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Objectives: To predict the anaplastic lymphoma kinase (ALK) mutations in lung

adenocarcinoma patients non-invasively with machine learning models that combine

clinical, conventional CT and radiomic features.

Methods: This retrospective study included 335 lung adenocarcinoma patients who

were randomly divided into a primary cohort (268 patients; 90 ALK-rearranged; and

178 ALK wild-type) and a test cohort (67 patients; 22 ALK-rearranged; and 45 ALK

wild-type). One thousand two hundred and eighteen quantitative radiomic features were

extracted from the semi-automatically delineated volume of interest (VOI) of the entire

tumor using both the original and the pre-processed non-enhanced CT images. Twelve

conventional CT features and seven clinical features were also collected. Normalized

features were selected using a sequential of the F-test-based method, the density-based

spatial clustering of applications with noise (DBSCAN) method, and the recursive feature

elimination (RFE) method. Selected features were then used to build three predictive

models (radiomic, radiological, and integratedmodels) for the ALK-rearranged phenotype

by a soft voting classifier. Models were evaluated in the test cohort using the area under

the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity,

and the performances of three models were compared using the DeLong test.

Results: Our results showed that the addition of clinical information and conventional

CT features significantly enhanced the validation performance of the radiomic model

in the primary cohort (AUC = 0.83–0.88, P = 0.01), but not in the test cohort

(AUC = 0.80–0.88, P = 0.29). The majority of radiomic features associated with ALK

mutations reflected information around and within the high-intensity voxels of lesions. The

presence of the cavity and left lower lobe location were new imaging phenotypic patterns
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in association with ALK-rearranged tumors. Current smoking was strongly correlated

with non-ALK-mutated lung adenocarcinoma.

Conclusions: Our study demonstrates that radiomics-derived machine learning

models can potentially serve as a non-invasive tool to identify ALK mutation of

lung adenocarcinoma.

Keywords: lung neoplasms, radiomics, tomography, X-ray computed, anaplastic lymphoma kinase, genemutation

INTRODUCTION

Non-small cell lung cancer (NSCLC), especially lung
adenocarcinoma, is the leading cause of cancer-related deaths
worldwide (1, 2). The occurrence of fused anaplastic lymphoma
kinase (ALK) gene in NSCLC patients is ∼5% in western
countries, but ALK mutations have become the second most
significant molecular mutations in the regimen of NSCLC
treatment following epidermal growth factor receptor (EGFR)
mutations (2–6). The positivity rate of ALK is similar in the
Asian population with NSCLC (4.9%) and is higher in those with
lung adenocarcinomas (6.03%) (7). The accurately screening
of ALK mutation patients has thus become a pivotal step in
treating NSCLC.

Traditional molecular tests for detecting ALK rearrangements
including fluorescence in situ hybridization (FISH) and
immunohistochemistry (IHC) are limited in the detection of
genetic mutations and monitoring of therapeutic effects. Firstly,
the required biopsies or surgical resection may not be attainable
for vulnerable and advanced cancer patients. In addition,
recent studies have reported a 30–87.5% intra-tumoural genetic
heterogeneity rate for ALK fusions in NSCLCs, which challenges
the accuracy of traditional ALK fusion tests based on tissues
from a routine biopsy procedure (8–10). Moreover, given the low
occurrence of ALK mutations among NSCLCs, the purchasing
of the devices and antibodies required for such molecular tests
were cost-inefficient for both hospitals and patients. Therefore,
a non-invasive, convenient, and more reliable procedure for
detecting ALK mutations is necessary.

Computed tomography (CT) is widely used to diagnose
lung cancer. Recent studies have identified some CT imaging
features that are associated with ALK gene rearrangements,
including central tumor location, lobulated margin, solidity,
pleural effusion, and distant metastasis (11–14). However, the
evaluation of these conventional CT features depends heavily on
the radiologist’s experience and is time-consuming. Radiomics
is a computer-based approach that has been widely applied

Abbreviations:ROC, receiver operating characteristic; AUC, area under the curve;

CT, computed tomography; DICOM, digital imaging and communications in

medicine; GGO, ground-glass opacity; GLCM, gray level co-occurrence matrix;

GLSZM, gray level size zone matrix; GLRLM, gray level run-length matrix;

GLDM, gray level dependence matrix; AIS, adenocarcinoma in situ; MIA,

minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; NCCN,

National Comprehensive Cancer Network; NSCLC, non-small cell lung cancer;

CEA, carcinoembryonic antigen; DBSCAN, density-based spatial clustering of

applications with noise; RFE, recursive feature elimination; LR, logistic regression;

DT, decision tree

in the diagnosis of lung neoplasm as well as the prediction
of survival and gene mutations in lung cancer (15–18). It
could help radiologists to identify additional information about
tumor phenotype that is distinct from conventional findings of
CT images (15, 16, 19–21). So far, the efficacy of radiomics
in predicting the ALK gene in lung adenocarcinoma is still
unknown. Therefore, the aim of our study is to (1) investigate the
role of radiomic features in the prediction of ALK rearrangement
status in lung adenocarcinomas, and (2) examine whether or not
the addition of conventional CT characteristics and clinical data
can improve the performance of the predictive model.

MATERIALS AND METHODS

Patient Population
This retrospective study reviewed a total of 1,370 consecutive
patients with pathologically confirmed lung adenocarcinoma by
surgery or biopsy at our hospital fromNovember 2015 toOctober
2018. The inclusion criteria were as follows: (1) availability of
complete clinical data; (2) complete ALK mutation gene test
results; (3) availability of complete thin-slice chest CT images
(≤1mm) reconstructed in Digital Imaging and Communications
in Medicine (DICOM) format. The exclusion criteria were as
follows: (1) CT images with severe artifacts; (2) patients receiving
treatment before CT examinations; (3) interval between CT
examination and surgery or biopsy >1 month; (4) multiple
primary lung cancers. According to these criteria, 1,004 patients
(112 ALK-positive and 892 ALK-negative) were eligible for the
investigation. We randomly sampled 25% of the ALK-negative
patients for enrolment in our study. Finally, 335 patients (112
ALK+ patients and 223 ALK– patients) were enrolled in this
study. Twenty percent of the cases were randomly selected
from the ALK+ and ALK– patients, respectively, to build an
independent test cohort (67 cases, 22 ALK+ and 45 ALK–;
median age, 57 years; range, 34–78 years) while the remaining
being the primary cohort (268 cases, 90 ALK+ and 178 ALK–;
median age, 58 years; range, 26–83 years). The flowchart of the
eligibility and exclusion criteria is shown in Figure 1. The tumor
lesions were all solitary. This retrospective study was approved by
our institutional review board, and the need for informed patient
consent was waived.

In regards to molecular profiles, the Ventana ALK (D5F3)
CDx assay (the antibody cloneD5F3withOptiView amplification
and OptiView detection, Ventana Medical Systems Inc.)
coupled to a BenchMark XT automated staining instrument
(Roche/Ventana Medical Systems Inc.) was used to test ALK
fusion genes on the formalin-fixed paraffin-embedded tissues.
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FIGURE 1 | Eligibility and exclusion criteria of the study. The flowchart depicts the process of patient enrolment, including eligibility, and exclusion criteria of the study.

The numbers in parentheses are the numbers of patients. ALK, anaplastic lymphoma kinase; DICOM, Digital Imaging and Communications in Medicine.

Tissues were from either biopsy or surgical procedures.
Specimens were scored binarily as positive if strong granular
cytoplasmic brown staining was present in tumor cells. The
international consensus guideline has now regarded the Ventana
IHC method as an alternative to the conventional FISH test (22).
For the IHC score for ALK that was near the borderline, FISH
tests were conducted to make the final decision.

Image Acquisition and Lesion
Segmentation
Non-enhanced chest CT scans of 335 patients were carried out
from the lung apex to the lung base using multi-detector CT
(MDCT) scanners from Siemens (Somatom Definition Flash
or Somatom Force; Forchheim, Germany), General Electric
(Discovery CT750 HD; Milwaukee, WI), Philips (IQon CT;
The Netherlands) or Toshiba (Aquilion 64; Tokyo, Japan) at
the end of inspiration. Breath-hold training was carried out
before each examination. The following scanning parameters
were used: slice thickness/slice increment 1mm (Somatom
Definition Flash, Somatom Force and IQon CT) or 0.625mm
(Discovery CT750 HD) or 0.5mm (Aquilion 64); rotation time

0.5 s (Somatom Definition Flash, Somatom Force, Aquilion
64, IQon CT) or 0.6 s (Discovery CT750 HD); pitch 0.984
(Aquilion 64, Discovery CT750 HD) or 1.2 (Somatom Definition
Flash, Somatom Force, IQon CT); matrix 512 × 512; high
and standard resolution algorithms; tube voltage 120 kVp, tube
current adjusted automatically.

The anonymized thin-slice DICOM format non-enhanced CT
images were imported into the Dr. Wise research platform, on
which the lesions were automatically delineated with automatic
pulmonary nodule detection and segmentation algorithms
(23). The detection model was a two-stage network that
integrated both image and feature pyramids for nodule detection.
The segmentation model was built based on the recurrent
convolutional neural networks, and the attention map was used
to improve model performance. Both the detection model and
segmentationmodel were trained on a combination of public and
in-house datasets (details in Supplementary Information 1.1).
The results were confirmed and modified on axial images slice
by slice with lung window settings (width, 1,200 HU, level, −500
HU) by two thoracic radiologists with 3 and 14 years of diagnostic
imaging experience, without knowledge of pathological report
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information or other information. The volume of interest (VOI)
was drawn according to the tumor-lung interface, excluding
vascular, bronchus, atelectasis, and other adjacent normal tissues
as much as possible. The whole process of the data analysis
workflow is depicted in Figure 2.

Collection of Clinical Data and Evaluation
of Conventional CT Features
Clinical data were collected through electronic medical
records, including the following seven characteristics: age,
sex, smoking history, smoking index, clinical stage, distal
metastasis, and pathological invasiveness of the tumor.
The clinical stage was determined according to the eighth
edition of the American Cancer Society guidelines for NSCLC
staging (24). The pathological subtypes of adenocarcinoma
in situ (AIS), minimally invasive adenocarcinoma (MIA) and
invasive adenocarcinoma (IAC) were assessed according to the

latest International Multidisciplinary Classification of Lung
Adenocarcinoma guidelines (25).

All thin-slice CT images were evaluated by 2 radiologists
(with 14 and 3 years of chest CT interpretation experiences) who
were blinded to each subject’s clinical data. Decisions on CT
findings were reached by consensus. Twelve CT morphological
features were assessed, including maximum diameter, mean
CT attenuation, lesion location, involved lobe, density, margin,
cavity, calcification, pleural retraction sign, pleural effusion,
pericardial effusion, and local lymphadenopathy. The definitions
and scoring rules of the clinical features and conventional CT
features are described in Supplementary Table 1.

Radiomic Feature Extraction
The images were resampled to a pixel spacing of 1.0mm in
three anatomical directions to offset the interference caused by

FIGURE 2 | Workflow of data analysis. The workflow illustrates the radiomic, radiological, and integrated modeling and analysis workflow with one example of a CT

image and tumor segmentation. (a) A male lung adenocarcinoma patient, 44 years old. (b) Auto-detection, segmentation, and manual confirmation of the targeted

lesion. The red square in the first image mimics the detection process. The initial regions of interest (ROIs) are generated in this step. (c–e) Description of the process

of collection of radiomic, conventional CT and clinical features. (f–i) Illustrations of dataset building, feature selection, model training and validation, and model

evaluation, respectively.
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the inconsistent spatial resolution. Then high-pass and low-
pass wavelet filters or Laplacian of Gaussian (LoG) filters with
different σ parameters were employed to pre-process the original
image. The results of the pre-processed images from one ALK+
case and one ALK– case after each pre-processing technique
are illustrated in Figure 3. A total of 1,218 radiomic features
were extracted from the segmented three-dimensional VOIs of
the tumor on non-enhanced CT images and the pre-processed
images. The features quantified the phenotypic characteristics
of the tumors and were divided into three groups: first-
order features, shape features, and texture features. The texture
features included gray level co-occurrence matrix (GLCM),
gray level size zone matrix (GLSZM), gray level run length
matrix (GLRLM), and gray level dependence matrix (GLDM)

features. All steps above were performed using the PyRadiomics
tool (version 2.1.0). The demonstration of filtering and the
detailed explanations of all radiomic features can be found in
the Supplementary Informations 1.2, 1.3.

Feature Selection and Development of
Predictive Models
We grouped the features into three sets—the radiomic set
(radiomic features), the radiological set (radiomic features +

conventional CT features), and the integrated set (radiomic
features + conventional CT features + clinical features). Each
of the three sets was selected and then used to develop the
radiomic model, radiological model and the integrated model in
the primary cohort individually. To maximize the generalization

FIGURE 3 | Illustration of the pre-processing methods. The figure displays the VOIs of selected ALK+ and ALK– invasive adenocarcinoma cases after each procedure

of the image pre-processing methods. The ALK-positive case was a 44-years-old male patient, and the ALK-negative case was a 60-years-old female patient. Both of

the lesions were solid and light lobulated.

Frontiers in Oncology | www.frontiersin.org 5 March 2020 | Volume 10 | Article 369

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Song et al. Radiomic-Based Model for ALK Mutations

ability of our model and to reduce the bias of the performance
evaluation, the entire feature selection and model training
procedure was fed into a repetitive (10 runs) 10-fold cross-
validation using the primary cohort. The discriminative score
for each patient was obtained from averaging the final predictive
probabilities of the classifiers. The area under the curve (AUC)
was calculated from the assembled probability. The optimized
hyper-parameters of the feature selection and model training
procedure were obtained by a grid search that maximized the
AUC of the repetitive 10-fold cross-validation. After the hyper-
parameters were determined, the model was re-trained using
the entire primary dataset and the performance on the test
cohort was viewed as the estimation of the true performance
of our model. The above procedures were performed by the
Scikit-learn software package (Version: 0.20.3) on the Dr. Wise
research platform.

Before the feature selection procedure, the features were pre-
processed to fit the machine-learning algorithm, including Min–
Max scaling for all numerical features and one-hot encoding for
categorical features. We used a three-step sequential procedure
that was consisted of the F-test-based method, the density-based
spatial clustering of applications with noise (DBSCAN) method
(26), and the recursive feature elimination (RFE) method (27).
The F-test-based method examined the difference of means of
each feature between the ALK-rearranged group and the wild-
type group, and features with smaller P-values were retained.
In the unsupervised DBSCAN method, the paired features with
high Pearson correlation coefficients were clustered. The border
of the cluster was defined by the radius of the cluster (eps) and
the minimum number of points within the cluster (min sample
size). Within each cluster, only the feature with the smallest P-
value in the previous method was remained at this step. Besides,
non-clustered features were also retained. The logistic regression
(LR) based RFE method was used as the last selection process,
in which we set the regularization intensity to 0.5 and penalty
as L1. For each iteration, two features with the least coefficients
were pruned until the desired number of features to select was
eventually reached.

A soft voting classifier was used to build the predictive model.
In this classifier, the average of the predicted probabilities of
being ALK+ trained with the LR model and that trained with
the decision tree (DT) model was used as the final predictive
probability of the predictive model.

Statistical Analysis
The differences in all variables between ALK-positive group
and ALK-negative group were assessed using Mann-Whitney
U-test or independent samples t-test for continuous variables,
and chi-square test or Fisher’s exact test for categorical variables
as appropriate. This step was performed with SPSS Statistics
20.0 (IBM Corporation, NY, USA). The predictive models were
analyzed using the receiver operating characteristics (ROC)
curve. The AUC, 95% confidence interval (CI) for AUC,
accuracy, sensitivity, and specificity were calculated. The cut-
off discriminative score to differentiate ALK-mutated patients
and ALK wild-type patients was determined by maximizing
the Youden index in the training process. The above analyses

were performed by the Scikit-learn software package (Version:
0.20.3) and the Matplotlib package (Version 3.1.0) on the Dr.
Wise research platform. Lastly, the DeLong test was used for
pairwise comparisons among the three models using MedCalc
software (Version 19.0.2). A two-sided P < 0.05 was considered
statistically significant throughout the study.

RESULTS

Clinical and Conventional CT Features
Among the entire cohort, 269 (80.3%) patients underwent
surgical procedures and 66 (19.7%) underwent diagnostic
biopsies. The results of clinical features in the primary and the
test cohort are listed inTable 1. The rates for the number of ALK-
mutated patients vs. ALK-negative patients in the primary and
the test cohort were both close to 1:2. All clinical characteristics
but the smoking history (P = 0.028) for patients in the primary
and the test cohort showed no statistical difference.

In the primary cohort, the patients in the ALK-positive group
were significantly younger than those in the ALK-negative group
(P < 0.001). In addition, more patients in the ALK mutation
group had advanced lung cancers (stages III and IV), distant
metastases and no smoking history than those in the ALK
wild-type group. In terms of conventional CT features (see
Table 2), ALK mutated lesions were found to have larger size
and hyper-attenuation, and tended to be solid, lobulated, with
more prevalence of pleural effusion, pericardial effusion, and
local lymphadenopathy (P< 0.01). There was a higher percentage
of central tumors in the ALK+ group than in the ALK– group
(P = 0.008), although the peripheral lesions were more common
within each group. Cavities were slightly more frequent in lesions
with ALK mutations (P = 0.039).

Features Selection and Model
Construction
Figure 4 depicts the procedure of feature selection sequences.
The final models contained 30, 20, and 30 features
in the radiomic, radiological, and integrated models,
respectively. The hyper-parameters associated with each
selection method in each predictive model are displayed in
Supplementary Table 2. The majority of selected radiomic
features throughout the three prediction models were
first-order features and texture features. The only shape-
based feature (Original_Shape_MajorAxisLength) was
used in the integrated model. In the radiomic model,
features that had positive non-zeros coefficients in both
DT and LR model were Original_Firstorder_90Percentile,
Original_Firstorder_Maximum, and Wavelet-
LHH_GLDM_LDHGLE. For conventional CT features,
pericardial effusion, local lymphadenopathy, lobulated margin,
and the absence of pleural retraction sign were selected in both
the radiological and integrated model as being correlated with
ALK-rearranged status. The integrated model also adopted no
cavity and left lower lobe lesions, as shown in Figure 5. The
favorable clinical features for ALK-negative status (negative LR
coefficients) were current smoking, early clinical stage (stage
I) and male sex. The list of the selected features and their
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TABLE 1 | Clinical characteristics of ALK– and ALK+ lung adenocarcinoma patients in the primary and test cohort.

Characteristics Primary cohort Independent test cohort

Total/% ALK–/% ALK+/% P-valueb Total/% ALK–/% ALK+/% P-valueb

Age (yearsa) 57 ± 10 (26–83) 59 ± 10 (28–83) 54 ± 10 (26–73) <0.001* 57 ± 11 (34–78) 59 ± 10 (40–78) 54 ± 10 (34–76) 0.116

Sex

Male 113/42.2 76/42.7 37/41.1 0.804 26/38.8 19/42.2 7/31.8 0.412

Female 155/57.8 102/57.3 53/58.9 41/61.2 26/57.8 15/68.2

Smoking history

Never 182/67.9 111/62.4 71/78.9 <0.001* 50/74.6 33/73.3 17/77.3 0.578

Current 74/27.6 65/36.5 9/10.0 10/14.9 8/17.8 2/9.1

Former 12/4.5 2/1.1 10/11.1 7/10.4 4/8.9 3/13.6

SI (pack-years)

SI ≤ 10 208/77.6 127/71.3 81/90.0 0.002* 55/82.1 36/80 19/86.4 0.581

10 < SI < 20 9/3.4 8/4.5 1/1.1 2/3.0 2/4.4 0/0

SI ≥ 20 51/19.0 43/24.2 8/8.9 10/14.9 7/15.6 3/13.6

Pathology

AIS 12/4.5 10/5.6 2/2.2 0.109 1/1.5 1/2.2 0/0 0.410

MIA 22/8.2 18/10.1 4/4.4 7/10.4 6/13.3 1/4.5

IAC 234/87.3 150/84.3 84/93.3 59/88.1 38/84.4 21/95.5

DM (−) 244/91.0 174/97.8 70/77.8 <0.001* 58/86.6 43/95.6 15/68.2 0.004*

DM (+) 24/9.0 4/2.2 20/22.2 (Fisher) 9/13.4 2/4.4 7/31.8 (Fisher)

Clinical stage

I 176/65.7 141/79.2 35/38.9 <0.001* 46/68.7 36/80 10/45.5 0.002*

II 32/11.9 16/9.0 16/17.8 4/6.0 3/6.7 1/4.5

III 15/5.6 7/3.9 8/8.9 6/9.0 4/8.9 2/9.1

IV 45/16.8 14/7.9 31/34.4 11/16.4 2/4.4 9/40.9

The data are displayed as n/%, except where otherwise noted. No significant difference exists between the primary and test cohort for all demographic characteristics (P > 0.05) but

the smoking history (P = 0.028).
aMean ± standard deviation (range).
bALK– group vs. ALK+ group.

*P < 0.05.

ALK, anaplastic lymphoma kinase; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; SI, smoking index; DM, distant metastasis;

Fisher, Fisher’s exact test.

associated coefficients in DT and LR model are illustrated in
Supplementary Tables 3–5.

Evaluation of Models and Comparison of
Predictive Model Performance
The diagnostic performance of each model is shown in Table 3

and the results of ROC curve analysis are shown in Figure 6.
The optimal thresholds that maximized the Youden index for
the radiomic model, radiological model, and integrated model
were 0.40, 0.33, and 0.34, respectively. The prediction results
of each model when validating the cross-validation cohort
and in the test cohort are shown in Figure 7. We predicted
the lesion as ALK-positive if the discriminative score for that
lesion was higher than the threshold in each model, and as
ALK-negative if otherwise.

In the primary cohort, the performances of the three
predictive models in the training set were close to perfect.
In the validation set, the integrated model achieved the best
performance (AUC = 0.88). A statistically significant difference
in AUC was found between the integrated model and the

radiomic model with the DeLong test (P= 0.01), but not between
the integrated model and the radiological model (P = 0.1) or the
radiological model and radiomic model (P = 0.25). In the test
cohort, although the integrated model also showed the highest
AUC (0.88) among the three predictive models, no statistical
difference was found between any of the two models using
DeLong test (P = 0.35 for radiomic vs. radiological; P = 0.29 for
radiomic vs. integrated; P = 0.66 for radiological vs. integrated).

DISCUSSION

In this study, we developed an integrated model that combined
radiomic features, clinical data and conventional CT features
(AUC = 0.88, accuracy = 0.79, sensitivity = 0.82, and specificity
= 0.78 in the independent test cohort) for differentiating
ALK mutations in lung adenocarcinoma patients. During this
process, we identified that Original_Firstorder_90Percentile,
Original_Firstorder_Maximum, and Wavelet-LHH_GLDM_
LDHGLE were significant and robust radiomic features
associated with ALK mutation. These features reflect abstract
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TABLE 2 | Conventional CT features of ALK– and ALK+ lung adenocarcinoma patients in the primary and test cohort.

Features Primary cohort Independent test cohort

Total/% ALK–/% ALK+/% P-valueb Total/% ALK–/% ALK+/% P-valueb

mDia. (mm)a 19 ± 16 18 ± 15 21 ± 23 0.007* 22 ± 19 18 ± 15 26 ± 22 0.089

CT attenuation (HU)a −214 ± 476 −397 ± 455 −7 ± 197 <0.001* 5 ± 289 −35 ± 409 26 ± 38 0.001*

Location

Central 43/16.0 21/11.8 22/24.4 0.008* 12/17.9 4/8.9 8/36.4 0.014*

Peripheral 225/84.0 157/88.2 68/75.6 55/82.1 41/91.1 14/63.6 (Fisher)

Lobe

RUL 78/29.1 57/32.0 21/23.3 0.280 16/23.9 12/26.7 4/18.2 0.274

RML 14/5.2 10/5.6 4/4.4 0/0 0/0 0/0

RLL 58/21.6 40/22.5 18/20.0 17/25.4 11/24.4 6/27.3

LUL 65/24.3 43/24.2 22/24.4 19/28.4 14/31.1 5/22.7

LLL 51/19.0 27/15.2 24/26.7 13/19.4 8/17.8 5/22.7

Mixed 2/0.7 1/0.6 1/1.1 2/3.0 0/0 2/9.1

Density

pGGO 83/31.0 74/41.6 9/10.0 <0.001* 10/14.9 10/22.2 0/0 <0.001*

pSolid 69/25.7 51/28.7 18/20.0 25/37.3 22/48.9 3/13.6

Solid 116/43.3 53/29.8 63/70.0 32/47.8 13/28.9 19/86.4

Margin

Spiculated 115/42.9 86/48.3 29/32.2 0.004* 35/52.2 29/64.4 6/27.3 0.009*

Lobulated 120/44.8 67/37.6 53/58.9 28/41.8 13/28.9 15/68.2

Smooth 33/12.3 25/14.0 8/8.9 4/6.0 3/6.7 1/4.5

Cavity (–) 244/91.0 167/93.8 77/85.6 0.039* 63/94.0 42/93.3 21/95.5 1.000

Cavity (+) 24/9.0 11/6.2 13/14.4 4/6.0 3/6.7 1/4.5 (Fisher)

Calcification (–) 256/95.5 170/95.5 86/95.6 1.000 60/89.6 41/91.1 19/86.4 0.675

Calcification (+) 12/4.5 8/4.5 4/4.4 (Fisher) 7/10.4 4/8.9 3/13.6 (Fisher)

Plu. retraction (–) 133/49.6 85/47.8 48/53.3 0.388 26/38.8 18/40.0 8/36.4 0.774

Plu. retraction (+) 135/50.4 93/52.2 42/46.7 41/61.2 27/60.0 14/63.6

Plu. effusion (–) 237/88.4 168/94.4 69/76.7 <0.001* 57/85.1 44/97.8 13/59.1 <0.001*

Plu. effusion (+) 31/11.6 10/5.6 21/23.4 10/14.9 1/2.2 9/40.9 (Fisher)

Per. effusion (–) 258/96.3 178/100 80/88.9 <0.001* 58/86.6 43/95.6 15/68.2 0.004*

Per. effusion (+) 10/3.7 0/0 10/11.1 (Fisher) 9/13.4 2/4.4 7/31.8 (Fisher)

Lymph. (–) 205/76.5 158/88.8 47/52.2 <0.001* 48/71.6 38/84.4 10/45.5 0.001*

Lymph. (+) 63/23.5 20/11.2 43/47.8 19/28.4 7/15.6 12/54.5

The data are displayed as n/%, except where otherwise noted.
aMedian ± interquartile interval.
bALK– group vs. ALK+ group.

*P < 0.05.

ALK, anaplastic lymphoma kinase; mDia., maximum diameter; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; pGGO,

pure ground-glass opacity; pSolid, partial solid; Plu., pleural; Per., pericardial; Lymph., lymphadenopathy; Fisher, Fisher’s exact test.

information from the distribution of pixel intensity and the
texture morphology that cannot be detected with the naked eyes.
We also found that the addition of conventional CT features to
the radiomic model did not increase the model’s efficacy, yet the
clinical data, in combination with conventional CT features were
able to significantly enhance the performance of the prediction
model in the cross-validation set. Among the clinical features,
smoking history was the most powerful factor to differentiate
ALKmutated lung adenocarcinomas from the non-ALKmutated
ones. Moreover, our study optimized the performance of models
by using the automatic lesion segmentation techniques, involving
features from filtered images, and adopting a soft voting classifier.

The model with radiomic features alone in our study reached
an AUC of 0.83, which is not inferior to other previously
established clinical models that were based on conventional
CT features (also named as morphological or semantic CT
features) and patients’ clinical information (11, 28, 29).
This suggests the strong efficacy of radiomics as tools to
identify ALK-mutated tumours’ phenotypic patterns on CT
scans in lung adenocarcinoma patients. The construction
of the radiomic model was purely based on features within
the first-order and texture categories, which suggests that
the intensity distribution of tumors was a strong predictive
factor for ALK genetic mutation. This is consistent with
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FIGURE 4 | Illustration of the feature selection procedure in the three models. Each vertical panel exhibits the selection process for each of the three predictive

models. Each symbol indicates a different type of feature. The number of selected features along with the optimal AUC obtained at each selection step was shown at

the top of each sub-panel. In the radiomic model, 1,218 extracted radiomic features were used to begin the selection. In the radiological model, the initial features

included 12 conventional CT features and 1,218 radiomic features. In the integrated model, seven clinical characteristics were added in addition to the 12

conventional CT features and 1,218 radiomic features. The features were selected to maximize the AUC of the predictive model at the final step.

findings in other radiomic studies (15, 16, 20). Among the
selected radiomic features, Original_Firstorder_90Percentile,
Original_Firstorder_Maximum, and Wavelet-
LHH_GLDM_LDHGLE were the most significant and robust
features associated with ALK mutations, which reflect tumour’s
intensity and textural features surrounding and within the
high-intensity CT voxels. This finding could be related to the
revelation that ALK+ lung tumors were more likely to be solid
mass (13, 28, 30, 31).

In our study, conventional CT evaluations contained tumour’s
surrounding information that was typically not represented by
radiomic features of tumor itself. In our radiological model, three
out of the four selected conventional CT features reflected the
relationship between tumor and its surrounding tissue. They

were pericardial effusion, local lymphadenopathy, and no pleural
retraction sign. These features and their correlations with ALK
mutations have been identified in previous literature (14, 28, 30).
These pathological changes around the ALK-mutated tumor may
result from the infiltration of tumor cells, suggesting the more
invasiveness nature of ALK-rearranged tumors (30, 32). In spite
of this, the performance of the radiological model for predicting
ALK status was not significantly enhanced with the addition
of these conventional CT features. This phenomenon may be
attributed to the inclusion of the LoG-processed features in our
model. The LoG is a spatial filtering technique that enhances
the marginal features from surrounding regions, which provides
more information concerning tumour’s surroundings. Dou et al.’s
study revealed that radiomic features extracted from rims of
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FIGURE 5 | Selected features and their coefficients in the integrated model. The blue dots indicate the coefficients in the DT model. They denote the decrease of the

Gini index when such a feature is used in the DT model. A higher DT value suggests a more significant influence. The red dots represent the beta coefficient in the LR

model. Since all features were rescaled before the selection procedure, these coefficients are equivalent to the normalized LR coefficients. A higher positive LR

coefficient (right side of the figure) suggests a stronger relationship between the feature and ALK mutation, and a higher negative LR coefficient (left side of the figure)

suggests a stronger relationship between the feature and ALK-negative status.

tumors were able to predict distantmetastases in locally advanced
NSCLC (Concordance Index = 0.64) (33), which suggests that
radiomic features can reflect the invasiveness of the tumors. In
fact, radiomic features and conventional CT features were highly
correlated. Stephen et al.’s study illustrated that one radiologist-
defined imaging feature was associated with multiple radiomic
features (21). In other words, radiomic features were expansions

of the conventional CT features in detail to some degree. The
finding in Stephen et al.’s study also explains another result that
our radiological model had a much fewer number of features
compared to the radiomic one at the final selection step.

In addition to the conventional CT features discussed above,
we identified the intra-tumoural cavity and left lower lobe
location were associated with the ALK mutation status. Previous
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TABLE 3 | Diagnostic performance of each model in the primary cohort and test cohort.

Model name Primary cohort Independent test cohort

AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

Radiomic Train 1.00 (0.99–1.00) 1.00 1.00 0.99 0.80 (0.69–0.89) 0.73 0.73 0.73

Validation 0.83 (0.79–0.88) 0.76 0.70 0.80

Radiological Train 1.00 (0.99–1.00) 1.00 1.00 1.00 0.86 (0.75–0.93) 0.75 0.68 0.78

Validation 0.85 (0.80–0.89) 0.78 0.78 0.78

Integrated Train 1.00 (0.99–1.00) 1.00 1.00 0.99 0.88 (0.77–0.94) 0.79 0.82 0.78

Validation 0.88 (0.83–0.91) 0.79 0.78 0.80

In the primary cohort, the performance index of each model in the training and the validation set were displayed separately. The radiomic model contained the selected radiomic features

only. The radiological model contained the selected conventional CT features in addition to the radiomic features. The integrated model contained the selected radiomic features,

conventional CT features and clinical characteristics. AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.

FIGURE 6 | The ROC curves of the three prediction models that indicate ALK mutation status. (A) The validation set in the primary cohort; (B) the test cohort.

studies found no difference in the prevalence of cavity between
the ALK-mutated group and the control group, yet they either
excluded both EGFR and ALK mutations in the ALK-negative
group (12, 29, 34) or generalized the definition of cavity by
including bubble lucence (12, 31). The lobar location preference
for ALK mutations was only mentioned in Yoon’s study (20).
More studies are warranted to establish a tight connection
between these two features and ALK mutations status in
lung adenocarcinomas.

The integrated model contained radiomic, conventional CT
and clinical features, and showed the highest AUC score (0.88)
in both the primary and the test cohorts. The enhancement was
statistically significant in the primary cohort but not in the test
cohort. We found that the standard errors of the discriminative
scores for patients with different ALK mutation statuses in the
test cohort were higher than those in the primary cohort in
the corresponding mutation group. It was also reflected by a
wider range of confidence interval for AUC in the test cohort.
The relatively large variance of discriminative scores for patients

was partly due to the limited sample size in the test cohort. In
spite of this, the improved efficacy of the integrated model by
adding clinical characteristics for lesions in the primary cohort
suggests that clinical information was effective to improve the
radiomic-basedmodel for detecting ALK-mutated status. Adding
more ALK-associated clinical variables such as carcinoembryonic
antigen (CEA) level and histological growth pattern may further
enhance the performance of the model (35, 36). Previously, the
best predictive model for the detection of ALK mutations was
from Yamamoto’s study (AUC = 0.846), in which it contained
age as the only selected clinical feature and several conventional
CT features (14). However, their work was based on enhanced
CT images. The promising performance of the radiomic model
in our study indicates that radiomic features extracted from non-
enhanced CT images are adequate for establishing a convincing
predictive model for ALK mutations in lung adenocarcinomas.

For the identified clinical features in our integrated model,
smoking history had the highest discriminatory power (high
weighting coefficient in both DT and LR), which is consistent
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FIGURE 7 | The discriminative scores of the three predictive models in the primary (A) and test cohort (B). The discriminative score for each patient is the average of

the final predictive probabilities in the LR and DT classifier. The columns above the horizontal axis represent tumors that were predicted to be ALK+, while the

columns below the horizontal axis represent the opposite. The color indicates the golden truth of each tumor.

with previous studies that observed more non-smokers in
the ALK+ population (29, 30). Nonetheless, some integrated
models for predicting ALK mutations did not remain smoking
status as a significant index after their selection procedures
(14, 20). This discrepancy may be caused by different model
construction strategies and smoking cultures. Furthermore, we
identified clinical stage I as an important clinical feature that was
inversely associated with ALK rearrangements. This coincides
with the finding that ALK mutations were more common in
lung adenocarcinoma of stages III and IV in the univariate
analysis. Similar results were found in Choi et al.’s study, in
which ALK gene fusion was more likely to occur in lung
cancer with a more advanced stage (37). We also noticed that
the only shape-based radiomic feature—Major_Axis_Length was
picked in the integrated model. It measures the largest axis
length in a three-dimensional VOI. Most early studies measured
the maximal diameter of tumors on a 2D plane and did not
find a correlation between tumor size and ALK mutation (20,
29, 35, 38), while others found smaller diameters in ALK
mutated tumors (39). Our study yielded a contradictory result
that ALK-mutated tumors had a significantly larger diameter.
These findings altogether suggest that the measurement of
maximum diameter on a 2D plane is not representative of
the real size of the tumor. Future studies should use the 3D
axis length of tumors when building prediction models for
better accuracy.

However, there are several limitations in our study. First,
it is a retrospective study with patients from a single medical
center. In the current study, we repeated the 10-fold cross-
validation process 10 times to avoid overfitting and to
minimize the optimism bias. Furthermore, an independent

test cohort was used to validate the performance of our
models. Despite, our model’s generalizability should be further
examined on data from a different medical center in the
future. Second, we did not evaluate the effects of CEA and
the maximum SUV value from PET/CT examination because
such data were missing in approximately one-third of the
patients. Third, we only examined radiomic and conventional
features from the non-contrast enhanced CT images in this
study due to the retrospective nature of the study. We can
perform a prospective study to include features based on
contrast-enhanced CT data of dual-energy scanning mode
using dual-energy CT scanners to explore whether this can
further improve the effectiveness of the predictive model in
the future.

In conclusion, our findings highlight the feasibility of
non-invasively predicting the ALK genetic status in lung
adenocarcinomas using an integrated model that combines
clinical, conventional CT, and radiomic features.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethics Review Committee of Peking Union Medical
College Hospital, Chinese Academy of Medical Sciences. Written
informed consent for participation was not required for this

Frontiers in Oncology | www.frontiersin.org 12 March 2020 | Volume 10 | Article 369

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Song et al. Radiomic-Based Model for ALK Mutations

study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

LS, ZJ, and WS: study conceive and design. LS and ZZ:
literature research. LS, ZZ, HW, and HD: data acquisition. LS,
ZZ, LM, XL, and WH: data analysis and interpretation. LS
and HD: evaluation the conventional thin-slice CT images. LS
and ZZ: manuscript drafting. All authors manuscript revision
for important intellectual content, approval of final version of
submitted manuscript, manuscript editing, and had full access to
all of the data in the study and take responsibility for the integrity
of the data and the accuracy of the data analysis.

FUNDING

This work was supported by grants from the National
Public Welfare Basic Scientific Research Program of
Chinese Academy of Medical Sciences (2019PT320008 and
2018PT32003). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.00369/full#supplementary-material

REFERENCES

1. Ridge CA, McErlean AM, Ginsberg MS. Epidemiology of lung cancer. Semin

Intervent Radiol. (2013) 30:93–8. doi: 10.1055/s-0033-1342949

2. National Comprehensive Cancer Network. Non-small Cell Lung Cancer

(Version 3. 2020). Available online at: https://www.nccn.org/professionals/

physician_gls/pdf/nscl.pdf (accessed March 2, 2020).

3. Nishio M, Kim DW, Wu YL, Nakagawa K, Solomon BJ, Shaw AT,

et al. Crizotinib versus chemotherapy in Asian patients with ALK-positive

advanced non-small cell lung cancer. Cancer Res Treat. (2018) 50:691–700.

doi: 10.4143/crt.2017.280

4. Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, et al. Effect

of crizotinib on overall survival in patients with advanced non-small-cell lung

cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet

Oncol. (2011) 12:1004–12. doi: 10.1016/S1470-2045(11)70232-7

5. Usmani S, Marafi F, Rasheed R, Al Maraghy M, Al Kandari F. Targeted

therapy with anaplastic lymphoma kinase inhibitor (alectinib) in adolescent

metastatic non-small cell lung carcinoma: 18F-NaF PET/CT in response

evaluation. Clin Nucl Med. (2018) 43:752–4. doi: 10.1097/RLU.00000000000

02220

6. Shaw AT, Solomon BJ, Besse B, Bauer TM, Lin CC, Soo RA, et al.

ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic

lymphoma kinase-positive non-small-cell lung cancer. J Clin Oncol. (2019)

37:1370–9. doi: 10.1200/JCO.18.02236

7. Zhao R, Zhang J, Han Y, Shao J, Zhu L, Xiang C, et al. Clinicopathological

features of ALK expression in 9889 cases of non-small-cell lung cancer

and genomic rearrangements identified by capture-based next-generation

sequencing: a chinese retrospective analysis. Mol Diagn Ther. (2019) 23:395–

405. doi: 10.1007/s40291-019-00389-y

8. Zito Marino F, Liguori G, Aquino G, La Mantia E, Bosari S, Ferrero S, et al.

Intratumor heterogeneity of ALK-rearrangements and homogeneity of EGFR-

mutations in mixed lung adenocarcinoma. PLoS ONE. (2015) 10:e0139264.

doi: 10.1371/journal.pone.0139264

9. Cai W, Lin D, Wu C, Li X, Zhao C, Zheng L, et al. Intratumoral heterogeneity

of ALK-rearranged and ALK/egfr coaltered lung adenocarcinoma. J Clin

Oncol. (2015) 33:3701–9. doi: 10.1200/JCO.2014.58.8293

10. de Sousa VML, Carvalho L. Heterogeneity in lung cancer. Pathobiology. (2018)

85:96–107. doi: 10.1159/000487440

11. Rizzo S, Petrella F, Buscarino V, De Maria F, Raimondi S, Barberis

M, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK

mutations in non-small cell lung cancer. Eur Radiol. (2016) 26:32–42.

doi: 10.1007/s00330-015-3814-0

12. Zhou JY, Zheng J, Yu ZF, Xiao WB, Zhao J, Sun K, et al. Comparative

analysis of clinicoradiologic characteristics of lung adenocarcinomas with

ALK rearrangements or EGFR mutations. Eur Radiol. (2015) 25:1257–66.

doi: 10.1007/s00330-014-3516-z

13. Halpenny DF, Riely GJ, Hayes S, Yu H, Zheng J, Moskowitz CS, et al.

Are there imaging characteristics associated with lung adenocarcinomas

harboring ALK rearrangements? Lung Cancer. (2014) 86:190–4.

doi: 10.1016/j.lungcan.2014.09.007

14. Yamamoto S, Korn RL, Oklu R, Migdal C, Gotway MB, Weiss GJ, et al.

ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic

characterization. Radiology. (2014) 272:568–76. doi: 10.1148/radiol.14140789

15. Tu W, Sun G, Fan L, Wang Y, Xia Y, Guan Y, et al. Radiomics signature:

a potential and incremental predictor for EGFR mutation status in NSCLC

patients, comparison with CT morphology. Lung Cancer. (2019) 132:28–35.

doi: 10.1016/j.lungcan.2019.03.025

16. Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, et al. Predicting EGFR mutation

status in lung adenocarcinoma on computed tomography image using deep

learning. Eur Respir J. (2019) 53:1800986. doi: 10.1183/13993003.00986-2018

17. Yang X, He J, Wang J, Li W, Liu C, Gao D, et al. CT-based

radiomics signature for differentiating solitary granulomatous nodules

from solid lung adenocarcinoma. Lung Cancer. (2018) 125:109–14.

doi: 10.1016/j.lungcan.2018.09.013

18. de Jong EEC, van Elmpt W, Rizzo S, Colarieti A, Spitaleri G, Leijenaar RTH,

et al. Applicability of a prognostic CT-based radiomic signature model trained

on stage I-III non-small cell lung cancer in stage IV non-small cell lung cancer.

Lung Cancer. (2018) 124:6–11. doi: 10.1016/j.lungcan.2018.07.023

19. Rios Velazquez E, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O, et al.

Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer

Res. (2017) 77:3922–30. doi: 10.1158/0008-5472.CAN-17-0122

20. Yoon HJ, Sohn I, Cho JH, Lee HY, Kim JH, Choi YL, et al.

Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung

adenocarcinoma using a radiomics approach. Medicine. (2015) 94:e1753.

doi: 10.1097/MD.0000000000001753

21. Yip SSF, Liu Y, Parmar C, Li Q, Liu S, Qu F, et al. Associations

between radiologist-defined semantic and automatically computed

radiomic features in non-small cell lung cancer. Sci Rep. (2017) 7:3519.

doi: 10.1038/s41598-017-02425-5

22. Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH,

et al. Updated molecular testing guideline for the selection of lung cancer

patients for treatment with targeted tyrosine kinase inhibitors: guideline from

the college of american pathologists, the international association for the study

of lung cancer, and the association for molecular pathology. Arch Pathol Lab

Med. (2018) 142:321–46. doi: 10.5858/arpa.2017-0388-CP

23. Qi LL, Wu BT, Tang W, Zhou LN, Huang Y, Zhao SJ, et al. Long-

term follow-up of persistent pulmonary pure ground-glass nodules with

deep learning-assisted nodule segmentation. Eur Radiol. (2019) 30:744–55.

doi: 10.1007/s00330-019-06344-z

24. AminM, Edge S, Greene F, Schilsky R, Gaspar L,WashingtonM, et al., editors.

AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer (2017).

25. Travis W, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe

Y, et.al. International association for the study of lung cancer/American

thoracic society/European respiratory society international multidisciplinary

classification of lung adenocarcinoma. J Thorac Oncol. (2011) 6:244–85.

doi: 10.1097/JTO.0b013e318206a221

Frontiers in Oncology | www.frontiersin.org 13 March 2020 | Volume 10 | Article 369

https://www.frontiersin.org/articles/10.3389/fonc.2020.00369/full#supplementary-material
https://doi.org/10.1055/s-0033-1342949
https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
https://doi.org/10.4143/crt.2017.280
https://doi.org/10.1016/S1470-2045(11)70232-7
https://doi.org/10.1097/RLU.0000000000002220
https://doi.org/10.1200/JCO.18.02236
https://doi.org/10.1007/s40291-019-00389-y
https://doi.org/10.1371/journal.pone.0139264
https://doi.org/10.1200/JCO.2014.58.8293
https://doi.org/10.1159/000487440
https://doi.org/10.1007/s00330-015-3814-0
https://doi.org/10.1007/s00330-014-3516-z
https://doi.org/10.1016/j.lungcan.2014.09.007
https://doi.org/10.1148/radiol.14140789
https://doi.org/10.1016/j.lungcan.2019.03.025
https://doi.org/10.1183/13993003.00986-2018
https://doi.org/10.1016/j.lungcan.2018.09.013
https://doi.org/10.1016/j.lungcan.2018.07.023
https://doi.org/10.1158/0008-5472.CAN-17-0122
https://doi.org/10.1097/MD.0000000000001753
https://doi.org/10.1038/s41598-017-02425-5
https://doi.org/10.5858/arpa.2017-0388-CP
https://doi.org/10.1007/s00330-019-06344-z
https://doi.org/10.1097/JTO.0b013e318206a221
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Song et al. Radiomic-Based Model for ALK Mutations

26. Ester M, Kriegel H, Sander J, Xu X, editors. Density-based algorithm for

discovering clusters in large spatial databases with noise. In: Proceedings of

the 2nd International Conference on Knowledge Discovery and Data Mining.

Portland, OR: AAAI Press (1996).

27. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer

classification using support vector machines.Mach Learn. (2002) 46:389–422.

doi: 10.1023/A:1012487302797

28. Jeong C, Lee H, Han J, Jeong J, Lee K, Choi Y-L, et al. Role of

imaging biomarkers in predicting anaplastic lymphoma kinase–

positive lung adenocarcinoma. Clin Nucl Med. (2015) 40:34–9.

doi: 10.1097/RLU.0000000000000581

29. Kim TJ, Lee CT, Jheon SH, Park JS, Chung JH. Radiologic

characteristics of surgically resected non-small cell lung cancer with ALK

rearrangement or EGFR mutations. Ann Thorac Surg. (2016) 101:473–80.

doi: 10.1016/j.athoracsur.2015.07.062

30. Choi C, Kim M, Hwang H, Lee J, Kim W. Advanced adenocarcinoma of the

lung: comparison of CT characteristics of patients with anaplastic lymphoma

kinase gene rearrangement and those with epidermal growth factor receptor

mutation. Radiology. (2015) 275:272–9. doi: 10.1148/radiol.14140848

31. Mendoza DP, Stowell J, Muzikansky A, Shepard J-AO, Shaw AT, Digumarthy

SR. CT imaging characteristics of non-small cell lung cancer with anaplastic

lymphoma kinase (ALK) rearrangements: a systematic review and meta-

analysis. Clin Lung Cancer. (2019) 20:339–49. doi: 10.1016/j.cllc.2019.05.006

32. Park J, Yamaura H, Yatabe Y, HosodaW, Kondo C, Shimizu J, et al. Anaplastic

lymphoma kinase gene rearrangements in patients with advanced-stage non-

small-cell lung cancer: CT characteristics and response to chemotherapy.

Cancer Med. (2014) 3:118–23. doi: 10.1002/cam4.172

33. Dou TH, Coroller TP, van Griethuysen JJM, Mak RH, Aerts H. Peritumoral

radiomics features predict distantmetastasis in locally advancedNSCLC. PLoS

ONE. (2018) 13:e0206108. doi: 10.1371/journal.pone.0206108

34. Wang H, Schabath MB, Liu Y, Han Y, Li Q, Gillies RJ, et al. Clinical and

CT characteristics of surgically resected lung adenocarcinomas harboring

ALK rearrangements or EGFR mutations. Eur J Radiol. (2016) 85:1934–40.

doi: 10.1016/j.ejrad.2016.08.023

35. Fukui T, Yatabe Y, Kobayashi Y, Tomizawa K, Ito S, Hatooka S, et al.

Clinicoradiologic characteristics of patients with lung adenocarcinoma

harboring EML4-ALK fusion oncogene. Lung Cancer. (2012) 77:319–25.

doi: 10.1016/j.lungcan.2012.03.013

36. Li P, Gao Q, Jiang X, Zhan Z, Yan Q, Li Z, et al. Comparison of

clinicopathological features and prognosis between ALK rearrangements and

EGFR mutations in surgically resected early-stage lung adenocarcinoma. J

Cancer. (2019) 10:61–71. doi: 10.7150/jca.26947

37. Choi H, Paeng JC, Kim DW, Lee JK, Park CM, Kang KW, et al. Metabolic and

metastatic characteristics of ALK-rearranged lung adenocarcinoma on FDG

PET/CT. Lung Cancer. (2013) 79:242–7. doi: 10.1016/j.lungcan.2012.11.021

38. Lv Z, Fan J, Xu J, Wu F, Huang Q, Guo M, et al. Value of (18)F-

FDG PET/CT for predicting EGFR mutations and positive ALK expression

in patients with non-small cell lung cancer: a retrospective analysis of

849 Chinese patients. Eur J Nucl Med Mol Imaging. (2018) 45:735–50.

doi: 10.1007/s00259-017-3885-z

39. Nakada T, Okumura S, Kuroda H, Uehara H, Mun M, Takeuchi K, et al.

Imaging characteristics in ALK fusion-positive lung adenocarcinomas

by using HRCT. Ann Thorac Cardiovasc Surg. (2015) 21:102–8.

doi: 10.5761/atcs.oa.14-00093

Conflict of Interest: LM and XL were employed by the company Deepwise Inc.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Song, Zhu, Mao, Li, Han, Du, Wu, Song and Jin. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Oncology | www.frontiersin.org 14 March 2020 | Volume 10 | Article 369

https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1097/RLU.0000000000000581
https://doi.org/10.1016/j.athoracsur.2015.07.062
https://doi.org/10.1148/radiol.14140848
https://doi.org/10.1016/j.cllc.2019.05.006
https://doi.org/10.1002/cam4.172
https://doi.org/10.1371/journal.pone.0206108
https://doi.org/10.1016/j.ejrad.2016.08.023
https://doi.org/10.1016/j.lungcan.2012.03.013
https://doi.org/10.7150/jca.26947
https://doi.org/10.1016/j.lungcan.2012.11.021
https://doi.org/10.1007/s00259-017-3885-z
https://doi.org/10.5761/atcs.oa.14-00093
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Clinical, Conventional CT and Radiomic Feature-Based Machine Learning Models for Predicting ALK Rearrangement Status in Lung Adenocarcinoma Patients
	Introduction
	Materials and Methods
	Patient Population
	Image Acquisition and Lesion Segmentation
	Collection of Clinical Data and Evaluation of Conventional CT Features
	Radiomic Feature Extraction
	Feature Selection and Development of Predictive Models
	Statistical Analysis

	Results
	Clinical and Conventional CT Features
	Features Selection and Model Construction
	Evaluation of Models and Comparison of Predictive Model Performance

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


