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Abstract: 
Linking sequence variation to phenotypic effects is critical for efficient exploitation of large 
genomic datasets. Here we present a novel approach combining directed evolution with protein 
language modeling to characterize naturally-evolved variants of a rice immune receptor. Using 
high-throughput directed evolution, we engineered the rice immune receptor Pik-1 to bind and 
recognize the fungal proteins Avr-PikC and Avr-PikF, which evade detection by currently 
characterized Pik-1 alleles. A protein language model was fine-tuned on this data to correlate 
sequence variation with ligand binding behavior. This modeling was then used to characterize 
Pik-1 variants found in the 3,000 Rice Genomes Project dataset. Two variants scored highly for 
binding against Avr-PikC, and in vitro analyses confirmed their improved ligand binding over the 
wild-type Pik-1 receptor. Overall, this machine learning approach identified promising sources of 
disease resistance in rice and shows potential utility for exploring the phenotypic variation of 
other proteins of interest. 

Main Text: 
Protein language models (PLMs) like ESM-21 are transformer-based neural networks trained on 
enormous sets of evolutionarily-derived proteins to learn protein sequence, structure, and 
functional information. After training on this data, PLMs can be used to distill any input protein 
sequence into a high-dimensional numerical representation called an “embedding”. These 
embeddings have been used in the past as inputs for specialized machine learning tasks2–5. 
Alternatively, PLMs themselves can be “fine-tuned” to produce a specialized model that directly 
predicts the properties of an input protein sequence6,7. Fine-tuning is a process which takes a 
pre-trained model, optionally adjusts the model architecture, and trains the entire model on a 
specialized dataset to predict the characteristics measured in that data. A major benefit of this 
approach is that backpropagation during training extends into the language model weights, 
adapting the entire model towards the prediction task6,7. Fine-tuned PLMs have been previously 
used to accurately predict the effect of missense mutations on enzyme function8, protein 
stability9, and protein-protein interactions7,10. This flexibility and accuracy makes fine-tuned 
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PLMs a useful tool for predicting the effects of sequence variation on phenotypes of interest, 
which would be especially valuable for exploring large genomic datasets. 

Magnaporthe oryzae is the fungal pathogen responsible for rice blast, a disease that can cause a 
yield loss of 10-30% in rice and destroys enough rice each year to feed 60 million people11,12. 
Several genes in rice can confer resistance against blast disease, including the immune receptor 
Pik-1 which binds the M. oryzae-secreted protein Avr-Pik via an integrated heavy 
metal-associated (HMA) domain13,14. Several variants of Avr-Pik (Avr-PikA through Avr-PikF) 
have been identified across Magnaporthe strains, each featuring sequence variations that can 
weaken or break the HMA/ligand interactions required for Pik-1 to initiate an immune response15 
(Fig. 1a). Variations in the Pik-1 HMA domain have a significant impact on the recognition 
profile of a given Pik-1 receptor allele, as shown by the Pikp-1 and Pikh-1 alleles which differ by 
only one residue in the HMA domain but in turn recognize one Avr-Pik variant and four Avr-Pik 
variants, respectively16 (Fig. 1a). These differing activities in planta are linked to the binding 
affinity of the HMA domain to each Avr-Pik variant14,16. The importance of HMA/ligand binding 
for Pik-1 functionality has been previously exploited to engineer Pik-1 receptors with expanded 
Avr-Pik recognition profiles17,18. Previously, we outlined a method to engineer enhanced Pikh-1 
HMA domain binding against both Avr-PikC and Avr-PikF19, which no natural allele of Pik-1 has 
been shown to achieve (Fig. 1b). Millions of Pikh-1 HMA domain variants were generated with 
error-prone PCR and transformed into yeast cells for yeast-surface display (YSD). This starting 
YSD library contained ~2 x 107 variants, each featuring on average 2.1 amino acid substitutions 
along the 78 amino acid-long domain19. The variant library was then screened for binding against 
fluorescently-labeled Avr-PikC or Avr-PikF. Variants with enhanced binding against these 
ligands relative to the wild-type Pikh-1 HMA domain were selected via fluorescently-activated 
cell sorting (FACS) and sequenced.  

We used our directed evolution data to fine-tune ESM-2 to predict Pik-1 HMA domain variant 
binding against Avr-PikC and Avr-PikF. Receptor performance was quantified with an 
enrichment score (ES), which measured the relative change in sequence abundance between the 
starting YSD library and post-selection YSD library. This data was split into training and 
validation sets to fine-tune ESM-2 and calculate a predicted enrichment score (pES) for input 
receptor variants. After training, the final Avr-PikC (Fig. 1c) and Avr-PikF (Fig. 1d) fine-tuned 
models both obtained a Spearman correlation coefficient R value over 0.85 on the validation 
data, indicating these models were able to strongly associate key sequence characteristics with 
changes in ligand binding. This modeling approach outperformed alternate models trained on 
ESM-2 embeddings, demonstrating the value of using fine-tuning to leverage PLM-distilled 
information (Table S1, S2). Given the robust performance of these fine-tuned models on our 
directed evolution data, we next tested their applicability towards phenotyping naturally-evolved 
Pik-1 HMA domain variants for Avr-PikC and Avr-PikF binding. 

Sequencing reads from the 3,000 Rice Genomes Project20 (3k RGP) were aligned against a 
reference genome to identify variants of the Pikh-1 HMA domain. 119 rice varieties returned full 
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read coverage along the HMA domain, resulting in the identification of 13 unique HMA variants 
(Fig. 2), 11 of which to our knowledge had not been phenotypically characterized for binding 
against Avr-PikC or Avr-PikF. All sequence variants were input into our fine-tuned models to 
obtain pES values (Fig. 2). The Pikh-1 and Pikp-1 alleles were scored negatively for Avr-PikC 
and Avr-PikF binding, which aligned with previous phenotyping of these variants16. Ten variants 
received a positive pES value for Avr-PikC binding, and no variants were positively scored for 
Avr-PikF binding. Interestingly, our model which was trained on sequence data that lacked 
insertion or deletion mutations consistently scored Pik-1 variants with an insertion in the middle 
of the HMA domain highly for Avr-PikC binding (Fig. 2). Given this observation, two variants 
with unique insertions and high pES values were chosen for downstream phenotyping: Vellai 
Kolomban (VK) and Sanhuangzhan-2 (SHZ-2). 

The Pikh-1, VK, and SHZ-2 Pik-1 HMA domains were expressed with YSD and tested for 
binding against Avr-PikA, which is recognized by Pikh-1 and thus served as a positive control, 
and Avr-PikC at 1 μM concentration. These cells were imaged for ligand binding and sorted with 
FACS to quantitatively compare the binding behavior of each receptor (Fig. 3a, 3b). Pikh-1 
showed the strongest binding against Avr-PikA, with VK and SHZ-2 both showing low to 
moderate interaction with the ligand. Pikh-1 showed minimal binding to Avr-PikC, with VK 
showing improved binding and SHZ-2 showing the highest affinity, closely following the 
predictions made by our fine-tuned model. 

To explore the generalizability of this approach, we searched for additional datasets which utilize 
protein mutagenesis to predict phenotypic effects. A mutagenesis scan of the human enzyme 
Nudix hydrolase 15 (NUDT15) by Suiter et al.21 was chosen to be modeled, as loss-of-function 
variations in this gene have been found to increase the risk of cytotoxicity in patients treated with 
thiopurine drugs21–23. Thiopurines are a frequently-used treatment for patients with leukemia and 
inflammatory bowel disease24–27, so accurately correlating NUDT15 sequence variation with 
cytotoxicity risk is crucial for optimizing patient treatment approaches. NUDT15 variant stability 
and functionality measurements made by Suiter et al. were used to create a functionality score 
(FS) for each variant, where positive scores indicated the enzyme retained functionality while 
negative scores indicated a loss of enzyme functionality. Any sequences that would be tested 
later in downstream phenotyping were filtered from the dataset, and all remaining variants were 
split into training and validation sets to fine-tune ESM-2 and calculate a predicted functionality 
score (pFS) for input NUDT15 variants (Fig. 4a). The final fine-tuned model obtained an R 
value of 0.76 on the validation data, indicating the model was able to effectively associate 
NUDT15 sequence variations with changes in enzyme functionality.  

We first collected any clinically characterized NUDT15 variants that were benign or associated 
with thiopurine cytotoxicity21–23. This yielded 14 variants, 11 of which had a corresponding FS 
value from the Suiter et al. assay. All variants were scored by our fine-tuned modeling and 
compared against the FS values and clinical observations (Fig. 4b). All benign mutants and 
cytotoxic missense substitutions were correctly scored by the Suiter et al. assay, while our 
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fine-tuned model performed similarly except for one cytotoxic variant (K33E) which was 
incorrectly scored as benign. Three NUDT15 variants with cytotoxic insertion/deletion mutations 
were not scored in the Suiter et al. assay because only single substitution mutations were tested. 
In contrast, our fine-tuned model was able to successfully score all three variants as 
nonfunctional. The Genome Aggregation Database28 (genomAD) was searched for additional 
uncharacterized missense variants of the NUDT15 gene. This returned 29 clinically 
uncharacterized variants which lacked a corresponding FS value from the Suiter et al. assay. 
These genomAD variants were screened by our fine-tuned model, which scored most in-frame 
deletion, duplication, and insertion mutants as nonfunctional and most substitution mutants as 
functional (Fig 4c.) Further testing would be necessary to determine if these predictions are 
accurate for patients possessing such NUDT15 variants. 

We demonstrate that fine-tuned PLMs trained on directed evolution data can be used to 
phenotype previously unseen naturally-evolved genotypic variants. Pik-1 binding to Avr-PikC 
appears to be rare in rice, with only two alleles identified recently in wild rice varieties 
exhibiting strong binding to the ligand29,30. The diversity of Pik-1 HMA domain variants we 
detected within the 3k RGP dataset supports previous observations that the selective pressure 
imparted by M. oryzae is encouraging diversification of the Pik-1 HMA domain31. The directed 
evolution methodology we implemented mimics this selective pressure, which ESM-2 can learn 
from to accurately correlate naturally-occurring sequence variation with changes in ligand 
binding. Using our fine-tuned models, we identified two Pik-1 HMA domain variants from the 
3k RGP, VK and SHZ-2, which exhibit enhanced binding to Avr-PikC relative to Pikh-1 in vitro. 
Interestingly, the SHZ-2 rice cultivar has been used as a source of blast resistance in current 
breeding programs without recognition of the potential strength of its Pik-1 allele32,33. Whether 
the improved ligand binding we observed translates into a robust activation of immunity against 
Avr-PikC in planta, and partially contributes to the strong blast resistance of SHZ-2, remains to 
be tested. Overall, obtaining receptor candidates in this manner has the potential to vastly 
accelerate the process of testing and developing resilient rice varieties needed by growers around 
the world. 

Transformer-based models have previously shown state-of-the-art performance in correlating 
genetic variations with phenotypes of interest34. Our approach with PLMs further highlights the 
power of transformers for genotype-to-phenotype analyses. Notably, our modeling accurately 
predicted enhanced Avr-PikC binding to Pik-1 variants possessing an insertion in the HMA 
domain although the training data used for our fine-tuning contained no variants with insertions 
or deletions. This performance was recapitulated in our modeling of NUDT15 functionality, 
which accurately predicted the negative impacts of sequence insertions/deletions on thiopurine 
cytotoxicity risk even after training on a sequence dataset which lacked insertions or deletions. 
This accuracy indicates that fine-tuned PLMs can be used to effectively gauge the impact of 
unusual or previously unseen genotypic variations on phenotypes of interest. Ultimately, our 
approach helped identify immune receptor variants in rice that exhibit rare ligand recognition 
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properties. We also show that the same methodology could be applied toward the prediction of 
other phenotypes of interest, such as patient drug sensitivity risk. Utilizing 
genotype-to-phenotype approaches like these will be an increasingly important step towards fully 
utilizing the wealth of information found in large genomic datasets. 
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Fig. 1: ESM-2 models fine-tuned on directed evolution data strongly correlate sequence 
variants with effects on ligand binding. 
a, The recognition profile of Pik-1 alleles against different Avr-Pik variants is shown. 
Receptor/ligand combinations which trigger immune signaling are shown in blue while 
combinations which do not are shown in orange. b, Schematic of YSD directed evolution of the 
Pikh-1 HMA domain and fine-tuning of ESM-2 to predict variant performance. c, d, pES 
(y-axis) compared to true ES (x-axis) for validation sequences are shown for ESM-2 models 
fine-tuned on 1μM Avr-PikC (left) and 1μM Avr-PikF (right) selection data. Depleted sequences 
are shown in orange and enriched sequences are shown in blue. Line of best fit with 95% 
confidence interval and Spearman correlation coefficient (R) are also shown. 
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Fig. 2: Several Pik-1 alleles feature novel HMA domain variations predicted by fine-tuned 
ESM-2 to bind Avr-PikC. 
Multiple sequence alignment of Pik-1 HMA domain variants identified from the 3k RGP dataset 
are shown, with residues differing from Pikh-1 (top row) shown in color. Pik-1 variants without a 
known name are labeled with a representative rice variety carrying the allele. The number of 
occurrences of each variant is shown to the right of each variant name in parentheses. A table of 
pES values for Avr-PikC and Avr-PikF binding is shown to the right, with negative pES values in 
orange and positive pES values in blue. Variants selected for downstream testing are highlighted 
(left) and starred (right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.27.635131doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.27.635131
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 
Fig. 3: Fine-tuned ESM-2 predictions on Pik-1 variant Avr-PikC binding are supported in 
vitro. 
a, b, Representative images of YSD clones expressing Pikh-1, VK, and SHZ-2 HMA domains 
binding to Avr-PikA (left) and Avr-PikC (right) at 1 µM are shown. Receptor expression is 
shown in magenta and ligand binding is shown in cyan. FACS measurements for individual YSD 
clones expressing Pikh-1 (red), VK (blue), or SHZ-2 (green) HMA domains against Avr-PikA 
(left) and Avr-PikC (right) at 1 µM are shown below. 
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Fig. 4: Fine-tuned ESM-2 correlates NUDT15 sequence variation with thiopurine 
cytotoxicity risk. 
a, pFS values (y-axis) compared to measured FS values (x-axis) for validation sequences are 
shown for our ESM-2 model fine-tuned on NUDT15 variant data. Negative FS values are in 
orange and positive FS values are in blue. Line of best fit with 95% confidence interval and 
Spearman correlation coefficient (R) are also shown. b, A table of FS (left) and pFS (right) 
values for clinically characterized NUDT15 variants is shown, with negative values in orange, 
positive values in blue, and missing values in grey. NUDT15 variant functionality as determined 
by thiopurine sensitivity in patients is shown on the right, with the blue bracket denoting benign 
functional variants and the orange bracket denoting nonfunctional variants that increased 
thiopurine cytotoxicity. c, pFS values (y-axis) for clinically uncharacterized genomAD variants 
lacking an FS value are shown along the NUDT15 sequence (x-axis). Variants are colored by 
mutation type and sized by allele count. 
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