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Abstract: A key objective of this study was to explore the potential of dietary grape consumption to
modulate adverse effects caused by a high-fat (western-pattern) diet. Female C57BL/6J mice were
purchased at six-weeks-of-age and placed on a standard (semi-synthetic) diet (STD). At 11 weeks-of-
age, the mice were continued on the STD or placed on the STD supplemented with 5% standardized
grape powder (STD5GP), a high-fat diet (HFD), or an HFD supplemented with 5% standardized grape
powder (HFD5GP). After being provided with the respective diets for 13 additional weeks, the mice
were euthanized, and liver was collected for biomarker analysis, determination of genetic expression
(RNA-Seq), and histopathological examination. All four dietary groups demonstrated unique genetic
expression patterns. Using pathway analysis tools (GO, KEGG and Reactome), relative to the STD
group, differentially expressed genes of the STD5GP group were significantly enriched in RNA,
mitochondria, and protein translation related pathways, as well as drug metabolism, glutathione,
detoxification, and oxidative stress associated pathways. The expression of Gstp1 was confirmed
to be upregulated by about five-fold (RT-qPCR), and, based on RNA-Seq data, the expression of
additional genes associated with the reduction of oxidative stress and detoxification (Gpx4 and 8, Gss,
Gpx7, Sod1) were enhanced by dietary grape supplementation. Cluster analysis of genetic expression
patterns revealed the greatest divergence between the HFD5GP and HFD groups. In the HFD5GP
group, relative to the HFD group, 14 genes responsible for the metabolism, transportation, hydrolysis,
and sequestration of fatty acids were upregulated. Conversely, genes responsible for lipid content
and cholesterol synthesis (Plin4, Acaa1b, Slc27a1) were downregulated. The two top classifications
emerging as enriched in the HFD5GP group vs. the HFD group (KEGG pathway analysis) were
Alzheimer’s disease and nonalcoholic fatty liver disease (NAFLD), both of which have been reported
in the literature to bear a causal relationship. In the current study, nonalcoholic steatohepatitis was
indicated by histological observations that revealed archetype markers of fatty liver induced by the
HFD. The adverse response was diminished by grape intervention. In addition to these studies,
life-long survival was assessed with C57BL/6J mice. C57BL/6J mice were received at four-weeks-
of-age and placed on the STD. At 14-weeks-of-age, the mice were divided into two groups (100 per
group) and provided with the HFD or the HFD5GP. Relative to the HFD group, the survival time
of the HFD5GP group was enhanced (log-rank test, p = 0.036). The respective hazard ratios were
0.715 (HFD5GP) and 1.397 (HFD). Greater body weight positively correlated with longevity; the
highest body weight of the HFD5GP group was attained later in life than the HFD group (p = 0.141).
These results suggest the potential of dietary grapes to modulate hepatic gene expression, prevent
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oxidative damage, induce fatty acid metabolism, ameliorate NAFLD, and increase longevity when
co-administered with a high-fat diet.

Keywords: grapes; metabolic diseases; C57BL/6J mice; high-fat diet; RNA sequencing; nutrigenomics

1. Introduction

Nutrition and its relationship to health, disease and longevity is a theme that has been
pondered and investigated over the millennia. Hallmark epidemiological studies, such
as those reported by Doll [1], Phillips [2], and Dunn [3], among others, have provided
a conceptual framework for understanding disease etiology and, by extension, guiding
principles for disease prevention. Despite strong evidence and common sense, eradication
of threats to health is a slow and cumbersome process. The ongoing smoking of cigarettes,
irrespective of known risk, is a prime example. Similarly, aspects of the human diet,
in particular the western-pattern diet [4], presents chronic risk that could be avoided.
Conversely, the eloquent quotation attributed to Hippocrates, “Let food be thy medicine,
and let medicine be thy food”, is less of a polemic. Mainstream contemporary thinking
often includes the concept of the “healthy diet” [5]. Invariably, “healthy diet” commentaries
include high levels of fruits and vegetables (e.g., five servings per day), and whole grains,
concomitant with low trans-fat, saturated fats, and refined carbohydrates [6]. Explicitly, the
US Department of Agriculture economics research service recommends including at least
two cups of fruit and 2.5 cups of vegetables in a daily diet [7].

There is broad scientific underpinning in support of such recommendations. Fruits
and vegetables have a crucial role in maintaining homeostasis and regulating pathologi-
cal conditions that can be related to genic and epigenetic modifications. For example, a
growing body of evidence suggests that fruits and vegetables can influence epigenetics by
increasing or silencing gene expression. Furthermore, the expression of antioxidant phase
II metabolism can be increased by fruits and vegetables. Activation of Nrf2, encoded by
Nuclear Factor Erythroid derivative like 2 (NFE2L2) [8], induces transcription of genes
encoding phase II antioxidant enzymes such as glutathione S-transferase A2 (GSTA2),
glutathione S-transferase mu 1 (GSTM1), NAD(P)H: quinone oxidoreductase I (NQO1),
glutamate cysteine ligase regulatory subunit (GCLM), glutamate cysteine ligase catalytic
subunit (GCLC), and glutathione S-transferase P 1 (GSTP1) [9]. In healthy adults, consump-
tion of fruits and vegetables (>660 g/day) lowers plasma concentrations of homocysteine
and C-reactive protein (CRP) with reduced NFκB1, TNFα, IL6, IL1R1 and ICAM1 gene
expression, independent of age, gender, physical activity, energy intake, systolic blood
pressure, circulating non-esterified fatty acids, body mass index, or smoking [10].

Since fruits and vegetables are comprised of innumerable phytochemicals, reductionist
theory has focused on component analysis and the association of biological activity with
specific active principles. There are many examples, such as polyphenols, anthocyanins,
carotenoids, and lycopene [11]. While work with such phytochemicals is of significant
value, it is unlikely that a sufficient quantity of such active principles would actually be
provided through the diet. Additionally, the quantity of active principles in a particular fruit
or vegetable can vary greatly [12], so it would be difficult to control the amount delivered
by dietary consumption. This provides a rationale for the dietary supplement industry
as a supplier of pure natural products found in specific fruits or vegetables, as well as
clinical trials where high-risk groups are treated with high doses of pure natural products.
For example, human trials conducted with resveratrol, a component of grapes [13], may
involve administration of daily doses up to 5 g [14]. This has little bearing on dietary intake,
as this quantity would translate to the daily consumption of around 50 kg of grapes, or
500 L of red wine.

In addition to resveratrol, which has received wide-ranging attention [15], the potential
health benefits of many other grape constituents have been studied [16,17]. These bioactive
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constituents have the potential for modulating the pathophysiology of various conditions
such as diabetes, cancer, inflammatory diseases, obesity, and aging [18]. They may function
as scavengers for reactive oxygen species (ROS) generated by oxidative stress [19], and
downregulate pathways involving inflammatory responses, ribosomal proteins, the electron
transport chain and cholesterol biosynthesis [20]. The scientific literature describing studies
conducted with the natural components of grapes or grape products is extensive. In
our view, since whole grapes are a common constituent of the diet, it is of importance
to investigate the accumulative potential of the numerous component parts [21]. In this
context, using grape powder as a well-characterized surrogate of the whole grape, which
helps to assure the continuity and reproducibility of research, investigations have been
performed to evaluate the effects on atherosclerosis, inflammation, cancer, gastrointestinal
health, CNS effects, osteoarthritis, urinary bladder function, and vision [22].

Using a mouse model, one key objective of the present study was to investigate the
potential of grapes to modulate adverse effects induced by a high-fat western-pattern
diet. It should be noted that the ramifications of fat consumption in the human diet is
complex [23]. For example, Mediterranean diets, known for their beneficial effects on
health, may include a high portion of calories derived from fat (35–40%), but this is derived
from plant and vegetable oils as sources of monounsaturated fatty acids [24]. Similarly,
dietary omega-3 fatty acids, derived from sources such as fish, flaxseed, canola, and soy
oils, may be advantageous. However, the western-pattern high-fat diet, used as a model
for chronic disease in the current work, is characterized for being rich in saturated fats,
refined carbohydrates and salt. Continuous consumption of a high-fat western-pattern
diet correlates with obesity, a complex condition with multifactorial etiology. In particular,
chronic conditions such as heart diseases, type 2 diabetes, and stroke, commonly referred
to as metabolic syndrome [25], are associated with obesity. A high-fat diet causes oxidative
stress, which is associated with inflammatory and metabolic diseases [26] and adversely
affects liver metabolic pathways, in part, through the alteration of gene expression. The
expression of cytochrome P450 isozymes is negatively affected, as are other entities in-
volved in steroid metabolism, fatty acid metabolism, arachidonic acid metabolism, and
the peroxisome proliferator-activated receptor (PPAR) signaling pathway [27]. Grapes can
modulate the expression of genes involved with PPARα signaling and therefore improve
fatty acid metabolic homeostasis [28]. Other beneficial effects of grapes are associated with
reduced cytokine levels, along with the suppression of other inflammatory markers such as
nuclear factor kappa B (NFκB) and an increase in PPAR receptor activity [29].

In addition, there is a positive association between consumption of a western-pattern
high-fat diet and nonalcoholic fatty liver disease (NAFLD), which may accompany metabolic
diseases such as obesity, insulin resistance and type 2 diabetes. NAFLD is typified to in-
clude various histopathological features, steatosis, necrosis, fibrosis, hepatocyte ballooning
and mixed inflammatory cell infiltration. In principle, antioxidant agents and free radical
scavengers can be of value [24]. As exemplified by the amelioration of ischemic/reperfusion
induced organ injury through restoring the balance of oxidant-antioxidant status and regulat-
ing the release of inflammatory mediators [25], grapes are capable of mediating such an effect.
In addition, diet is considered as a first line treatment for NAFLD [26,27]. Accordingly, we
explored the potential of grapes to modulate NAFLD in our high-fat mouse model.

Yet another hallmark of administering a western-pattern high-fat diet to mice is
the reduction of lifespan by approximately 34% [30]. Given the prevailing consumption
of high-fat western-pattern diets, and indications that dietary grape consumption may
alter fat-induced etiology, we performed long-term studies with mice reported to model
metabolic anomalies associated with human obesity progression. High-fat and standard
semi-synthetic diets were supplemented with 5% grape powder, which is a physiologically
relevant concentration. In sum, we report the influence on hepatic gene expression, with
emphasis on lipid metabolism, as well as effects on longevity and nonalcoholic fatty liver
disease (NAFLD).
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2. Materials and Methods
2.1. Animals and Diets
2.1.1. Semi-Synthetic Diets

To assure the consistency and continuity of experimental and clinical research concern-
ing the biological and physiologic potential of grapes, a freeze-dried powder is manufac-
tured under the auspices of the California Table Grape Commission (Fresno, CA, USA). The
grape powder, which serves as a surrogate for fresh grapes, is composed of fresh seeded
and seedless red, green and black grapes that are ground and freeze-dried to retain their
bioactive compounds. For the current studies, standardized freeze-dried grape powder,
as prepared and analyzed as described previously [31], was supplied in vacuum-sealed
packets and stored at −20 ◦C to promote the stability of phytochemical components. To
further assure quality, the standard product was subjected to microbial analyses and found
to be contaminant-free [31].

Based on the composition of grapes, paired isocaloric diets were custom designed and
produced by Envigo (Madison, WI, USA) as follows: 4% fat standard diet (STD; TD.160157),
STD + 5% (w/w) standardized grape powder (STD5GP; TD.160158), 42% fat high-fat diet
(HFD; TD.160154) and HFD + 5% (w/w) standardized grape powder (HFD5GP; TD.160155)
(Table 1). As described previously, the addition of grape powder in this fashion to these
diets does not significantly affect the rate of consumption [32].

Table 1. Dietary constituents: 4% fat standard diet (STD; TD.160157); STD + 5% (w/w) standardized
grape powder (STD5GP; TD.160158); 42% fat high-fat diet (HFD; TD.160154); and HFD + 5% (w/w)
standardized grape powder (HFD5GP; TD.160155). Diets were produced by Envigo (Madison,
WI, USA).

Standard Diet
(TD.160157) 3

Standard Diet with 5%
Grape Powder
(TD.160158) 3

High-Fat Diet
(TD.160154) 4

High-Fat Diet with 5%
Grape Powder
(TD.160155) 4

Formula (g/kg)
Casein 195 195 195 195

DL-Methionine 3 3 3 3
Sucrose 191.1 191.1 191.1 191.1

Dextrose, anhydrous 66.45 44.3 64.45 44.3
Fructose 66.45 44.3 64.45 44.3

Corn Starch 235.03 232.88 167.43 161.37
Maltodextrin 100 100 0 0

Anhydrous Milkfat 1 30 29.85 210 210
Soybean oil 10 10 0 0
Cholesterol 0 0 1.5 1.5
Cellulose 50 50 50 50

Mineral Mix, AIN-76
(170,915) 35 35 35 35

Potassium Citrate,
monohydrate 4.03 2.69 4.03 2.69

Calcium Carbonate 4 4 4 4
Vitamin Mix, Teklad

(40,060) 10 10 10 10

Ethoxyquin,
antioxidant 0.04 0.04 0.04 0.04

Grape powder,
freeze-dried 2 0 50 0 50

1 For each 100 g: Total fat, 99.8 g; Saturated fat, 67 g; Trans fat, 2.6 g; Polyunsaturated fat, 3.9 g; Monounsaturated
fat, 26.3 g. 2 Grape powder is considered to contain 3.71 kcal/g, 3% fat, 88.6% carbohydrate (as a 1:1 mixture of
fructose and glucose), 3.58% protein and 9.73 g/kg K+. 3 Formulated to 3.6 Kcal/g (Protein, 19.1%; Carbohydrate,
70.5%; Fat, 10.4%). 4 Formulated to 4.5 Kcal/g (Protein, 15.3%; Carbohydrate, 42.4%; Fat, 42.3%).
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2.1.2. Survival Analyses

Two hundred female C57BL/6J mice were obtained from The Jackson Laboratory
(Bar Harbor, ME) at four-weeks-of-age and provided with the STD. At 14-weeks-of-age,
mice were randomly assigned to two groups (100 per group) and placed on the HFD
or the HFD5GP, respectively. The number of mice per group was selected based on a
power analysis conducted using a G*Power a priori test (effect size calculated, 0.3; alpha
error probability, 0.05; degrees of freedom, 1). Mice were housed in temperature and
humidity-controlled cages, with a 12 h light-dark cycle. No other animals were housed
in the same room. Food and water were provided ad libitum throughout their lifetime. A
radio-frequency identification (RFID) microchip (Unified Information Devices Inc., Lake
Villa, IL, USA) was implanted in each mouse for permanent identification. The body weight
of each mouse was measured every other week over the course of the study, and survival
was monitored. This study was conducted in accordance with an Institutional Animal
Care and Use Committee (IACUC) protocol approved at Long Island University (protocol
number 19-07).

2.1.3. Liver Analyses

Forty female C57BL/6J mice were obtained from The Jackson Laboratory (Bar Harbor,
ME, USA) at six- weeks-of-age. At 11-weeks-of-age, the mice were randomly divided into
four groups (n = 10 per each group) and provided with one of four diets described in Table 1
for the next 13 weeks. The mice were housed in temperature and humidity-controlled
cages with HEPA filters and were provided with bio-huts and wooden blocks for rodent
enrichment. Water and food were provided ad libitum with a 12 h light-dark cycle. RFID
microchips were implanted to track the body weight of each mouse until the end of the
study. This work was conducted in accordance with an IACUC protocol approved at Long
Island University (protocol number 19-07).

2.2. Liver Collection

With mice staged for liver analyses (Section 2.1.3), at 24-weeks-of-age, after fasting
for 12 h (from 10 p.m. to 10 a.m.), euthanasia was performed with 100% CO2 gas. The
right lobe and distal part of left lobe of the liver was immersed in RNAlaterTM Stabilization
Solution (Thermo Fisher, Waltham, MA, USA) for RNA-sequencing. A part of the left lobe
was stored in 10% Neutral Buffered Formalin (NBF) for Hematoxylin and Eosin (H&E)
staining. The remaining part of the liver, containing the right and caudate lobe, was snap
frozen in liquid nitrogen.

2.3. Histopathological Examination of Liver

Livers fixed in 10% NBF were transferred to 70% EtOH. Samples were dehydrated
in ascending grades of alcohol (70, 95%, and finally absolute alcohol), cleared in xylene,
and infiltrated with paraffin at 60 ◦C using the Leica ASP300S processor. The tissues
were then embedded in paraffin molds with the Leica EG1150C. For histopathological
evaluation, serial sections were cut at 4 µm thickness and deparaffinized in xylene and
graded alcohols (100 and 90%), then stained with H&E (Poly Scientific R&D Corp: S216
and A176), dehydrated in graded alcohols (90 and 100%), cleared in xylene using an
automatic Leica autostainer XL, and cover slipped with cytoseal 60 (Thermo Scientific:
8310-4) mounting media.

2.4. RNA-Sequencing

Total RNA was isolated from the liver of the four diet groups (Section 2.1.3) using
an RNeasy kit (Qiagen, Hilden, Germany), and the samples were shipped to Novogene
Corporation Inc. (Sacramento, CA, USA) for RNA-Sequencing. In total, 40 samples were
analyzed, 10 from each group (n = 10).



Foods 2022, 11, 1984 6 of 25

2.4.1. Differential Expression Analyses

Differential expression analyses among the four diet groups were performed using the
DESeq2 R package (1.14.1) [33]. Adjusted p value (Padj), also referred to as false discovery
rate (FDR), of 0.05, and |log2(fold-change)| of 1, were set as the threshold for significant
differential expression.

2.4.2. Gene Ontology Analyses

Gene Ontology (GO) enrichment analyses were performed by comparing the query
gene sets of differentially expressed genes (DEGs) among the four diet groups with GO
terms curated in the gene ontology resource (http://geneontology.org (accessed on 1 March
2020)), as “biological process”, “molecular function”, and “cellular component” aspects,
with Padj < 0.05 considered as significant enrichment.

2.4.3. KEGG and Reactome Pathway Analyses

KEGG and Reactome pathway analyses were performed by comparing the query
gene sets of differentially expressed genes (DEGs) among the four diet groups with terms
curated in the KEGG database (http://www.kegg.jp/ (accessed on 1 March 2020)) or
Reactome database (http://www.reactome.org (accessed on 1 March 2020)) with Padj < 0.05
considered as significant enrichment.

2.5. RT-qPCR

The purity and the quantity of total RNA extracted from liver were measured using a
Biospec-nano spectrophotometer (Shimadzu). A260/A280 ratios of all samples were ≥2.0. The
reaction step for removing gDNA was conducted as follows: a master mix was prepared using
iScript DNase and iScript DNase buffer (provided in iScript gDNA clear cDNA synthesis kit,
catalogue number 172-5034). This mixture was added to the RNA samples and incubated at
25 ◦C for 5 min and 75 ◦C for 5 min in an Eppendorf Mastercycler pro PCR system. Next, iS-
cript reverse transcription supermix was added to DNase-treated RNA samples and incubated
at 25 ◦C for 5 min, 46 ◦C for 20 min, and 95 ◦C for 1 min. The resultant cDNA was used for
quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) to measure gene ex-
pression levels of Gstp1 and Gapdh (reference gene). iTaq Universal SYBR Green Super mix (Bio-
rad, Catalogue number 1725121), Gstp1 forward primer (5′-TGGGCATCTGAAGCCTTTTG-
3′), Gstp1 reverse primer (5′-GATCTGGTCACCCACGATGAA-3′), Gapdh forward primer (5′-
AACGACCCCTTCATTGAC-3′), and Gapdh reverse primer (5′-TCCACGACATACTCAGCAC-
3′) were used for the procedure. The fluorescence signal from SYBR Green was detected
with a LightCycler® 480 Instrument II, and the crossing point (Cp) value of each sample was
obtained with LightCycler® 480 analysis software. The relative fold gene expression was
calculated using the 2−∆∆Ct method [34].

2.6. Statistical Analyses

To determine the statistical significance related to diet and age, two-way ANOVA
or two-way repeated measures (RM) ANOVA were performed using SigmaPlot 12.5 (Sy-
stat Inc., San Jose, CA, USA). Pearson’s correlation coefficients were computed, and the
significance (r 6= 0) was determined by regression analysis using Microsoft® Excel. For
comparing regression analyses, the Chow test was conducted using Jupiter notebook 6.0.1,
Python3. Values of p < 0.05 were considered significant, and detailed values of statistical
significance are provided in figure legends and text. For survival analysis, the log-rank
test was conducted between the two diet groups using GraphPad Prism 8, considering
p < 0.05 as significant. The hazard ratio in the survival analysis was computed with the
log-rank test approach using GraphPad Prism 8. The hazard ratio for the log-rank test was
calculated as (Oa/Ea)/(Ob/Eb), where Oa and Ob represent the number of observed events
(deaths) in each group, and Ea and Eb represent number of expected events assuming a
null hypothesis of no difference in survival. The standard error of the natural logarithm of

http://geneontology.org
http://www.kegg.jp/
http://www.reactome.org
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the hazard ratio is sqrt(1/Ea + 1/Eb) [35]. Additional statistical methods are described in
the text; data are shown as means ± SD.

3. Results
3.1. Effect of Diets on Mouse Body Weight

As a part of the indirect evaluation of mouse health upon dietary intervention, the
body weight of each mouse was recorded every week for 13 weeks (Figure 1). The average
body weight of mice (n = 40) at the start of diet intervention (week 11) was 21.73 ± 1.82 g,
with no significant variation between and within groups following randomization for
creating four groups [two-way ANOVA with F (1, 36) = 0.0351 and p = 0.852]. Starting
at week 17, until the end of the study, mouse body weight increased as a function of age
[two-way RM ANOVA; F (13, 468) = 105.971, p < 0.001]. At the end of the intervention
with respective diets (week 24), the average body weight of mice provided with the HFD
(33.23 ± 4.48 g) was significantly greater than the average body weight of mice provided
with STD (24.13 ± 1.67 g) [two-way ANOVA with Holm–Sidak multiple comparison post
hoc test with F (1, 36) = 53.91 and p < 0.001] (Table 2). The average body weight of the STD
group (24.13 ± 1.67 g) did not differ from the average body weight of the STD5GP group
(22.93 ± 2.30 g) (p = 0.635, 2-way RM ANOVA), and the average body weight of the HFD
group (33.23 ± 4.48 g) did not differ from the average body weight of the HFD5GP group
(32.07 ± 5.79 g) (p = 0.414, 2-way RM ANOVA). Thus, given that there was no difference
found within the standard diet groups (STD and STD5GP) or the high-fat diet groups (HFD
and HFD5GP), we conclude that grape powder supplementation of the diets does not have
an effect on mouse body weight.
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Figure 1. Dietary fat content but not grape supplementation affects mouse body weight. Body
weights of mice from the beginning of the diet schedule (11 weeks-of-age) for the next 13 weeks
(24-weeks-of-age) on standard diet (STD) (n = 10), standard diet supplemented with 5% grape powder
(STD5GP) (n = 10), high-fat diet (HFD) (n = 10), or high-fat diet supplemented with 5% grape powder
(HFD5GP) (n = 10). Prior to 11 weeks of age, all mice were provided with the STD. Mouse body
weights were monitored weekly. The body weight of the high-fat diet groups was greater than that of
the standard diet groups [two-way ANOVA: F (1, 36) = 53.91, p < 0.001]. Within the respective groups,
grape supplementation did not significantly alter body weight. Additional details are presented in
the text and in Table 2.
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Table 2. Summary of the body weights for the indicated groups of mice after 13 weeks on
respective diets.

Diet Groups Average (g) Median (g)

STD 24.13 ± 1.67 a 23.58
STD5GP 22.93 ± 2.30 a 23.36

HFD 33.23 ± 4.48 b 33.27
HFD5GP 32.07 ± 5.79 b 30.91

Average values are given as mean ± SD. There is no significant difference between the values with the same
superscripts (n = 10). There is a significant difference between the values designated as a and b (p < 0.001,
two-way ANOVA).

3.2. Grape Powder Supplementation of High-Fat Diet Enhances Mouse Longevity

In order to assess the effect of supplementing a high-fat diet with grape powder, a
lifelong dietary study was performed with C57BL/6J mice (Section 2.1.2). Throughout the
course of the work, body weight and survival were recorded. As shown in Figure 2A, the
body weight of the two groups did not show any difference until about four months-of-age,
when mice provided with the HFD5GP began a path of divergence (HFD vs. HFD5GP;
p = 0.001; Student’s t-test). The highest body weight observed for the mice provided with
the HFD5GP was 44.86 ± 9.96 g, which is greater than the highest body weight recorded
for mice provided with the HFD, 38.90 ± 10.02 g (p = 0.002, Student’s t-test).

This trend continued until about 100-weeks-of-age, when a diminution of body
weight, similar to that observed with mice on the HFD at around 70-weeks-of-age, came
into play. This extended maintenance of body weight correlated with survival, as illus-
trated by the Kaplan-Meier curve presented in Figure 2B. The survival of mice provided
with the HFD5GP was significantly enhanced compared to mice provided with the HFD
(p = 0.036; log-rank test). The hazard ratio of the HFD group was calculated as 1.397
(95% CI, 0.99–1.96), whereas the hazard ratio of the HFD5GP group was 0.715 (95% CI,
0.507–1.009), indicating an increased risk of mortality for mice provided with the HFD.

Furthermore, the correlation analysis of individual mouse body weight maxima as
a function of longevity is shown in Figure 2C. For mice provided with the HFD, there
was a positive correlation between the age of highest body weight vs. lifespan (r2 = 0.64,
p < 0.0001, regression analysis) and overall highest body weight vs. lifespan (r2 = 0.50,
p < 0.0001, regression analysis). Similarly, for HFD5GP, there was a significant positive
correlation between the age of highest body weight vs. lifespan (r2 = 0.71, p < 0.0001,
regression analysis) and the overall highest body weight vs. lifespan (r2 = 0.47, p < 0.0001,
regression analysis). Comparing the two groups shown in these regression analyses, there
was no significant difference between the overall highest body weight obtained by the HFD
group and the HFD5GP groups (p = 0.991, Chow test). However, as suggested by visual
inspection of Figure 2A, the age at which the highest body weight was achieved appears to
be later in life with the HFD5GP group as compared to the HFD group. This same tendency
can be gleaned by inspection of the data shown in Figure 2C, with greater density observed
in the upper right-hand quadrants of the HFD5GP groups. Statistical significance was not
achieved when comparing age at the highest body weight with lifespan with the HFD5GP
and HFD groups (p = 0.141, Chow test), but the trend is apparent.

Taken together, these data demonstrate that grape powder supplementation of a HFD
significantly improves mouse survival relative to a HFD without grape supplementation,
and the cachexia associated with morbidity and mortality is delayed.



Foods 2022, 11, 1984 9 of 25
Foods 2022, 11, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 2. Grape powder supplementation of a high-fat diet affects temporal weight loss and in-
creases the lifespan of C57BL/6J mice. (A) At 14-weeks-of-age, mice were divided into two groups 
(n = 100 per group), and diet was changed from the STD to either the high-fat diet (HFD) or the high-
fat diet supplemented with 5% grape powder (HFD5GP) for the remainder of their lifespan. Body 
weight was recorded every two weeks and recorded as mean ± SD. (B) Kaplan-Meier plot showing 
the survival of mice provided with the HFD or the HFD5GP. Survival was enhanced with the group 
provided with the HFD5GP (p = 0.036; log-rank test). The hazard ratio of the HFD group was 1.397 
(95% CI, 0.99–1.96), whereas the hazard ratio for the HFD5GP group was 0.715 (95% CI, 0.507–1.009). 
(C) Correlation plots showing the age at highest body weight versus lifespan for individual mice 
(upper panels), and the highest body weight attained by individual mice versus lifespan (lower 
panels). 
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As a high-fat content of diet is a known cause of lipid accumulation leading to hepatic 
steatosis, we were interested in examining the potential effect of supplementing the HFD 
with grape powder. Toward this end, mice that had been provided with the HFD or with 
the HFD5GP for 13 weeks were fasted for a period of 12 h [36] and euthanized. Liver was 

Figure 2. Grape powder supplementation of a high-fat diet affects temporal weight loss and
increases the lifespan of C57BL/6J mice. (A) At 14-weeks-of-age, mice were divided into two
groups (n = 100 per group), and diet was changed from the STD to either the high-fat diet (HFD)
or the high-fat diet supplemented with 5% grape powder (HFD5GP) for the remainder of their
lifespan. Body weight was recorded every two weeks and recorded as mean ± SD. (B) Kaplan-Meier
plot showing the survival of mice provided with the HFD or the HFD5GP. Survival was enhanced
with the group provided with the HFD5GP (p = 0.036; log-rank test). The hazard ratio of the HFD
group was 1.397 (95% CI, 0.99–1.96), whereas the hazard ratio for the HFD5GP group was 0.715 (95%
CI, 0.507–1.009). (C) Correlation plots showing the age at highest body weight versus lifespan for
individual mice (upper panels), and the highest body weight attained by individual mice versus
lifespan (lower panels).

3.3. Grape Powder Supplementation of High-Fat Diet Reduces Lipid Accumulation in Mouse Liver

As a high-fat content of diet is a known cause of lipid accumulation leading to hepatic
steatosis, we were interested in examining the potential effect of supplementing the HFD
with grape powder. Toward this end, mice that had been provided with the HFD or with
the HFD5GP for 13 weeks were fasted for a period of 12 h [36] and euthanized. Liver was
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harvested and processed for histological examination by H&E staining. Representative
images of H&E-stained samples are shown in Figure 3A. By visual inspection, fat vacuoles
indicative of lipid accumulation was clearly apparent in the specimens obtained from the
HFD group. For quantification, as described previously [37], fat vacuoles observed in the
samples were scored as follows: −,0; +/−,0.5; +,1; ++,2; +++,3. As illustrated in Figure 3B,
liver samples from mice provided with the HFD had a significantly greater number of fat
vacuoles compared to those from mice provided with the HFD5GP. These data suggest that
the addition of grape powder to the HFD has the potential of reducing or preventing the
extent of hepatic steatosis.
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Figure 3. Effect of grape on hepatic steatosis. (A) Representative H&E images of liver from mice
provided with the HFD (1 and 2) and the HFD5GP (3 and 4) (image magnification, 20X). (B) Quan-
titation of the number of fat vacuoles in the liver from mice provided with the HFD (n = 5) or the
HFD5GP (n = 5). Values are presented as mean ± SD. * p = 0.032 and U = 2.0 (Mann-Whitney U test).
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3.4. Dietary Fat Content and Supplementation with Grape Powder Alters Gene Expression Profiles
in Mouse Liver

To determine the effect of dietary fat content and grape powder supplementation on
gene expression, we performed RNA-Seq analysis with RNA isolated from liver derived
from each of the four groups of mice described in Section 2.1.3 (n = 40). The Venn dia-
gram shown in Figure 4A illustrates the number of genes (FPKM > 1) that are uniquely
expressed within each group as well as overlapping regions that show the number of
genes co-expressed in two or more groups. Interestingly, the HFD and HFD5GP groups
demonstrated the unique expression of 66 and 192 genes, respectively, whereas the STD and
STD5GP groups demonstrated the unique expression of 106 and 222 genes, respectively. To
further compare the gene expression patterns of the four diet groups, a differentially ex-
pressed gene (DEG) list was used for cluster analysis and the generation of a heatmap. Each
group demonstrated a distinctive gene expression profile, as clearly shown in Figure 4B.
Remarkably, a cluster analysis revealed the gene expression profile of the STD group maps
in a relatively similar fashion to the HFD group. Adding grape to the STD alters the
expression pattern, with cluster analysis placing the STD5GP group adjacent to the STD
and HFD5GP groups. The most profound difference was observed with the HFD5GP
group, which is substantially different from that of HFD and STD5GP groups, but mapped
somewhat closer to the STD5GP group, as suggested by cluster analysis (Figure 4B). These
data demonstrate that a change in diet composition, whether in terms of fat content or
grape powder supplementation, alters gene expression profiles in the liver.
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Figure 4. Dietary fat content and grape powder supplementation alters gene expression profiles
in mouse liver. (A) Venn diagram of genes expressed by the four groups of mice illustrating genes
co-expressed (overlapping regions) and uniquely expressed (non-overlapping regions) among all
groups. The default threshold of FPKM value is set to 1 for the selection of the genes for each group.
(B) Heat map and cluster analysis showing unique gene expression profiles for each of the four
groups of mice. Clustering analysis was carried out by Novogene Corporation Inc. (Sacramento, CA,
USA) using a build-in R package, heatmap. Focus is placed on data (Union_for_cluster.xls) which
is the union gene set of all comparison groups. Relative gene expression levels and −log2(ratios)
are used for clustering. The clustering calculates the distance between each gene and evaluates the
relative gene distance through iteration. Finally, genes are divided into several subgroups according
to gene distance. H-cluster, K-means and SOM are the main clustering methods used, implemented
in R language (Version 1.0.12).

3.5. High Dietary Fat Content Alters Gene Expression in Mouse Liver

Changing the diet composition to a high-fat content leads to altered metabolic pro-
cesses in the liver. Comparison of RNA-Seq data derived from the HFD and STD groups
shows that a change in fat content in the diet leads to the upregulation of 1554 genes
and the downregulation of 1313 genes, yielding a total of 2867 DEGs (Figure 5A). Using
these 2867 DEGs for GO enrichment analysis, in the liver of mice provided with the HFD,
a variety of metabolic processes appear as significantly enriched (Figure 5B). Pathway
analysis using the KEGG and Reactome databases did not reveal any statistically significant
enrichment of processes or pathways in the liver of mice fed a diet with high-fat content
(data not shown).
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Figure 5. HFD alters gene expression in mouse liver. (A) Volcano plot showing upregulated (red
dots) (1554), downregulated (green dots) (1313) and unaltered (blue dots) genes in liver derived from
the HFD group compared to the STD group. The threshold for differentially expressed genes was set
as |log2(fold-change)| > 1 and −log10(Padj) > 1.3 (Padj < 0.05). The plot illustrates the upregulation
of 1554 genes and the downregulation of 1313 genes. (B) GO analysis showing significantly enriched
terms for the gene set differentially expressed in the liver of mice from the HFD group compared to
the STD group. −log10(Padj) > 1.3 (Padj < 0.05) was considered as significant enrichment.
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3.6. Grape Powder Supplementation Alters Gene Expression in Mouse Liver

RNA-Seq data obtained from the liver of grape powder supplemented dietary groups
were compared to non-supplemented dietary groups. Relative to the STD group, the
STD5GP group demonstrated the upregulation of 2890 genes and the downregulation of
2107 genes, yielding a total of 4997 DEGs (Figure 6A). Relative to the HFD group, the
HFD5GP group demonstrated the upregulation of 3392 genes and the downregulation of
2247 genes, yielding a total of 5639 DEGs (Figure 6B). Using these DEGs as a query gene set
for GO enrichment analysis, ribosome, ribosomal subunit, mitochondrial protein complex,
mitochondrial inner membrane and several other ribosome and mitochondria associated
terms were significantly enriched in the liver of mice provided with the grape supplemented
diet (Figure 6C,D). Pathway analysis using the KEGG and Reactome databases also showed
ribosome, translation and ribosome and translation associated terms as significantly en-
riched in the liver of mice provided with the grape supplemented diet (Figure 7A–D). These
data demonstrate that supplementation of the diet with grape powder, irrespective of fat
content, leads to altered gene expression in the liver.
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Figure 6. Grape powder supplementation of diet alters gene expression in mouse liver irrespec-
tive of fat content. (A) Volcano plot showing upregulated (red dots) (2890), downregulated (green
dots) (2107), and unaltered (blue dots) genes in the liver of mice provided with STD5GP compared
with that of mice provided with STD. The threshold for differentially expressed genes was set as
|log2(fold-change)| > 1 and −log10(Padj) > 1.3 (Padj < 0.05). (B) Volcano plot showing upregulated
(red dots) (3392), downregulated (green dots) (2247), and unaltered (blue dots) genes in the liver of
mice provided with HFD5GP compared with that of mice provided with HFD. The threshold for
differentially expressed genes was set as |log2(fold-change)| > 1 and −log10(Padj) > 1.3 (Padj < 0.05).
(C) GO enrichment analysis showing the top significantly enriched terms for the gene set differen-
tially expressed in the liver of the STD5GPgroup compared with the STD group. (D) GO enrichment
analysis showing the top significantly enriched terms for the gene set differentially expressed in
the liver of the HFD5GP group compared to the HFD group. −log10(Padj) > 1.3 (Padj < 0.05) was
considered as statistically significant enrichment.

3.7. Grape Powder Supplementation of High Fat Diet Alters Genes Responsible for Lipid
Metabolism in Mouse Liver

To explore the molecular mechanism related to the effect of grape powder supple-
mentation in reducing HFD-induced lipid accumulation in mouse liver, we mined our
RNA-Seq data of liver from the HFD and HFD5GP groups for genes involved in lipid
metabolism. It was found that genes involved in the transportation of free fatty acids (FFA)
to the site of degradation, such as Fabp1 [38], and in mitochondrial degradation of FFA,
such as Acads, Atp5j, Atp5j2, Atp5k, and Atp5l [39–41], were significantly upregulated in the
liver of the HFD5GP group compared to the HFD group (Table 3). In addition, we found
that the genes such as Mogat1 [42], involved in phospholipid esterification [43], were also
significantly upregulated in the liver of mice provided with the HFD5GP compared to that
of mice provided with the HFD (Table 3). Furthermore, we found that the genes involved
in sequestration of FFA, such as Plin3 and Plin5 [44], in hydrolysis of FFA remaining after
sequestration [45], such as Abhd16a, and Abhd17b [46], were also significantly upregulated
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in the liver of mice provided with the HFD5GP compared to those of mice provided with
the HFD (Table 3). On the other hand, we found that genes such as Plin4, Acaa1b [47],
and Slc27a1, associated with lipid content [48], cholesterol synthesis and redistribution of
lipids from fat and muscle to liver [49], were significantly downregulated in the liver of the
HFD5GP group compared with that of the HFD group (Table 3). Taken together, these data
demonstrate that grape powder supplementation of the HFD modulates the expression of
genes involved in lipid metabolism and thereby may lead to reduction in HFD-induced
lipid accumulation in mouse liver.
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the top significantly enriched terms for the gene set differentially expressed in the liver of the STD5GP
group compared with the STD group. (B) KEGG pathway analysis showing the top significantly en-
riched terms for the gene set differentially expressed in the liver of the HFD5GP group compared with
the HFD group. −log10(Padj) > 1.3 (Padj < 0.05) was considered as statistically significant enrichment.
(C) Reactome pathway analysis showing the top significantly enriched terms for the gene set differ-
entially expressed in the liver of the STD5GP group compared with the STD group. (D) Reactome
pathway analysis showing the top significantly enriched terms for the gene set differentially expressed
in the liver of the HFD5GP group compared with the HFD group. −log10(Padj) > 1.3 (Padj < 0.05)
was considered as statistically significant enrichment.

Table 3. Mouse hepatic genes involved in lipid metabolism that are modulated by grape powder
supplementation of the HFD.

Genes HFD5GP vs. HFD
Log2(FC) 1

HFD5GP vs. HFD
Padj Value

HFD vs. STD
Log2(FC) 1

HFD vs. STD
Padj Value Function

Fabp1 1.208 0.0001 0.421 0.006 Transportation of FFA for
degradation

Acads 1.091 <0.0001 0.239 0.043 Mitochondrial degradation
Atp5j 1.320 <0.0001 0.294 0.027 Mitochondrial degradation
Atp5j2 1.298 <0.0001 0.311 0.053 Mitochondrial degradation
Atp5k 1.223 <0.0001 0.461 0.012 Mitochondrial degradation
Atp5l 2.558 <0.0001 0.458 0.030 Mitochondrial degradation

Mogat1 1.198 0.013 1.149 <0.0001 Esterification
Plin5 1.864 <0.0001 0.065 0.743 Sequestration
Plin3 1.026 <0.0001 0.083 0.870 Sequestration

Abhd16a 1.880 <0.0001 0.261 0.090 Hydrolysis
Abhd17b 1.094 0.0005 0.186 0.419 Hydrolysis

Plin4 −0.941 0.010 1.861 <0.0001 Associate preferentially
with small lipid droplets

Acaa1b −1.440 0.0001 0.510 0.0001 Cholesterol synthesis

Slc27a1 −0.981 0.0003 0.645 0.0002 Redistribution of lipids from
fat and muscle to liver

1 Fold-change (FC).

3.8. Grape Powder Supplementation of Standard but Not High-Fat Diet Enhances Antioxidant
Potential in Mouse Liver

A large number of phytochemicals are known to exhibit antioxidant activity. To
provide a preliminary assessment of the potential of dietary grape supplementation to
mediate such a response, we mined our RNA-Seq data of liver from the STD, STD5GP,
HFD, and HFD5GP groups and examined the expression of Gstp1, a known regulator of
oxidative stress [50]. It was found that Gstp1 was significantly upregulated in the liver of
mice provided with the STD5GP compared to mice provided with the STD (Figure 8A).
Based on RNA-Seq data, the difference in the expression of Gstp1 when comparing the
HFD5GP and HFD groups was not statistically significant (data not shown). We further
examined Gstp1 expression by performing RT-qPCR analysis with RNA isolated from liver
of the four dietary groups. Gstp1 expression was significantly increased, by about five-fold,
in the liver of mice of the STD5GP group compared with that of the STD group (Figure 8B).
Enhancement of expression was evidenced with liver from the HFD5GP group compared
with that of the HFD group, but statistical significance was not quite achieved with these
experimental conditions (p = 0.068).
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Figure 8. Grape powder supplementation enhances Gstp1 expression in mouse liver. (A) Log10

(FPKM+1) values for Gstp1 expression derived from RNA-Seq data obtained with the liver of mice
from the STD5GP group compared with liver of mice from the STD group (* p < 0.0001; two-sample
two-tailed t-test). Comparison of the HFD and HFD5GP groups revealed no difference (Padj = 0.782).
(B) RT-qPCR analysis of Gstp1 expression in the liver of mice from the STD5GP group compared to
liver of mice from the STD group (* p = 0.001; two-sample two-tailed t-test), and from liver of mice
from the HFD5GP group compared with liver of mice from the HFD group (p = 0.068). Data are
presented as mean ± SD of three independent experiments.

In that these data demonstrate the potential of grape powder supplementation to en-
hance Gstp1 expression, we examined some additional genes operating under the control of
the antioxidant-response element (ARE) by mining our RNA-Seq data. Relative to the STD
and HFD groups, the grape diet enhanced the expression of glutathione peroxidase 4 (Gpx4)
in the STD5GP [log2(1.285); Padj, 0.00004] and HFD5GP [log2(2.401); Padj < 0.0001] groups.
In addition, relative to these controls, grape diet elevated the expression of glutathione
synthetase (Gss) in the STD5GP [log2(1.886); Padj < 0.0001] and the HFD5GP [log2(0.812);
Padj, 0.008] groups. Relative to the STD group, glutathione peroxidase 7 (Gpx7) [log2(0.818);
Padj, 0.012] and superoxide dismutase type 1(Sod1) [log2(0.573); Padj, 0.039] were upregu-
lated in the STD5GP group, and relative to the HFD group, glutathione peroxidase 8 (Gpx8)
[log2(1.189); Padj, 0.003] was upregulated in the HFD5GP group.

4. Discussion

Many scientific investigations conducted with whole foods, compounds derived from
whole foods, drugs, or other test substances are conducted with in vitro or animal models
of acute disease. Controlled chronic consumption of a high-fat diet also represents a
model of disease, but the ramifications are less acute. For this work, we elected to employ
female C57BL6/J mice. These mice are known to be responsive to a high-fat diet [51], and
the progression of obesity and metabolic anomalies resembles the condition of human
obesity [52]. The administration of a high-fat diet to these mice reduces their lifespan by
approximately 34% [30].

The main focus of our work was to investigate the potential of dietary grapes, as a
whole food, to modulate some parameters associated with high-fat diet consumption. For
this purpose, we utilized a standardized whole grape product that is representative of
what is found in the human diet rather than studying a single phytochemical known to be
in grapes, such as resveratrol. To limit experimental variables, we used a semi-synthetic
standard diet as a base, which is devoid of confounding constituents that are present
in commercial animal chow. Furthermore, we elected to supplement the high-fat semi-
synthetic diet with 5% grape powder. Although translations of dose between species is not
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an exact science, based on body weight, daily consumption rates, and metabolic correction
factors [53], it was estimated that supplementation of the mouse diet with 5% grape powder
corresponds to the daily consumption of about 300 g of fresh grapes by a human being
weighing 70 kg. This quantity corresponds to roughly 2.5-times a normal
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One part of our study was designed to investigate the effect of adding grape powder
to a standard diet. Remarkably, based on RNA-Seq analysis, unique genetic expression
profiles were observed with each dietary group. Relative to the STD5GP group, 109 unique
genes were expressed in the STD group, and relative to the STD group, 222 unique genes
were expressed in the STD5GP group. Cluster analysis revealed distinct differences between
the two groups, which was accentuated by the differential expression of 4997 genes.

Results generated by data mining tools, including GO, KEGG and Reactome, suggest
that dietary grape supplementation (STD5GP) significantly increased structural integrity
in the ribosome, mitochondrial protein complex, organelle inner membrane, and protein
translation-related pathways when compared to the control group (STD). The enrichment
of ribosome related genes, which are primarily involved in the translation of genetic infor-
mation [54] and cell survival [55]. Enriched ribosomal genes are associated with processes
such as cell growth, differentiation, proliferation and biological development [54]. Dysreg-
ulation from these processes can potentiate diseases such as Diamond–Blackfan anemia,
Schwachman–Diamond syndrome, and cancer, including hepatocellular carcinoma [56].

Although not listed in the figures as top-ranked pathways, drug metabolism, glu-
tathione, detoxification, and oxidative stress-associated pathways were significantly enriched
in the STD5GP group, as follows: response to oxidative stress (GO:0006979) (Padj < 0.0039),
glutathione metabolic process (GO:0006749) (Padj < 0.006), glutathione transferase activ-
ity (GO:0004364) (Padj < 0.025), drug metabolism—other enzymes (KEGG: mmu00983)
(Padj < 0.029), cellular responses to stress (R-MMU-2262752) (Padj < 0.00001), and detoxi-
fication of reactive oxygen species (R-MMU-3299685) (Padj < 0.0045).

Since Gstp1 is listed as a common component of these pathways, we investigated this
species in further detail. Grape supplementation significantly elevated the expression of
Gstp1 in the STD5GP group compared with the STD group, suggesting a greater potential
for metabolic detoxification. This is of interest since GSTs have an established role in
metabolizing xenobiotics and protection against procardiogenic factors, along with the
detoxification of ROS. This, in turn, let us to investigate some related species of relevance
through the mining of our RNA-Seq data. Relative to the STD and HFD groups, the grape
diet enhanced the expression of glutathione peroxidase 4 (Gpx4), glutathione synthetase
(Gss), glutathione peroxidase 7 (Gpx7), superoxide dismutase type 1 (Sod1), and glutathione
peroxidase 8 (Gpx8). Oxidative stress can be regarded as a primary factor leading to
pathological conditions such as diabetes, neurodegenerative diseases, and cardiovascular
diseases [57], and the species listed here potentiate the maintenance of a redox cellular
state [58].

Of course, a multitude of adverse consequences is associated with the chronic con-
sumption of a high-fat diet. Of major concern is the initiation of nonalcoholic fatty liver
disease (NAFLD). Our data suggest that grape has the potential to abate nonalcoholic fatty
liver (NAFL), which can lead to liver damage/enlargement or other liver complications.
NAFLD is estimated to affect about 25 percent of adults in the world. In our 24-week study,
the average body weight of mice provided with the HFD5GP (32.07 ± 5.79 g) did not differ
from those provided with the HFD (33.23 ± 4.48 g). However, gross histological examina-
tion of the liver revealed the diminution of a hallmark associated with NAFL, vacuoles
indicative of lipid accumulation. This important observation requires additional investiga-
tion, but the comparison of genetic expression profiles obtained with liver obtained from
the HFD and HFD5GP groups is worth consideration.

First, on a global level, the comparison of the HFD and HFD5GP groups demonstrated
the expression of 66 and 192 unique genes, respectively. Of further interest, cluster analysis
suggests that variation between the HFD5GP and HFD groups differs to the greatest extent
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of all the groups tested. As anticipated, there are major differences between the STD and
the HFD groups, with 2867 genes differentially expressed, but remarkably, comparison of
the HFD group with the HFD5GP group revealed the differential expression of 5639 genes.
The implications in terms of pathway modulation can be gleaned from inspection of
the data provided herein, some of which suggest the reduction of fatty liver, including
mitochondrial and peroxisomal degradation, esterification, phospholipid metabolism,
sequestration and hydrolysis.

The introduction of a high-fat diet leads to widespread changes in catabolic pro-
cesses [59] which, as suggested here by GO analysis, was positively regulated by grape sup-
plementation. GO analysis also indicated grape supplemented HFD led to the enrichment
of mitochondrial energy metabolism, which may be related to cell growth, differentiation
and development [60].

Given that a high-fat diet is clearly detrimental to health, trending toward a homeo-
static state should be of benefit [61], and dietary grape supplementation may be helpful in
this regard. Of particular note, the two top categories indicated by KEGG pathway analysis
are Alzheimer’s disease and NAFLD. A cadre of genes are known to participate in the
generation of NAFLD, and lipid metabolism in general, including those listed in Table 3.
Here we show the statistically significant modulation of several relevant genetic entities.
Briefly, grape effectively upregulated the expression of FABP1, which is responsible for the
transportation of fatty acids to degradation sites [38]. Genes including Acads, Atp5j, Atp5j2,
Atp5k and Atp5l were upregulated by grape supplementation, suggesting the mitochondrial
degradation of fatty acids [39–41]. The gene responsible for esterification, Mogat1 [42], was
upregulated in the HFD5GP group. Additional genes upregulated in the HFD5GP group
are related to FFA sequestration {(Plin3, Plin5) [44] (Abhd16a and Abhd17b) [46]}. Further-
more, grape ameliorated adverse gene expression caused by a high-fat diet through the
downregulation of Plin4, Acaa1b and Slc27a1, associated with lipid content [48], cholesterol
synthesis [47] and redistribution of lipids from fat and muscle to liver [49], respectively. In
sum, relative to the HFD group, the gene expression levels observed with the HFD5GP
group are consistent with lipolysis, which eventually may lead to the reduction of NAFL.

We have yet to investigate the effects of grapes on gene expression related to Alzheimer’s
disease in our mouse model. However, using the same model, we have shown behavior
changes and modulation of gene expression in mouse brain as a result of dietary grape
administration [62]. Moreover, in a six month clinical trial, Silverman and coworkers reported
that the daily administration of 72 g of grape powder (the same powder preparation used in
the current study) had a protective effect on brain metabolism [63].

Of additional interest, interrelationships of NAFLD and Alzheimer’s disease have been
described in the literature. Many studies have been performed with laboratory animals to
investigate this relationship. For example, with a mouse model, Kim et al. demonstrated
that chronic NAFLD induced advanced pathological signs of Alzheimer’s disease [64].
More notably, this correlation has been supported by investigations involving human
subjects. In a nationwide cohort study involving over four million subjects, is was found
that NAFLD is associated with an increased risk of dementia [65]. Furthermore, in a study
sample including participants from the offspring and third generation of the Framingham
Study, a possible association between liver fibrosis and early Alzheimer’s disease markers
was observed [66]. Clearly, it would be of future interest to study the molecular aspects of
this interrelationship in greater detail.

In addition to the above, we performed a preliminary study to assess the potential of
lifetime dietary grape supplementation to modify longevity with this mouse model. We
will note from the outset that performing similar studies with male mice, in addition to
female mice, will be of value, and various experimental designs are feasible. This work was
performed as a pilot. Long-term studies are currently underway to investigate the effect of
gender and the inclusion of grape supplementation later in life, with and without high-fat
contained in the diets. Nonetheless, since it is well known that a high-fat diet reduces the
lifespan of C57BL6/J mice [30], in the current lifelong study, survival of the group of mice
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provided with the grape supplemented diet (HFD5GP) was compared with the survival of
the HFD group. It was found that the HFD5GP group showed significant improvement
relative to the HFD group. The overarching cause of this enhancement remains to be
defined, but some of the ancillary results provided herein may be relevant. In particular,
alteration of genetic expression and factors related to NAFLD by dietary grapes may help
to ameliorate the adversity caused by high-fat consumption.

It is also of some interest to consider body weight as related to longevity. While it is
certainly clear that obesity correlates with chronic illness and reduced lifespan, the overall
ramifications of body mass and health are complex [67]. It is intriguing that gradual move-
ment from normal body weight in early life to overweight in later life may be associated
with decreased mortality risk [68]. Furthermore, obesity itself may be classified as vari-
ous subtypes: metabolically abnormal obese, metabolically healthy obese and sarcopenic
obese [69]. To some extent, these confounding factors may be reflected in our mouse study.
In both the HFD and the HFD5GP groups there was a strong correlation between body
weight and longevity. Furthermore, the highest body weight achieved by the HFD5GP
group appeared to be attained later in life relative to the highest body weight of the HFD
group. Of course, correlation does not establish a cause-and-effect relationship, but these
are interesting observations that require further in depth attention.

For example, in comparison to control mice, bromodomain containing 2 (Brd2)-
knockdown mice show severe obesity, but they concurrently display a reduction in obesity-
induced inflammatory responses, insulin resistance, glucose intolerance and pancreatic
beta cell dysfunction [70,71], as well as extended healthspan and lifespan [72]. In the
current study, significantly enriched pathways in the HFD5GP group include modification-
dependent protein binding (GO:0140030) and histone binding (GO:0042393), both of which
involve Brd2, which shows signs of downregulation in the HFD5GP group [log2 (−0.28);
Padj, 0.03]. Other genes of interest include adiponectin receptors (Adipor) 1 and 2, which are
included in the pathway of non-alcoholic fatty liver disease (KEGG: mmu04932), which was
enriched with the HFD5GP group. Adipor1 and Adipor2 are known to be downregulated
in obesity-related insulin resistance. Furthermore, it is reported that the overexpression
of either adiponectin receptor isoform in mouse liver is sufficient to improve ceramidase
activity, total body glucose metabolism, and hepatic insulin sensitivity, while suppressing
hepatic steatosis, in comparison to wild-type control animals [73]. In the current study,
the modest enhancement of Adipor1 [log2 (0.76); Padj 0.001] and Adipor2 [log2 (0.48); Padj
0.034] was observed with the HFD5GP group, further suggesting a mechanistic unpinning
for improving healthspan.

In sum, as a common dietary component, grapes have a high safety profile, allergy
is rare, and accumulating evidence indicates some health benefits [21,22,74,75]. The aim
of this study was not to evaluate a profound drug-like effect such as a cure for cancer, for
example, as described in The Grape Cure [76]. Nor was our interest in studying a specific
target, such as the inhibition of a particular enzyme or molecular entity. Our goal was
to provide a glimmer into what is happening at a holistic level, in the milieu of a living
mammal, when chronically administering a relevant quantity of the whole product through
the diet.

The results amply demonstrate the profound effect of nutrigenomics, which implic-
itly suggest the potential for downstream alteration of physiological responses. In fact,
we have confirmed alterations in hepatic and urinary metabolite patterns based on gas
chromatography-mass spectrometry-based metabolomics. The grape diet was found to
reprogram gut microbiota metabolism, attenuate the hepatic oxidative stress of a high-fat
diet, and increase the efficiency of glucose utilization by the liver for energy production [77].

In ancillary studies, we have described the effect of grape consumption on mouse
brain gene expression and behavior [62]. Currently, we focus on liver, longevity and the
western-pattern diet, and report subtle yet intriguing responses. This brings to mind
the proverbial saying "You are what you eat", originally attributed to the French lawyer
Athelme Brillat-Savarin (ca. 1826). It is likely that the concept was inspired by the nutritive
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value of food, as well as the metabolic conversion of food into human cellular and body
parts. The notion of diet leading to phenotypic changes, which in turn may alter our
intrinsic character, adds another dimension and even more profound significance to the
axiom "You are what you eat". We do not suggest that phenotypic changes are induced
solely by grapes, or solely in the liver. We were able to study this due to the availability
of suitable tools and materials, and the results are interesting and meaningful. However,
these studies lead us to question how much we know about the way in which our routine
behavior affects the intricacies of our human form.

5. Conclusions

The salient features of the current study include: (1) Standard or high-fat diets yield
unique gene expression patterns that each are modulated by the addition of grapes; (2)
The addition of grapes to a high-fat diet yields a genetic expression pattern more similar
to a standard diet than to a high-fat diet; (3) Dietary grape supplementation reduces
histological signs of fatty liver; (4) Genes responsible for the metabolism, transportation,
hydrolysis and sequestration of fatty acids are upregulated by the addition of grapes to a
high-fat diet; (5) Genes operating under the control of the antioxidant-response element
(ARE) are enhanced by the addition of grapes to standard or high-fat diets; and (6) The
life-long addition of grapes to a high-fat diet increases longevity. These data illustrate
the extraordinary influence of nutrigenomics, a burgeoning field of investigation that will
augment our appreciation of diet and health.
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