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ABSTRACT: The androgen receptor (AR) is a major therapeutic target in prostate cancer pharmacology. Progression of
prostate cancer has been linked to elevated expression of AR in malignant tissue, suggesting that AR plays a central role in
prostate cancer cell biology. Potent therapeutic agents can be precisely crafted to specifically target AR, potentially averting
systemic toxicities associated with nonspecific chemotherapies. In this review, we describe various strategies to generate steroid
conjugates that can selectively engage AR with high potency. Analogies to recent developments in nonsteroidal conjugates
targeting AR are also evaluated. Particular focus is placed on potential applications in AR pharmacology. The review culminates
with a description of future prospects for targeting AR.

■ INTRODUCTION

There is a critical need to develop potent and selective
therapeutic agents capable of targeting malignant tissue without
compromising normal cell viability. While chemotherapeutic
agents (e.g., doxorubicin and docetaxel) remain widely used in
the clinic, they lack inherent selectivity desired to limit toxicity
to normal cells.1 In addition, administration of chemo-
therapeutic agents can induce drug resistance, resulting in
disease progression.2 Thus, the development of more targeted
therapies could circumvent nonspecific interactions and
potentially overcome drug resistance in cancer therapy.
Intriguing studies are currently exploring new methods to

engage biomolecular targets with high affinity and specificity,
including the generation of multivalent and heterobifunctional
constructs. Advances in chemical synthesis techniques, such as
cross-coupling and conjugation strategies, have enabled
chemists to decorate a plethora of molecular species with
targeting moieties, providing access to elaborate molecular
architectures that can be tailored to occupy distinct binding
sites within one or multiple biomacromolecules. Although these
types of compounds fall outside the molecular weight range of
typical drug compounds (500−3000 Da), increasing interest in
developing new chemical entities that can modulate bio-
molecular targets in novel ways and address selectivity
requirements are emerging.
To date, there have been only limited examples evaluating

the potential for targeting the androgen receptor (AR) with

steroidal conjugates. The AR is an important drug target for
treatment of prostate cancer and has been the subject of
research for several decades. A large number of bioactive
compounds targeting AR have been identified via screening
efforts.3 In this review, we begin by providing a rationale for
continued studies in prostate cancer pharmacology targeting
the AR. Particular focus is placed on examining current
approaches to specifically engage and modulate AR activity with
steroid conjugates utilizing rational design principles. Lastly,
future prospects for identifying novel AR modulators will be
explored.

■ PROSTATE CANCER: A GLOBAL CONCERN

Androgens are a class of steroid hormones that consist of 19-
carbon derivatives of cholesterol and are synthesized by the
testis and adrenal glands.4 They are also precursors for
estrogens, the female sex hormones, produced by hydrox-
ylation, elimination, and aromatization of androgens through
the enzyme aromatase. Functioning primarily through the AR,
which is a ligand-dependent transcription factor, androgens
play a fundamental role in the development and survival of
male reproductive tissues, such as the prostate, by influencing
gene expression levels.5
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The body maintains control of testosterone (the most
abundant androgen in men) levels within a normal reference
range of ∼240−800 ng/dL.6 Health problems are associated
with deviations outside this range.7 Low levels of testosterone
resulting from zinc deficiency or aging can lead to fatigue and
erectile dysfunction.8 By contrast, high levels of testosterone
have been linked to a variety of diseases, including prostate
cancer.9

Prostate cancer remains the most common cancer among
men and is globally estimated to affect 900 000 patients every
year.10 As the second leading cause of cancer-related deaths in
men (258 000/year), approximately one out of every six men
will be diagnosed with prostate cancer in the U.S. If detected
early, an arsenal of therapeutic options currently provide a
promising chance for long-term survival. However, ∼40% of
patients will develop castration-resistant prostate cancer
(CRPC), arising from drug resistance (vida infra), which is
associated with poor survival rates.11

■ ANDROGEN RECEPTOR: STRUCTURE AND
FUNCTION

The AR is a 110 kDa protein that shares sequence homology
with other nuclear hormone receptors in the superfamily,
including the progesterone receptor (PR), glucocorticoid
receptor (GR), and estrogen receptor (ER).12 The AR consists
of four basic elements: N-terminal domain, DNA binding
domain, hinge region, and the ligand binding domain (LBD).13

The first domain is the 559 amino acid long intrinsically
disordered N-terminal domain, which contains the ligand-
independent activation function 1 (AF-1). Activation function
sites encode signature motifs containing LxxLL or FxxLF
sequences to recruit co-regulatory proteins that are essential for
transcription. The most highly conserved region within all
nuclear hormone receptors, including AR, is the centrally
located DNA binding domain, consisting of two zinc finger
domains that recognize specific DNA consensus sequences
known as the androgen response elements (Figure 1A). The
third domain, dubbed the hinge region, connects the DNA
binding domain to the ligand-binding domain (Figure 1B). The
ligand-binding domain (LBD) contains ligand-dependent
activation function 2 (AF-2), forms the ligand-binding pocket,
and mediates interactions between the AR and heat shock
proteins (Figure 1B).13 Importantly, AF-2 can interact with an
FxxLF binding motif located within the N-terminal domain, a
feature unique to AR.13

The crystal structure of the AR LBD bound to native ligand
(DHT) reveals the amino acid residues critical for maintaining
high binding affinity (Figure 1C).14 Although van der Waals
forces contribute to binding affinity, hydrogen bonds establish

stronger interactions with the native ligand.14 Arg752 forms a
hydrogen bond with the O3 atom (ketone) of the steroid
ligand. Mutagenesis of Arg752 has been shown to compromise
binding affinity, suggesting the importance of this interaction
for achieving high affinity.15 In addition, Asn705 and Thr877
form hydrogen bonds with the 17-β hydroxyl group of the
steroid ligand. Mutagenesis of Asn705 and Thr877 have also
resulted in reduced binding affinity and specificity, establishing
their importance to maintaining high affinity.16,17 It is
important to note that modifications to the 17-β hydroxyl
group can result in diminished binding affinity, while even large
substituent modifications at the 17-α position often retain
strong binding interactions.13,18

The AR is a ligand-dependent transcription factor that is
stabilized in the cytoplasm by chaperone proteins (Figure 2).19

Competitive displacement of the chaperones by dihydrotestos-
terone (DHT), an androgen biosynthesized from testosterone
through the enzyme 5α-reductase, activates the AR.20 Upon
activation, a conformational change brings the N- and C-
termini into proximity and facilitates AR dimerization.21,22

Upon translocation into the nucleus, AR binds to palindromic
5′-TGTTCT-3′ consensus sequences (androgen response
elements) in the promoter regions of target genes.23,24 This
event stimulates the recruitment of necessary cofactors,
including LxxLL or FxxLF motif-containing proteins, and
other components of the transcriptional machinery to regulate
gene expression.25

■ ANDROGEN-DEPENDENT AND -INDEPENDENT
PROSTATE CANCER

The AR mediates a variety of androgen-dependent diseases
including benign prostatic hypertrophy (BPH), prostatic
intraepithelial neoplasia (PIN), and prostate cancer.26 It has
been proposed that prostate cancer often originates from high-
grade prostatic intraepithelial neoplasia (HGPIN), a process in
which subtle alterations in the shape and size of prostate cells
occur. More importantly, progression of prostate cancer has
been linked to elevated expression of AR in malignant tissue,
suggesting that AR plays a central role in prostate cancer cell
biology.27 Although many hypotheses regarding the involve-
ment of AR in prostate cancer progression have been
postulated, the precise molecular mechanisms are not fully
understood.
Patients diagnosed with localized or metastatic prostate

cancer usually undergo androgen deprivation therapy (reduc-
tion of circulating androgen levels), through chemical castration
(gonadotropin-releasing hormone agonists) or surgical castra-
tion.28 Unfortunately, these methods do not completely
eliminate circulating levels of androgens, as the tumor itself is

Figure 1. X-ray crystal structure of (A) androgen receptor (AR) DNA binding domain (ribbon, red) in complex with the androgen response
elements (sticks, PDB code 1R4I) and (B) AR ligand binding domain (ribbon, gray) and portion of hinge region (ribbon, blue) in complex with
native ligand (sticks, green, PDB code 1I37). (C) Amino acids residues that establish high affinity binding with native ligand DHT (PDB code
2AMA).
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capable of local androgen synthesis, due to the expression of
androgen biosynthetic enzymes.29 This has led to numerous
research efforts focusing on the development of inhibitors that
interfere with key enzymes, such as cytochrome P450 17A1
(CYP17A1), in androgen biosynthesis as exemplified by the
recent FDA approval of abiraterone (Zytiga).30

The standard treatment approach for prostate cancer
involves androgen deprivation therapy in conjunction with
small molecule anti-androgens that block AR signaling (Figure
3A).31 Anti-androgens compete with DHT for binding to AR,
thus inhibiting AR transactivation through a variety of
mechanisms, including disruption of nuclear localization,
interruption of DNA binding, and interference with coactivator
recruitment.32,33 Unfortunately, most patients receiving anti-
androgen therapy eventually develop drug resistance as
indicated by rising levels of serum prostate-specific antigen
(PSA), a gene regulated by AR, leading to the lethal disease
state termed castration-resistant prostate cancer or CRPC.34

Current mechanisms proposed for advancement to CRPC
include the following:35,36

(1) alterations in AR co-regulatory protein balance;
(2) somatic gain of function mutations within AR, with the

majority in the LBD, resulting in activation by other
steroid hormones and anti-androgens;

(3) generation of new fusion gene products;
(4) AR “ligand-independent” activation via cross-talk with

other signaling pathways.

These mechanisms have garnered significant attention because
of their ability to “reactivate” AR and disease progression, and
provide a conceptual underpinning to guide development of
new therapeutic interventions. Nevertheless, currently CRPC is
primarily treated with chemotherapeutic agents, immunother-
apy, or abiraterone (vida supra).37

Recently, a number of potential therapeutic agents targeting
“reactivated” AR have been identified via chemical screening
efforts and include compounds that act on the AF-2 (Figure
3B) or BF3 site (Figure 3C) on AR to regulate its activity.38−43

The BF3 site is a hydrophobic binding pocket located adjacent
to AF-2 on the surface of AR that can allosterically regulate
binding interactions between AR and coactivator proteins. The
development of noncompetitive modulators (that do not
compete against DHT for ligand binding) could circumvent
drug resistance in AR pharmacology. While promising, these
noncompetitive approaches have yet to yield candidates for
clinical implementation, likely because of the high concen-
trations required to suppress AR activity.44 In the future, it may
be important to utilize structure-based design to generate more
potent AF-2 or BF3 inhibitors.
In contrast, continuing interest in anti-androgen drug

development has led to the FDA approval of enzalutamide,
which targets the AR ligand binding domain for the treatment
of CRPC (Figure 3A).45 Unfortunately, recent evidence
suggests that drug resistance to enzalutamide can emerge
from point mutations within the AR LBD, such as F876L.46

Additionally, drug resistance has been proposed to arise from
constitutively active AR splice variants lacking the AR ligand
binding domain.47 This has led researchers to focus on
innovative ways to antagonize AR splice variants and the
development of N-terminal domain inhibitors (Figure
3D).48−50 It is important to note, however, that no structural
information exists for the AR N-terminal domain, complicating
the design of N-terminal domain antagonists.51

Although it is tempting to speculate that AR splice variants
are mainly responsible for drug resistance to enzalutamide, the
precise molecular mechanisms remain unknown. Evidence
suggests that full-length AR is required for signaling, although
different sets of studies demonstrate that ER splice variants can
be constitutively active in the absence of ligand.52 Also, an
intriguing report has similarly suggested that the GR can
become constitutively active in the absence of its LBD.53 Future
research may illuminate whether other nuclear hormone
receptors can exhibit similar modes of action.

■ TARGETING AR WITH STEROID CONJUGATES
Bioactive “hit” compounds, typically identified from screening
efforts, often lack the potency and selectivity required for
translation to a clinical setting. For this reason, most “hit”
compounds must be optimized into “lead” compounds through
iterative rounds of synthesis and rigorous bioassays. While this
strategy remains widely utilized in both academic and industrial
research programs, rational design of therapeutic agents aims to
streamline these issues by initially identifying more potent and
selective compounds. Below, we describe different strategies
that have been used to target AR with steroid conjugates, along
with preliminary evaluation of their potential applications in AR
pharmacology.

PROTACS. Protein synthesis and degradation is an essential
component of cellular homeostasis.54 The ATP-dependent
ubiquitin-proteasome pathway is a quality control mechanism
that conducts the programmed metabolic degradation of

Figure 2. Schematic diagram depicting the mechanism of AR
activation. Abbreviations: DHT, dihydrotestosterone; HSP, heat
shock protein; P, phosphorylation site; FxxLF, coactivator protein.
Figure is adapted from ref 31.

Journal of Medicinal Chemistry Perspective

dx.doi.org/10.1021/jm500101h | J. Med. Chem. 2014, 57, 8224−82378226



proteins.55 Ubiquitin-protein ligase (E3) associates with
ubiquitin-conjugating enzyme (E2), providing subsequent
tagging of ubiquitin chains to protein substrates that results
in degradation by the proteasome.56−58 Rational design
strategies aimed toward selectively targeting proteins for
degradation through E3 could establish an approach to
diminish the levels of aberrantly functioning proteins.
The Crews lab has pioneered a general strategy to modulate

levels of selective proteins by engagement of the ubiquitin
system.59 By use of conjugates dubbed proteolysis targeting
chimeric molecules (PROTACS), the first steroid conjugate to
selectively induce AR degradation was developed.60 PROTACS
consist of three components: a targeting moiety (DHT), a
linker, and a recognition element for E3. The modular synthesis
of PROTACS establishes a significant pharmacological
advantage because PROTACS are particularly amenable to

chemical modification, permitting control over the physico-
chemical features of the products.
Initial ex vivo studies aimed toward degrading AR yielded

PROTAC-5 (Figure 4A).60 PROTAC-5 was outfitted with a
peptide sequence (ALAPYIP) as an E3 recognition domain and
to induce ubiquitination upon hydroxylation of the central
proline residue.61 To assess biological activity, PROTAC-5 was
administered to human embryonic kidney cells (HEK293) that
stably expressed an AR fluorescent fusion protein. Protein
degradation was quantified by a reduction in the fluorescence
signal. At a concentration of 25 μM, PROTAC-5 successfully
degraded AR without compromising normal cell viability. In
control studies, vehicle treated cells maintain fluorescence,
suggesting that PROTAC-5 engages AR in the cell and induces
degradation. To confirm these results, cells were treated with
PROTAC-5 and immunoblotted for AR. A significant decrease

Figure 3. Small molecule inhibitors targeting the AR: (A) anti-androgens; (B) activation function 2 inhibitors; (C) allosteric (BF3 site) regulators;
(D) N-terminal domain inhibitors. Purple denotes approved therapies for androgen-dependent prostate cancer, and orange represents approved
therapies for castration-resistant prostate cancer.

Journal of Medicinal Chemistry Perspective

dx.doi.org/10.1021/jm500101h | J. Med. Chem. 2014, 57, 8224−82378227



in AR protein level was detected, confirming that PROTAC-5
targets and degrades AR.
More recently, a derivative of PROTAC-5, dubbed

PROTAC-AA (Figure 4B), was administered to an AR-
expressing prostate cancer cell line (LNCaP) to evaluate effects
on cell proliferation.62 PROTAC-AA contains a shorter
hydroxylated recognition element for E3 and a slightly modified
arginine tail to enhance cell permeability. The arginine tail
enhances cell permeability through an uptake mechanism
mimicking the Antennapedia and HIV Tat proteins.63,64

PROTAC-AA inhibited cell growth with an inhibitory
concentration (IC50) value of 3.8 μM at 72 h and 0.217 μM

at 144 h. A control PROTAC lacking the arginine tail displayed
IC50 values 12.5 μM at 72 h and 1.5 μM at 144 h. Western blot
analysis was performed to establish that AR protein levels were
reduced. Taken together, these results suggest that the arginine
tail enhances biological activity while maintaining specificity.
Importantly, in prostate cancer cell lines that do not express AR
(PC-3 and DU-145 cells), PROTAC-AA had no significant
effect on cell viability, establishing selective activity.
While PROTACS remain promising candidates for applica-

tions in AR pharmacology, difficulties in large-scale production
may impede rapid translation into the clinic. Current efforts
have focused on developing more “druglike” PROTAC

Figure 4. Proteolysis targeting chimeric molecules (PROTACS) for AR: (A) synthesis of PROTAC-5; (B) chemical structure of PROTAC-AA; (C)
chemical structure of small molecule E3 recognition element (left) and cocrystal structure of small molecule E3 recognition element (blue sticks)
and E3 (orange surface rendered, right; PDB code 3ZRC). Figure is adapted from refs 53, 55, and 56.
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molecules and the recent discovery of the first small molecule
targeting E3 (Figure 4C) with an IC50 value of 4.1 μM.65

Competitive fluorescence polarization data indicated that the
small molecule binds to E3, which was confirmed by a cocrystal
structure. Subsequent optimization led to the first submicro-
molar small molecule targeting E3 (IC50 = 0.90 μM).66 In the
future, we may begin to see small molecule PROTACS
targeting AR, which may include, for example, enzalutamide
tethered to similar small molecules that are capable of recruiting
E3.
SNIPERs. Apoptosis, or programmed cell death, is a

physiological cell suicide mechanism critical to cellular
homeostasis.67 Inadequate activation of the apoptotic pathway
can play a role in the development of cancer and autoimmune
diseases.68 Inhibitors of apoptosis proteins (IAPs) play a
fundamental role in regulating apoptosis and other cellular
processes. IAPs contain a RING domain that possesses E3
activity, establishing the ability to induce proteasomal
degradation by tagging proteins with ubiquitin chains.69

The Hashimoto lab has developed specific and nongenetic
IAPs-dependent protein erasers (SNIPERs).70 Relative to
PROTACS, SNIPERs consist of a targeting moiety (DHT),
linker, and a recognition element for IAPs. The targeted
ubiquitination of proteins by SNIPERs relies on small molecule
IAP recognition elements (Figure 5). The biological activity of

an AR targeting compound, SNIPER-13, was evaluated by
Western blot. In human mammary tumor (MCF-7) cells that
express AR, SNIPER-13 decreased AR protein levels at a
concentration of 30 μM. The high concentration required to
induce degradation may be attributed to the hydrolytically
unstable ester and oxime linkages.71 These results suggest that
SNIPERs can be utilized to modulate AR activity.
The modular assembly of SNIPERs allows for the

incorporation of virtually any “targeting moiety”. This

characteristic, and the ability to recruit E3 with a small
molecule, establishes a versatile molecular platform to address
many protein targets. In the future, research efforts may focus
on generating stable linkages between the targeting moiety and
the IAP recognition element or altering linker lengths to
optimize activity of SNIPER conjugates against various protein
targets.

Metallo-Conjugates. Metallo-based cytotoxic agents, such
as cisplatin, remain a viable option for the treatment of
cancer.72 From a mechanistic standpoint, these compounds
exert their biological activities by binding to nucleobases in
DNA and inducing damage to DNA that ultimately triggers
apoptosis.73 Although widely used in the clinic, these agents are
generally nonspecific and exhibit shortcomings that include
severe side effects resulting from compromised normal cell
viability and drug resistance. This has led to the exploration of
metallo-based chemotherapeutic agents that target specific
organs or tumors to minimize adverse side effects.
Conjugation of a “targeting moiety” to metallo-based

cytotoxic agents could potentially circumvent nonspecific
interactions by selectivity targeting cells that overexpress
particular proteins, establishing a delivery vector to localize
the effects of new therapeutic agents.74 Recent studies from the
Hannon group have discovered the first metallo-based
chemotherapeutic conjugates to target AR.75 The authors
developed an efficient protocol to readily synthesize an array of
steroid conjugates to act as delivery vehicles. Ethisterone, the
17α-ethynyl homologue of testosterone, was conjugated to
pyridines, quinolines, and isoquinolines utilizing Sonogashira
cross-coupling conditions. Subsequent coordination to
platinum(II) complexes yielded metallo-based bifunctional
agents (Figure 6).
Initial evaluation of the cytotoxic effects for the two most

promising metallo-based bifunctional agents in cell lines that
express AR (T47D cells) revealed promising biological activity
for a cis conjugate (IC50 = 15.9 μM) but not the trans
conjugate (IC50 = 63 μM), suggesting that the geometry of the
platinum(II) complexes plays a critical role. Additionally, the cis
conjugate exhibited greater potency than cisplatin itself (IC50 =
32 μM). Cell uptake studies reveal that the “targeting moiety”
enhances drug delivery, suggesting that the hydrophobic
character of ethisterone facilitates molecular transport across
the cellular membrane. Importantly, the presence of the
“targeting moiety” in the cis conjugate (relative to control
compounds lacking steroid moieties) led to significant
structural effects on DNA.76 The distortion of DNA upon

Figure 5. Chemical structure of specific and nongenetic IAPs
dependent protein eraser 13 (SNIPER-13). Figure is adapted from
ref 61.

Figure 6. Synthesis of platinum(II) steroid conjugates for targeted drug delivery. Figure is adapted from ref 65.
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binding the cis conjugate was greater than that observed for
cisplatin, suggesting that the steric bulk of ethisterone promotes
greater unwinding of DNA to accommodate binding of the
complex. These results demonstrate the utility of targeting
strategies for drug delivery.
Metallo-based conjugates have significant utility as a platform

for targeted drug delivery. The work outlined above suggests
that metallo-based conjugates can be crafted to exert toxic
effects preferentially on cell types that overexpress AR.
Additional studies would be valuable for elucidating mecha-
nistic features. For example, demonstration that coadministra-
tion of a competitive ligand, such as DHT, abrogates the
activity of the metallo-conjugate would further support the
hypothesis that targeting is mediated specifically through
binding to AR. Ultimately, similar strategies could potentially
be elaborated for targeting additional metallo-conjugates to a
range of malignant cell types, while mitigating cytotoxic effects
on other tissues.
Alkylating Conjugates. Alkylating agents act through

DNA damaging mechanisms and are commonly used in cancer
therapy.77−80 These agents primarily alkylate guanine bases in
DNA, inducing cellular apoptosis. Crafting alkylating therapies
to specifically target malignant cells could minimize cytotoxic
effects to normal cells and lead to the development of potent
anticancer agents.
In an effort to block DNA repair enzymes, the Essigmann

group has developed heterobifunctional DNA-damaging agents
to specifically target prostate cancer cells (Figure 7).81 The
alkylating agent N,N-bis-2-chloroethylaniline was linked to a
steroid hormone that targets AR, allowing the conjugate to
simultaneously bind AR and DNA. This strategy results in the
blockade of DNA repair enzymes in prostate cancer cells that
overexpress AR, subsequently leading to the disruption of AR-
mediated transcription and signaling. Using radiometric
competitive binding assays, the relative binding affinity of
N,N-bis-2-chloroethylaniline was determined to be ∼20% for
AR and 4.2% for PR. This result establishes that the conjugate
is more selective for AR than PR. In addition, only N,N-bis-2-
chloroethylaniline, and not the negative control (N,N-bis-2-
methoxyethylaniline), covalently modified DNA. Administra-
tion of the alkylating agent at a concentration of 10 μM
induced apoptosis, as determined by flow cytometry and
cleavage of poly ADP-ribose polymerase (PARP) in Western
blot analysis. As expected, the negative control did not induce
apoptosis at an equivalent concentration. More importantly,
xenograft studies in immunocompromised mice revealed 90%
inhibition of tumor growth through intraperitoneal injection

(daily dose of 30 mg/kg). These results demonstrate the
effectiveness of using targeted alkylating agents to selectively
suppress prostate cancer tumor growth.

Peptoid Conjugates. An emerging avenue in molecular
pharmacology is the development of multivalent therapeutic
agents. Multivalency can be used to establish enhanced binding
affinity, termed avidity, and specificity for corresponding
biomolecular targets through multisite binding contacts.82

Displaying ligands or “targeting moieties” on modular oligomer
frameworks allows chemists to precisely craft architectures
capable of inhibiting highly specific protein−protein or
protein−nucleic acid interactions. In addition, the ability to
create monodisperse molecular scaffolds enables control over
important physicochemical features of the products, including
solubility and cellular uptake.83

Peptoids are a class of peptidomimetics composed of N-
substituted glycine units joined through tertiary amide linkages.
Peptoids have recently been exploited as multivalent platforms
to design conjugates capable of targeting different nucleic acids
and protein receptors.84−86 Peptoids are stable against
proteases and display enhanced cell permeability profiles.87,88

The incorporation of over 200 different peptoid side chains has
enabled numerous applications in chemistry and biology,
including enantioselective catalysis, molecular recognition,
antimicrobial activity, intracellular delivery, and antitumor
activity in vivo.89−96 Peptoids are compatible with solid-phase
synthesis techniques and can be assembled in a sequence-
specific manner to afford monodisperse products.97 Addition-
ally, the conformation of peptoid oligomers can be controlled
though macrocyclic constraints and side chain interactions.98,99

Utilizing peptoids as a versatile chemical platform, the
Kirshenbaum lab designed multivalent ethisterone conjugates
to specifically target the AR LDB and modulate AR activity via
different mechanisms of action.100 Ethisterone was conjugated
at the 17-α position to the peptoid scaffold via highly stable
triazole linakges. Initial efforts evaluated effects of valency,
spacing, and conformational ordering on AR activity (Figure 8).
Previous studies had demonstrated the cell permeability of
similar steroidal peptidomimetic conjugates.84 Fluorescence
polarization assays were conducted to determine if the
conjugates compete against DHT for binding to the AR ligand
binding domain. Results from these studies revealed that
hexavalent (4) and spaced divalent conjugates (5 and 6)
compete for binding. Mono-, di-, and trivalent conjugates (1−
3) and a cyclic divalent conjugate (7) did not compete for AR
binding. A control peptoid conjugate outfitted with PR ligands
did not activate AR in a luciferase reporter assay, suggesting the

Figure 7. Synthesis of alkylating agents for targeted DNA damage. Figure is adapted from ref 71.
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ethisterone conjugates are selective for AR. In cell proliferation
studies that model castration-resistant prostate cancer (LNCaP-
abl cells), conjugates 6 and 7 exhibited potent antiproliferative
properties. As expected, the anti-androgen bicalutamide (vide
supra) failed to suppress proliferation in this resistant cell line.
Importantly, cytotoxic effects of conjugates 6 and 7 were not
observed in cell lines that do not express AR (PC-3 and
HEK293 cells), establishing that conjugates selectively target
AR.
In a follow-up investigation, the authors used confocal

microscopy, time-resolved fluorescence resonance energy
transfer, chromatin immunoprecipitation, flow cytometry, and
microarray analysis to gain insight into the mechanism of action
for conjugates 6 and 7.101 Upon administration of conjugates 6
and 7 to HEK293 cells transfected with an AR fluorescent
fusion protein, conjugate 6 did not promote AR nuclear
localization while conjugate 7 did, suggesting competitive and
noncompetitive mechanisms of action, respectively. AR
coactivator recruitment assays revealed that conjugate 6 did
not promote binding between AR and coactivator proteins
while conjugate 7 partially recruited coactivator proteins. In
DNA binding experiments, both conjugates 6 and 7 reduced
the occupancy of AR to the PSA enhancer (vida supra).
Conjugate 7, but not conjugate 6, induced arrest in the G0/G1

phase of the cell-cycle and displayed contrasting patterns in
global gene expression. Intriguingly, conjugate 6 and 7 share
extensive chemical similarities, indicating that the disposition of
the ligand presentation on the scaffolds can exert a significant
influence on the mechanism of action. Conjugate 6 did not
promote AR nuclear localization or coactivator binding and
inhibited DNA binding. In contrast, conjugate 7 promoted AR
nuclear localization and induced cell-cycle arrest through a
noncompetitive mode of action.
The modularity of peptoid synthesis establishes a versatile

chemical platform to generate an array of three-dimensional
architectures to target and modulate the activity of different
biomolecular targets. Generation of peptidomimetic conjugates
capable of antagonizing AR via distinct mechanisms of action
could circumvent drug resistance in AR pharmacology.
Peptoids offer a chemical platform that can be utilized to
optimize biological activity and hold significant promise as next
generation therapeutics for prostate cancer.

■ TOWARD NOVEL AR ANTAGONISTS BY
MOLECULAR DESIGN: TAKING INSPIRATION
FROM THE ESTROGEN RECEPTOR

The estrogen receptor (ER) has a well-characterized mecha-
nism of action. It is known that native ligand (estradiol)
binding to the ER ligand binding domain induces a conforma-
tional rearrangement that promotes dimerization, as deter-
mined by site-specific mutational analysis.102 Additionally, X-
ray crystal structures of ER dimers in the presence of ligand and
other ER modulators have been reported, establishing a
template for molecular design by elucidating the structural
parameters of the ER dimer complex.103,104

Pioneering work from the Katzenellenbogen lab has probed
ER function with various bivalent conjugates tethered by
different linkers.105 Using high-resolution structural informa-
tion, the first steroidal constructs aimed toward targeting the
ER dimer have been synthesized (Figure 9). Initial studies

Figure 8. Chemical structures of ethisterone peptidomimetic
conjugates. Figure is adapted from ref 90.

Figure 9. Steroidal bivalent conjugates modulate estrogen receptor
(ER) activity through bivalent binding interactions. Crystal structure
of the ER ligand binding domain (gray ribbon, PDB code 1ERE) is
bound to native ligand (estradiol, red spheres). Figure is adapted from
ref 95.
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focused on developing a correlation between linker length and
binding affinity. The authors concluded that bivalent conjugates
incorporating a ∼35 Å linker were most suitable for enhancing
ER binding affinity.
In more recent studies, nonsteroidal bivalent conjugates that

induce agonistic and antagonistic ER conformations (Figure
10) were designed and synthesized in order to distinguish intra-

from intermolecular binding events.106,107 Bivalent agonist
conjugates displayed weak binding affinity, presumably due to
burial of the hydrophilic linker within the protein interior. In
contrast, it was determined that antagonist conjugates
incorporating a 14.4 Å linker induced an intramolecular
binding event (i.e., one targeting moiety optimized for
competitive binding and the other for binding to additional
hydrophobic pockets such as activation function 2, Figure 11).

Additionally, a 29 Å linker was found to induce an
intermolecular binding event. Increases in linker length above
29 Å resulted in reducing binding affinities, presumably due to
unfavorable entropic effects. Importantly, most antagonistic
nonsteroidal bivalent conjugates were more potent at inhibiting
cell proliferation in breast cancer cells (MCF7) than a
monovalent pharmacophore control.

A critical objective from a molecular design approach is the
ability to induce different ER conformations that are dependent
upon ligand binding. As discussed above, the conformation
induced upon agonist or antagonist ligand binding to ER
(Figure 10) plays a critical role in the biological outcome. In an
antagonist conformation, an intra- or intermolecular binding
event can occur between two distinct “targeting moieties”. An
open question is whether structure-based design can be utilized
to generate heterobifunctional conjugates that target two
distinct binding sites on AR (i.e., one targeting moiety
optimized for competitive binding at the ligand binding domain
and the other for binding to an additional hydrophobic pocket,
such as AF-2 or BF3).

■ TARGETING AR WITH NONSTEROIDAL
CONJUGATES

Over the past decade, targeting canonical or membrane-
associated AR with heterobifunctional or multivalent constructs
displaying anti-androgen drug ligands has emerged as a
potential family of therapeutics. These compound classes
hold great promise as effective therapeutic agents due to their
ability to modulate AR activity through unique mechanisms of
action. Because of the large number of reports, we highlight
only a few representative examples of promising strategies that
have been used to target AR with nonsteroidal conjugates.
Recently, the Oyelere lab reported a nonsteroidal hetero-

bifunctional conjugate outfitted with histone deacetylase
inhibitors (Figure 12A).108 Histone deacetylase inhibitors

show great promise in preclinical cancer models, but their
inability to selectively target malignant tissue has restricted
therapeutic development. By conjugating histone deacetylase
inhibitors to nonsteroidal anti-androgen ligands, selective
modulation of AR activity at concentrations lower than clinical
anti-androgens was achieved. These results introduce a novel
method to antagonize the AR and pave the way for next
generation therapeutics.
In similar studies, the Koch lab reported a nonsteroidal

heterobifunctional conjugate containing doxorubicin, a non-

Figure 10. ER conformation is dependent upon ligand binding: (A)
ER bound in an agonist conformation (gray ribbon; diethylstilbestrol,
colored spheres; helix-12 in orange; coactivator peptide in red; PDB
code 3ERD); (B) ER bound in an antagonist conformation (gray
ribbon; hydroxytamoxifen, colored spheres; helix-12 in orange; PDB
code 3ERT).

Figure 11. Diagram depicting intra- and intermolecular ER binding
events that are dependent on linker length. Figure is obtained from ref
96.

Figure 12. Nonsteroidal conjugates targeting AR: (A) chemical
structure of heterobifunctional conjugate displaying histone deacety-
lase inhibitor linked to a nonsteroidal antiandrogen ligand; (B)
chemical structure of heterobifunctional conjugate displaying doxor-
ubicin linked to a nonsteroidal antiandrogen ligand; (C) schematic
depiction of a multivalent gold nanoparticle displaying nonsteroidal
antiandrogen ligands that target membrane-associated AR. Figure is
obtained from refs 98, 99, and 101.
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selective cytotoxic therapeutic DNA intercalator used in the
clinic (Figure 12B).109,110 To enhance selectivity, doxorubicin
was conjugated to a nonsteroidal anti-androgen ligand through
a salicylamide linker that can be hydrolyzed (t1/2 = 57 min
under physiological conditions) to yield a doxorubicin−
formaldehyde Schiff base. The anti-androgen conjugate
successfully delivered the doxorubicin-formaldehyde Schiff
base to cells overexpressing AR, highlighting the ability of
this approach to enhance selectivity by releasing the
pharmacophore in prostate cancer cells.
Lastly, the El-Sayed lab introduced the first nonsteroidal

multivalent conjugates that selectively target membrane-
associated AR (Figure 12C).111 Bicalutamide was conjugated
to gold nanoparticles, generating architectures that display
approximately (2.25 ± 0.02) × 103 ligands/particle. The
multivalent compounds enhanced potency by 1 order of
magnitude, in comparison to the monovalent ligand, in prostate
cancer cells. These results establish that conjugation of
numerous copies of a known pharmacophore to a molecular
scaffold can significantly increase antiproliferative effects and
may overcome resistance that arises from monovalent treat-
ment.

■ CONCLUSION

There is a growing appreciation for the design of potent and
selective therapeutic agents targeting the AR for prostate cancer
patients. Targeted drug therapy is beginning to play a pivitol
role in new drug discovery efforts. Classically, small molecules
identified via chemical screening efforts have been considered
to offer a relatively straightforward path for clinical
implementation. In certain cases, extensive high-resolution
structural information enables structure−activity relationship
profiles that can be utilized for optimization, facilitating
translation into the clinic. Unfortunately, their therapeutic
responses can be short-lived because of acquired resistance.
The studies highlighted in this review indicate how new

chemical entities are being designed to engage AR with high
potency. Many of these compounds feature novel steroidal
conjugates. Additional preclinical studies will be required to
validate their potential for clinical translation. In many cases, it
will be necessary to evaluate critical parameters such as
selectivity, in vivo potency, and binding affinity. As discussed,
chemical modifications at certain positions on the steroid core
can result in diminished binding affinities, potentially limiting
their utility in AR pharmacology.
These molecular architectures have been demonstrated to

elicit potent biological responses and more importantly target
the AR in novel ways. In the future, we may begin to see
examples of monodisperse homo- and heterogeneous bivalent
or multivalent displays in which high-resolution structural data
enable evaluation of structure−activity relationships that have
propelled many small molecule drug discovery efforts. More
importantly, heterobifunctional displays will likely be designed
to target two distinct binding sites on AR, enhancing potency
and establishing new modes of AR antagonism. These
constructs could potentially address the challenge of over-
coming resistance in prostate cancer patients.
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