animal

2 , where I is the identity matrix; and log(Lijk) is the 
TMM-normalized library size, used as an offset. The TMM normalization29 factors used to normalize library size 
were obtained based on all the OTUs in the dataset (~2,000) and all animals that had vaginal microbiota data 
collected (~300; data not shown). A false-discovery rate correction was applied for multiple testing correction30, 
and DAMs for farrowing performance groups were identified when q-value < 0.05. Results are being presented as 
log2 fold change (log2FC) of the High group compared to the Low (i.e., positive numbers correspond to greater 
abundance in the High group).

For alpha-diversity, a linear mixed model including the same effects in Eq. 1 was used, with the exception that 
the offset was removed from the model. The Shapiro-Wilk test for normality was applied and, when the normality 
assumption of the residuals was not met (P-value < 0.05), the response data was log-transformed31. Analyses 
were performed using the GLIMMIX procedure of SAS 9.4 (Statistical Analysis System; Cary, NC, USA), and the 
calculation of q-values were done with the p.adjust function from the stats package in R.

Classification of farrowing performance based on OTU relative abundance.  Linear discriminant analyses were 
performed using the OTU data to classify animals into the two farrowing performance groups (i.e., Low and High 
groups). For the analyses, microbiome information from D4 and D52 were used to classify into farrowing groups. 
In addition, analyses were done separately for D4 and D52 in order to optimize the classification on animals.

Prior to LDA, the relative abundance of each OTU was calculated as the proportion of a given OTU divided 
by the library size for each animal and, then, pre-adjusted for the fixed effect of the covariate age. Next, a step-
wise linear discriminant analysis was performed over the adjusted phenotype in order to identify significant 
(P-value < 0.05) OTUs to be included in the discriminant model using stepwise selection. After selection of 
OTUs, a leave-one-out cross-validation was used to assess the predictive ability of the OTUs to correctly classify 
samples into the correct groups (Low or High). A ROC curve was used to assess the accuracy (i.e., AUC) of the 
binary classifier diagnostic. The ROC curve was created by plotting the true positive rate (sensitivity) against the 
false positive rate (1 – specificity) at various threshold settings. LDA were performed using the STEPDISC and 
DISCRIM procedures of SAS 9.4. The AUC was calculated with pROC package32 from R.

Prediction of farrowing performance based on OTU.  A stepwise linear regression of OTUs on reproductive traits 
was performed to assess the overall relationship between OTU abundance and farrowing performance. Prior to 
analyses, the data were pre-adjusted to remove systematic effects. In this step, the reproductive data were adjusted for 
the fixed effects of farrowing contemporary group (combination of month/year of farrow and farm) and the relative 
abundance OTU data were adjusted for the covariate of age at microbiota collection. Afterwards, the pre-adjusted 
reproductive data were used as response variable, one at a time, and the pre-adjusted data of all OTUs were used 
as explanatory variables. The OTUs were selected to enter and remain in the model in a stepwise approach, using a 
threshold of P-value < 0.15. Analyses were performed using the GLMSELECT procedure of SAS 9.4.
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