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There are limited data on longitudinal outcomes for coronavirus disease 2019 (COVID-19) hospitalizations
that account for transitions between clinical states over time. Using electronic health record data from a hospital
network in the St. Louis, Missouri, region, we performed multistate analyses to examine longitudinal transitions
and outcomes among hospitalized adults with laboratory-confirmed COVID-19 with respect to 15 mutually
exclusive clinical states. Between March 15 and July 25, 2020, a total of 1,577 patients in the network were
hospitalized with COVID-19 (49.9% male; median age, 63 years (interquartile range, 50–75); 58.8% Black).
Overall, 34.1% (95% confidence interval (CI): 26.4, 41.8) had an intensive care unit admission and 12.3% (95%
CI: 8.5, 16.1) received invasive mechanical ventilation (IMV). The risk of decompensation peaked immediately
after admission; discharges peaked around days 3–5, and deaths plateaued between days 7 and 16. At 28 days,
12.6% (95% CI: 9.6, 15.6) of patients had died (4.2% (95% CI: 3.2, 5.2) had received IMV) and 80.8% (95% CI:
75.4, 86.1) had been discharged. Among those receiving IMV, 35.1% (95% CI: 28.2, 42.0) remained intubated
after 14 days; after 28 days, 37.6% (95% CI: 30.4, 44.7) had died and only 37.7% (95% CI: 30.6, 44.7) had been
discharged. Multistate methods offer granular characterizations of the clinical course of COVID-19 and provide
essential information for guiding both clinical decision-making and public health planning.

age-stratified mortality; clinical course; coronavirus disease 2019; COVID-19 hospitalizations; intensive care
unit; longitudinal trajectory; mechanical ventilation; multistate analysis

Abbreviations: aHR, adjusted hazard ratio; CI, confidence interval; COVID-19, coronavirus disease 2019; ICU, intensive care unit;
IMV, invasive mechanical ventilation; IQR, interquartile range; NIV, noninvasive ventilation; SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2.

A careful characterization of the clinical course of corona-
virus disease 2019 (COVID-19) during hospitalization will
offer important insights into patients’ prognosis and the
anticipated burden and duration of resources required for
their care—basic clinical information which is still coming
into focus for this novel pathogen. Hospitalized patients may
take numerous pathways: Some only require brief stays,
while others deteriorate and require admission to the inten-
sive care unit (ICU), with or without invasive mechanical
ventilation (IMV) (1–6). Even if these patients survive,
many will experience protracted hospital courses prior to
discharge. Deaths could occur immediately after admission
or after decompensations later on in the hospitalization. An

understanding of how patients transition through multiple
clinical states over the course of their hospitalization—
and the timing of these transitions—will offer situational
awareness and information for clinical decision-making and
public health planning as the epidemic continues to evolve.

To date, published data on the hospital course of COVID-
19 do not yet provide a comprehensive descriptive picture
indicative of the experience in the United States. For ex-
ample, while case series do describe the number or inci-
dence of deaths (1–6), such analyses have not captured
information on movement between multiple clinical states
over the course of hospitalization. Additionally, the rapidly
evolving nature of the pandemic means that in many reports
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Figure 1. Framework for a multistate analysis of transitions between clinical states among hospitalized patients with coronavirus disease 2019.
At each time point, patients were categorized into one of 15 mutually exclusive and exhaustive states: 1) emergency department, 2) inpatient
f loor, 3) intensive care unit (ICU) admission without invasive mechanical ventilation (IMV), 4) noninvasive ventilation (NIV), 5) IMV in the ICU,
6) NIV after IMV, 7) ICU after IMV, 8) inpatient f loor after ICU admission but no IMV, 9) inpatient f loor after IMV, 10) discharge without ICU
admission, 11) discharge with a history of ICU admission but no IMV, 12) discharge with a history of IMV, 13) death, 14) death with a history of
ICU admission but no IMV, and 15) death with a history of IMV. The figure depicts all of the possible transitions patients could make from each
state. Patients were not restricted to starting from state 1; those who were directly admitted to the hospital or transferred from another hospital
started from the state in which they were first observed.

a substantial proportion of patients are still in the midst
of their illness (7). These analyses have either presented
cross-sectional estimates that do not account for this
unequal follow-up time or have excluded patients with
incomplete follow-up time, potentially creating bias in both
scenarios (1–9). Furthermore, much of the early data on
hospitalizations focused only on critically ill patients and
came from single-center studies conducted earlier in the
epidemic, largely from the worst-hit areas such as Wuhan,
China (1–3), Lombardy, Italy (4), and New York, New
York (5, 6), where outcomes may not be representative
of outcomes elsewhere. Thus, more rigorous data from
regions where the burden of COVID-19 did not exceed the
capacity of health-care systems is needed to inform COVID-
19 planning in the United States going forward.

To address these needs, we used data from the BJC
HealthCare Hospital system in St. Louis, Missouri, and
the surrounding regions to examine the totality of experi-
ence across a number of clinical conditions (e.g., inpatient
floor admission, ICU stay, death, discharge) in a cohort
of patients who were admitted with COVID-19. We used
multistate methods to estimate the proportion of patients
in various clinical conditions over time, as well as the
amount of time spent in each state and rates of transition
from each state. This analytical technique permits a more
comprehensive examination of the cascade of outcomes (10)

during COVID-19 hospitalizations for informing planning
and policy.

METHODS

Study population and setting

We analyzed a consecutively compiled cohort of adult
patients with confirmed COVID-19 who were admitted to
the BJC HealthCare Hospital system between March 15,
2020, and July 25, 2020. We included all patients aged 18
years or older who were admitted to an inpatient service
and either had a positive polymerase chain reaction test for
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) during admission or within the past 7 days or had
confirmed COVID-19 disease as an encounter diagnosis.
BJC HealthCare is a nonprofit health system that consists of
15 hospitals—ranging from a 1,200-bed academic referral
center to a 40-bed rural community hospital—in the St.
Louis, southern Illinois, and mid-Missouri regions. It serves
a diverse population across the socioeconomic and sociode-
mographic spectra in both urban and rural regions, with a
catchment area of approximately 3 million people (11). Dur-
ing the COVID-19 epidemic, BJC hospitals opened up addi-
tional ICUs to manage patients with COVID-19 but never
exceeded health-care capacity with regard to hospital beds,
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ICU beds, mechanical ventilators, or staffing. General hospi-
tal management protocols are detailed in the Web Appendix
(available at https://doi.org/10.1093/aje/kwaa286).

Measurements

We extracted data for this analysis from electronic health
records for the entire BJC system (Epic Systems Corpora-
tion, Verona, Wisconsin). Data collected included admission
and discharge dates, sociodemographic information, labo-
ratory results, diagnosis codes, level and mode of oxygen
delivery, level of care (i.e., inpatient floor, ICU), procedures
(i.e., intubation), and outcomes (i.e., death, discharge) for
all patients as charted throughout their hospitalization in
the electronic health record. As part of BJC’s routine and
ongoing COVID-19 tracking efforts, all patients admitted
with COVID-19 had their chart manually reviewed to deter-
mine whether they were a resident of a long-term care
facility. Additionally, we performed targeted chart reviews
(n = 27) to reconcile potential inconsistencies in COVID-19
diagnoses, level of care, and outcomes from the electronic
health record data.

Analyses

We sought to assess the clinical course of COVID-19
patients presenting to the hospital in a manner that accounted
for the numerous changes in clinical status patients may
have had over the duration of their hospitalization (e.g.,
admission, critical illness, intubation, death, discharge) (12–
14). We first categorized patients into one of 15 mutually
exclusive and exhaustive states based on their clinical status
at each time point: 1) emergency department, 2) inpatient
floor, 3) ICU admission without IMV, 4) noninvasive venti-
lation (NIV), 5) IMV in the ICU, 6) NIV after IMV, 7) ICU
admission after IMV, 8) inpatient floor after ICU admission
without IMV, 9) inpatient floor after IMV, 10) discharge
without ICU admission, 11) discharge with a history of ICU
admission without IMV, 12) discharge with a history of IMV,
13) death, 14) death with a history of ICU admission without
IMV, and 15) death with a history of IMV (Figure 1). We
then examined outcomes longitudinally in several ways to
highlight unique aspects of patients’ clinical courses.

First, we applied nonparametric multistate analytical tech-
niques based on the Aalen-Johansen method to account for
patient movements into and out of multiple clinical states
over time and for situations where the observation times for
each patient were unequal (12–15). We estimated the prob-
ability over time of a patient’s having a particular clinical
status after entering into one of 3 different states: 1) after
inpatient admission, 2) after ICU admission, 3) after NIV,
and 4) after endotracheal intubation. For each analysis, time
0 was the point of entry into that particular clinical state, and
patients were censored at the time of discharge, death, or the
end of the observation period (i.e., July 25, 2020).

Second, we estimated the instantaneous rates of ICU ad-
mission, NIV, intubation, death, and discharge after inpatient
admission (regardless of movements through intermediate
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Figure 2. Longitudinal outcomes among hospitalized patients with coronavirus disease 2019 entering 3 specific clinical care states (multistate
analyses), BJC HealthCare Hospital system, St. Louis, Missouri, 2020. The figure shows the proportion of patients estimated to be in each care
state at any given time point, accounting for the transitions patients made between different clinical states over time. A) Outcomes following initial
admission to a hospital (n = 1,577); B) outcomes following admission to the intensive care unit (ICU) (n = 571); C) outcomes following noninvasive
ventilation (NIV) (n = 343); D) outcomes following intubation (n = 214). ED, emergency department; IMV, invasive mechanical ventilation.

states) in order to characterize the dynamics of transitions
between clinical states. Additionally, we also estimated tran-
sition intensities (i.e., instantaneous rate of transition to the
next immediate state) after entering the inpatient floor (state
2), ICU (state 3), NIV (state 4), or IMV (state 5) state
(Figure 1).

Third, we used an alluvial diagram to depict the trajecto-
ries of individual patients through clinical states over their
hospitalization, stratifying by patients’ outcomes at 28 days.
This analysis was restricted to patients with at least 28 days
of observation (including time after death or discharge).

Fourth, we estimated the durations of overall hospitaliza-
tion, ICU stays, NIV, and IMV based on results from the
multistate analyses.

Fifth, we assessed the cumulative incidence of ICU admis-
sion, NIV, intubation, and death by 28 days since inpatient
admission, stratifying by patient subgroups. We also per-
formed Cox proportional hazards analyses to identify patient
characteristics that were independently associated with
times from inpatient admission to ICU admission, intuba-
tion, and death. We selected covariates using directed acyclic
graphs based on a-priori hypotheses of causal relationships
between baseline sociodemographic and clinical character-
istics and patient outcomes. We evaluated the proportional
hazards assumption using Schoenfeld residuals (16).

Lastly, to assess the changes in patient outcomes over
time and explore the potential impact of the introduction of
evidence-based therapies (i.e., remdesivir (17) and dexam-
ethasone (18) in moderate or severe disease), we obtained
adjusted age-stratified estimates of patient outcomes based
on the time period in which they were admitted (i.e., March
15–May 3 (prior to remdesivir availability) or May 4–July 25
(after remdesivir availability)). We report these as marginal
estimates from age-stratified Poisson models adjusting for
sex, race/ethnicity, comorbidity, and whether the patient lived
in a long-term care facility.

All analyses were conducted with R 3.2.4 software (R
Foundation for Statistical Computing, Vienna, Austria) using
the mstate package (13, 14) and Stata MP 16.1 (StataCorp
LLC, College Station, Texas).

RESULTS

Patient characteristics

Between March 15 and July 25, 2020, a total of 2,940
patients who presented to an emergency department in the
study area were confirmed to have COVID-19, and 1,577
were admitted to the hospital (Web Figure 1). Among those
hospitalized, 571 patients were subsequently admitted to the

Am J Epidemiol. 2021;190(4):539–552
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Figure 3. Clinical trajectories of hospitalized patients with coronavirus disease 2019 over the course of their hospital stay (n = 1,417), BJC
HealthCare Hospital system, St. Louis, Missouri, 2020. Alluvia are color-coded by patient outcome at 28 days, and their width represents the
number of patients. Only patients with 28 days of observation time were included (inclusive of time after discharge or death). ICU, intensive care
unit; IMV, invasive mechanical ventilation; NIV, noninvasive ventilation.

ICU, 343 received NIV, and 214 received IMV (Table 1).
The median age was 63 years (interquartile range (IQR),
50–75), and 927 patients (58.8%) were Black (Table 1). As
the pandemic progressed, patients admitted later on were

younger, had fewer comorbid conditions, were less likely
to be Black, and were less likely to reside in a long-term
care facility. They were more likely to be treated with
remdesivir and steroids and less likely to be treated with

Figure 4. Instantaneous hazards of intensive care unit (ICU) admission, noninvasive ventilation (NIV), intubation, discharge, and death at
different time points since admission among hospitalized patients with coronavirus disease 2019 (n = 1,577), BJC HealthCare Hospital system,
St. Louis, Missouri, 2020.
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Figure 5. Estimated durations of overall patient stay (n = 1,577) (A), intensive care unit (ICU) stay (n = 571) (B), noninvasive ventilation (NIV)
(n = 343) (C), and invasive mechanical ventilation (IMV) (n = 214) (D) among hospitalized patients with coronavirus disease 2019 (multistate
analyses), BJC HealthCare Hospital system, St. Louis, Missouri, 2020. Dots represent the median values; the surrounding boxes span the 25th
and 75th percentiles; and the violin plots show kernel density plots spanning the full range of values. Notably, kernel density plots extend below
1 because of estimation algorithms, but no patients had a length of stay less than 0 in any state.

tocilizumab and hydroxychloroquine (Web Table 1). Over-
all, Black patients tended to be younger and to have more
comorbidity and were less likely to be male (Web Table 2).

Clinical course of COVID-19 hospitalizations based on
multistate analyses

Overall, 34.1% (95% confidence interval (CI): 26.4, 41.8)
of hospitalized patients were in the ICU at some point
during admission (including patients receiving IMV), and
12.3% (95% CI: 8.5, 16.1) received IMV (Figures 2 and 3,
Web Table 3). After admission, the rates of transfer to the
ICU and intubation peaked on hospital day 1 and declined
thereafter, whereas the rate of discharge peaked between
hospital days 3 and 5, and the rate of death plateaued on
days 7 through 16 (Figure 4). At 7 days, 51.6% (95% CI:
47.5, 55.6) of patients had been discharged and 5.7% (95%

CI: 3.7, 7.7) had died. At 28 days, 80.8% (95% CI: 75.4,
86.1) of patients (20.2% (95% CI: 17.4, 23.0) with a history
of ICU admission and 4.3% (95% CI: 3.3, 5.3) with a history
of IMV) had been discharged and 12.6% (95% CI: 9.6, 15.6)
of patients (8.6% (95% CI: 6.6, 10.6) with an ICU admission
and 4.2% (95% CI: 3.2, 5.2) with IMV) had died (Figure 2,
Web Table 3). The median duration of hospital stay for
all inpatient admissions was 5.7 days (IQR, 2.9–11.9). The
median duration of hospital stay was 4.2 days (IQR, 2.1–7.4)
for those cared for only on the inpatient floor, 8.1 days (IQR,
4.3–15.4) for those admitted to the ICU without receiving
NIV or IMV, 14.1 days (IQR, 7.3–25.8) for who received
NIV but no IMV, and 19.1 days (IQR, 10.1–30.7) for those
who received IMV (Figure 5, Web Table 4).

Among patients admitted to the ICU and those who
received NIV, 50.8% (95% CI: 35, 66.6) and 39.5% (95%
CI: 26.6, 52.4) received IMV at some point, respectively
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Figure 6. Transition intensities for transitions from the inpatient f loor, intensive care unit (ICU), noninvasive ventilation (NIV), and invasive
mechanical ventilation (IMV) clinical states among hospitalized patients with coronavirus disease 2019, BJC HealthCare Hospital system,
St. Louis, Missouri, 2020. The figure depicts the instantaneous hazard of potential transitions from an initial starting clinical state to the next
subsequent clinical state. Values shown on the x-axes represent the amount of time since the patient initially entered a particular clinical state.
A) Transitions after entering the inpatient f loor state (i.e., from state 2 to either state 3, 10, or 13) (n = 1,577); B) transitions after entering the
ICU state (i.e., from state 3 to either state 4, 5, 8, or 14) (n = 571); C) transitions after entering the NIV state (i.e., from state 4 to either state 5,
7, or 14) (n = 343); D) transitions after entering the IMV state (i.e., from state 5 to either state 6, 7, or 15) (n = 214).

(Figure 2, Web Table 3). The rates of noninvasive and
invasive ventilation peaked immediately after ICU transfer,
whereas the rate of death (without intubation) peaked around
day 5, and the rate of transfer to the inpatient floor peaked
on day 3 and again on day 12 (Figure 6). At 7 days after ICU
admission, 53.9% (95% CI: 40, 67.8) of patients remained
in the ICU (13.6% (95% CI: 9.4, 17.7) receiving NIV and
29.3% (95% CI: 23.8, 34.8) receiving IMV), 17.4% (95%
CI: 11.5, 23.2) had been discharged from the hospital, and
14.3% (95% CI: 8.7, 19.9) had died (6.8% (95% CI: 4,
9.7) after IMV). At 28 days, 11.2% (95% CI: 5.2, 17.2)
of patients remained in the ICU (6.5% (95% CI: 4.1, 9.0)
receiving IMV), 52.9% (95% CI: 42.4, 63.4) had been
discharged (18.4% (95% CI: 14.0, 22.8) had received IMV),
and 30.3% (95% CI: 22.5, 38.0) had died (18.0% (95% CI:
13.5, 22.4) after IMV) (Figure 2, Web Table 3). The median
duration of ICU admissions was 1.9 days (IQR, 1.1–3.2)

without NIV or IMV, 4.5 days (IQR, 2.0–9.2) with NIV
only, and 10.3 days (IQR, 4.6–20.1) for those who received
IMV (Figure 5, Web Table 4).

Lastly, among patients who received IMV, the rate of
extubation increased through day 14, while the hazard for
death plateaued between days 5 and 12 (Figure 6). At 14
days after intubation, 35.1% (95% CI: 28.2, 42.0) of patients
remained on IMV and 28.0% (95% CI: 21.1, 35.0) had died.
At 28 days, 16.2% (95% CI: 8.2, 24.3) remained in the
ICU (10.8% (95% CI: 6.7, 14.8) still receiving IMV), 37.6%
(95% CI: 30.4, 44.7) had died, and only 37.7% (95% CI:
30.6, 44.7) had been discharged (Figure 2, Web Table 3).
The median duration of IMV was 7.2 days (IQR, 2.9–14.2)
(Figure 5, Web Table 4).

In stratified multistate and multivariable Cox proportional
hazards analyses, older patients had markedly increased
mortality (for age >70 years vs. <50 years, adjusted hazard
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Figure 7. Cumulative incidence of intensive care unit admission (A), noninvasive ventilation (B), intubation (C), and death (D) by 28 days
among hospitalized patients with coronavirus disease 2019, according to patient subgroup (n = 1,577), BJC HealthCare Hospital system, St.
Louis, Missouri, 2020. Results were obtained in stratified competing-risk analyses using the Aalen-Johansen method. The reference line (vertical
dashed line) aligns with the estimate for the overall population. Bars, 95% confidence intervals (CIs).
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ratio (aHR) = 7.00, 95% CI: 2.97, 16.48) and trended toward
increased ICU admissions and receipt of NIV and IMV. Res-
idents of long-term care facilities also had increased mortal-
ity (aHR = 1.89, 95% CI: 1.40, 2.54). Men were more likely
than women to be admitted to the ICU (aHR = 1.53, 95% CI:
1.29, 1.81), to receive NIV (aHR = 1.34, 95% CI: 1.08, 1.66),
and to receive IMV (aHR = 1.54, 95% CI: 1.16, 2.02) and
potentially trended toward increased mortality. Patients with
comorbidity trended toward increased mortality in stratified
analyses but not multivariable analyses. Race/ethnicity was
not significantly associated with ICU admission, NIV, IMV,
or death. Lastly, being admitted between May 4 and July 25
(as opposed to earlier in the pandemic) was not associated
with changes in the rate of ICU admission, NIV, or IMV
but was associated with decreased mortality (aHR = 0.66,
95% CI: 0.48, 0.91) (Figure 7, Table 2, Web Tables 5 and
6). Decreases in mortality appeared greatest in older patients
(Figure 8, Web Table 7).

DISCUSSION

We used multistate analytical methods to longitudinally
characterize the clinical course of COVID-19 disease after
presentation to a hospital in a manner that accounted for
patient transitions between multiple clinical states over the
course of admission and the timing of these transitions.
We found that at 7 days after hospital admission, 51.6% of
patients had been discharged and 5.7% had died; at 28 days,
80.8% had been discharged (20.2% had been admitted to
the ICU and 4.3% had received IMV) and 12.6% had died
(8.6% had had an ICU admission and 4.2% had received
IMV). The risk of decompensation was greatest immediately
after admission; discharges peaked around days 3–5, and
mortality plateaued between days 7 and 16. Among patients
receiving IMV, 35.1% remained intubated and 28.0% had
died after 14 days. Overall, these findings provide a more
nuanced and comprehensive depiction of the trajectories of
COVID-19 disease after presentation to the hospital.

Our study provides granular epidemiologic data on the
clinical course of COVID-19 that are both essential for guid-
ing public health officials in assessing their health systems’
capacity and immediately relevant for clinical decision-
making (19). Early in the epidemic, one the primary con-
cerns was the anticipated strain that unmitigated spread of
SARS-CoV-2 was expected to place on health systems, and
several influential disease models were built to specifically
assess health systems’ capacity in terms of hospital beds and
mechanical ventilators (20, 21). Our analysis details what
happens to patients after being hospitalized with COVID-
19—including during different phases of the pandemic—
and can guide health systems in appropriately planning for
the health-care resources that may be required. In particular,
detailed data on the time spent in various clinical states
can help researchers parameterize disease models to better
project needs for staffing, hospital beds, critical-care beds,
and mechanical ventilators (22–24). Additionally, it offers
health-care providers a complete depiction of the trajectory
the disease is likely to take based on a patient’s current clin-
ical state and the probability of being in other clinical states

at different time points further into hospitalization (e.g., in
our study, patients received IMV for a median of only 7 days,
but 28 days after intubation only 37.7% had been discharged,
37.6% had died, and 24.7% remained hospitalized). This
level of granularity provides both public health officials and
clinicians with valuable insights for guiding public health
responses and making the most informed care decisions with
patients and their families.

To our knowledge, our study is the first to have longitu-
dinally characterized COVID-19 hospitalization trajectories
in a way that comprehensively captures patient transitions
between clinical-care states over time. Patients frequently
transition between the inpatient floor, the ICU, and IMV—
often more than once during a hospitalization—prior to
discharge or death. To date, several studies have described
COVID-19 hospitalizations (1, 3–6, 25), but most have
focused only on critically ill patients and have provided
cross-sectional estimates that included only patients with
known outcomes and excluded patients who may have had
prolonged hospitalizations and were still hospitalized (7).
In one study that did include censored observations, the
authors only considered time to a single outcome (i.e., in-
hospital death); they did not consider intermediate events
such as ICU transfers or intubation (5). Additionally, these
estimates did not account for competing events (15), such
as hospital discharge, that would preclude the occurrence of
an in-hospital mortality event, potentially also contributing
to bias (8, 9). Our study adds to this existing literature in
several ways. We used rigorous longitudinal methods to
estimate the incidence and timing of events in a setting
where both competing events were present and where the
observation times between participants were not equal (8,
9). Additionally, we used these multistate methods to assess
transitions between multiple clinical states—as opposed to
a single one—over the course of a patient’s hospitaliza-
tion (13, 14). Furthermore, most early reports were single-
center studies conducted in regions that had been hit hardest
by COVID-19, potentially limiting the generalizability of
patients’ experiences. In contrast, our data included a diverse
and representative population from a variety of settings
(e.g., both academic and community hospitals, rural and
urban settings, affluent and marginalized communities) and
information collected during different phases of the pan-
demic (i.e., before and after the introduction of evidence-
based therapies). Thus, our study provides one of the most
comprehensive characterizations of the clinical course of
COVID-19 hospitalizations to date.

Our results offer an additional layer of nuance to char-
acterizations of COVID-19-related hospitalizations but are
also consistent with what has been previously reported (1–6,
26, 27). The majority of patients were admitted to the inpa-
tient floor and discharged within 3–5 days, but an important
subset of COVID-19 patients present critically ill (or decom-
pensate early in their hospitalization) and generally expe-
rience a protracted hospital course, often with prolonged
periods of IMV and a high risk for mortality. In our cohort,
older age was most strongly associated with poor outcomes
such as a need for IMV and mortality, followed by male sex.
Additionally, we found that patients admitted after May 4,
2020 (i.e., after remdesivir was introduced in our hospital
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Figure 8. Age-stratified adjusted estimates of the cumulative incidence of intensive care unit admission (A), noninvasive ventilation (B),
intubation (C), and death (D) among hospitalized patients with coronavirus disease 2019, by time period (n = 1,577), BJC HealthCare Hospital
system, St. Louis, Missouri, 2020. Marginal estimates were obtained from Poisson models adjusting for sex, race/ethnicity, comorbidity, and
whether the patient had come from a long-term care facility, with a time offset. Bars, 95% confidence intervals (CIs).

network) had reduced mortality rates, though patients admit-
ted during this period were also substantially younger and
healthier. Still, this association remained even after adjust-
ment for age and comorbidity and may thus also be indica-
tive—though not definitively so—of the positive impact of
routine use of these evidence-based therapies (i.e., remde-
sivir (17) and dexamethasone (18)) for COVID-19, partic-
ularly in older patients. Third, Black patients comprised
a greater proportion of those admitted with COVID-19 dis-
ease, but, once hospitalized, there were no significant dif-
ferences in outcomes in adjusted models. This is in line
with prior studies and can probably be explained by the
systemic disparities that have led to higher risks of acquir-
ing COVID-19 in Black communities (27–32) but limited
differences in the actual pathophysiology of the disease
once a person becomes infected. Fourth, there were trends
toward increased mortality with additional comorbidity in
stratified analyses, but this was not consistent in multivari-
able regression. Lastly, though outcome estimates are also
similar to those for influenza-associated and general acute
respiratory distress syndrome (33, 34), more work is needed
to understand how COVID-19 clinical phenotypes relate to
their underlying pathophysiology and how they differ from
other disease states (35–38). Ultimately, further research
extending these findings is needed to help us understand for

whom, when, and what types of interventions and treatments
are needed for optimizing our response to COVID-19, at
both the individual patient and public health levels.

There were several limitations to this study. First, we
leveraged observational electronic health record data, which
may have misclassified some patient outcomes, COVID-
19 diagnoses, hospital events, or their timing. In particular,
we did not have granular data on patients’ disease severity
(e.g., oxygenation levels), the exact timing of multiple events
occurring within an hour of each other, or the history or
circumstances leading up to admission at a BJC hospi-
tal (e.g., duration of symptoms, prior events if the patient
transferred from a different hospital). Second, we obtained
adjusted age-stratified outcome estimates by time period to
explore the potential impact of routine use of evidence-based
COVID-19 therapies, but these analyses were not adjusted
for disease severity at initial patient presentation, and it is
still possible that these estimates were affected by residual
confounding. Third, our study included only hospitals from
a large health system affiliated with an academic medical
center where health-care capacity was not exceeded, and
it may not necessarily be reflective of outcomes in other
regions of the country or the world, particularly places that
experienced a COVID-19 epidemic surge that exceeded their
health systems’ capacity. Still, we did include patients from
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several hospitals ranging from an academic, quaternary-care
medical center to smaller community hospitals located in
both urban and rural settings.

In conclusion, we used multistate analytical methods to
provide nuanced characterizations of the clinical course of
COVID-19 hospitalizations. Multistate approaches provide
granular descriptions of patients’ trajectories over time and
offer useful insights on COVID-19 disease for front-line
clinicians, disease modelers, and health system and public
health officials.
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