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Abstract

Objective

Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a

major threat to the kiwifruit industry throughout the world and accounts for substantial eco-

nomic losses in China. The aim of the present study was to test and explore the possibility of

using MaxEnt (maximum entropy models) to predict and analyze the future large-scale dis-

tribution of Psa in China.

Method

Based on the current environmental factors, three future climate scenarios, which were sug-

gested by the fifth IPCC report, and the current distribution sites of Psa, MaxEnt combined

with ArcGIS was applied to predict the potential suitable areas and the changing trend of

Psa in China. The jackknife test and correlation analysis were used to choose dominant cli-

matic factors. The receiver operating characteristic curve (ROC) drawn by MaxEnt was

used to evaluate the accuracy of the simulation.

Result

The results showed that under current climatic conditions, the area from latitude 25˚ to 36˚N

and from longitude 101˚ to 122˚E is the primary potential suitable area of Psa in China. The

highly suitable area (with suitability between 66 and 100) was mainly concentrated in North-

east Sichuan, South Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and

occupied 4.94% of land in China. Under different future emission scenarios, both the areas

and the centers of the suitable areas all showed differences compared with the current situa-

tion. Four climatic variables, i.e., maximum April temperature (19%), mean temperature of

the coldest quarter (14%), precipitation in May (11.5%) and minimum temperature in Octo-

ber (10.8%), had the largest impact on the distribution of Psa.
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Conclusion

The MaxEnt model is potentially useful for forecasting the future adaptive distribution of Psa

under climate change, and it provides important guidance for comprehensive management.

Introduction

Kiwifruit, Actinidiaceae, Actinidia Lindl., is a type of perennial, deciduous woody liana and an

important class of berry fruit. There are sixty-six different species in the Actinidiaceae family,

sixty-two of which originated in China [1, 2]. “Hayward” is the most popular variety of kiwi-

fruit grown across the world, and it was selected in New Zealand from seeds coming from

Yichang City, Hubei Province in 1904. As a rich nutritional source of sugar, protein, amino

acids and vitamins, and an especially high vitamin C content, the kiwifruit is known as “the

king of the fruit” and has good market prospects. The main areas of kiwifruit production in

China are in the northern foot of the Qinling Mountains in Shaanxi Province, the Dabie

Mountain area in Anhui Province, Heping County in Guangdong Province, Guizhou Plateau,

western part of Hunan Province, and Northwest Sichuan Province. Worldwide, kiwifruit is

economically very important, and production reached 3.26 million tonnes per year as of 2013.

China is the largest kiwifruit producer, with more than 1.77 million tonnes per year, placing

China ahead of Italy. The kiwifruit industry, which developed quickly in recent years, has

become one of the specialty industries in China that promotes agricultural development [3, 4].

Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a

destructive disease of kiwifruit that causes great losses in kiwifruit production. The disease not

only causes great economic losses but also increases the plant mortality of kiwifruit, and to

date, there has not been an effective control measure identified [5, 6]. The symptoms and the

infection cycle of bacterial canker are consistent throughout the world [7–9]. Symptoms usu-

ally appear in the spring or autumn under climatic conditions that are suitable for disease

development. The canker spots can occur on twigs, trunks, leaves and flowers. It first appears

as a watery lesion on twigs and trunks, then expands into a white exudation, and eventually

turns into a rusty-red profuse exudation [10]. Affected branches necrose, water and nutrient

transport are restricted, eventually causing the plant organs to wither and die. The symptoms

on the leaves began to appear in early April, when the chlorosis transitions from pale brown to

tan; it eventually becomes dark-brown with a surrounding yellow halo and finally wilts and

curls. When the buds are infected, the growth rate slows or even prevents flowering, which

results in fruit drop or the formation of deformed fruit [11].

In 1984, Psa was first isolated from ‘Hayward’ (a type of Actinidia deliciosa with green flesh)

in Japan [12]. Currently, the pathogen is widely distributed in the major producing countries

of kiwifruit, including China, New Zealand, Italy, South Korea, Iran, France, Portugal, Chile,

Spain, Switzerland and Australia, as well as in other countries [13, 14]. In China, the kiwifruit

bacterial canker was first discovered in the Dongshan Peak farm of Hunan Province in 1985

[15]. The disease quickly spread to the provinces of Sichuan, Anhui, Hunan and Shaanxi[16].

In Japan and Korea, outbreaks of kiwifruit bacterial canker have mainly affected the ‘Hayward’

cultivar. However, in China and other countries, the disease was highly destructive on cultivars

of both A. deliciosa and A. chinensis. In Shaanxi Province in 2012, an outbreak of kiwifruit can-

ker was recorded in a red-fleshed cultivar of ‘Hongyang’ and in a green-fleshed kiwifruit culti-

var of ‘Xuxiang’. The percentage of trees impacted by the disease ranged from 20% to 70%,

even up to 100% in some places [17]. An investigation into the bacterial canker of kiwifruit in
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Sichuan Province between 2014 and 2016 showed that the disease had common occurrence

patterns in different production areas, and the situation is worsening as growing areas expand.

Presently, due to the economic losses and the great destruction to the industry, kiwifruit

bacterial canker is considered as the major threat for the cultivation of kiwifruit around the

world. As a highly infectious disease, its pathogen (Pseudomonas syringae pv. actinidiae) has

been listed on the A2 List of the Mediterranean Plant Protection Organization (EPPO) [18]. In

1996, the State Forestry Administration of China included Psa on the quarantine list of nation-

wide objects of forest plants. In 2009, China’s General Administration of Quality Supervision

issued a new document on the relevant requirements for prohibiting the entry of Psa into

China [19].

The study of suitable habitat is an important field of ecology, and the species distribution

model (SDM) has evolved and become an important tool for studying the suitability of a habi-

tat for a particular species [20]. The SDM assumes a species niche should be conserved over

space and time, assesses the potential geographical distribution of a target species based on

presence/absence data and uses the corresponding mathematical variables to determine habi-

tat preferences for a species. At present, SDMs are mainly applied and influence the following

aspects: research on species’ potential geographical distribution, analysis of the relationship

between species distribution and climate change, prediction of the habitat suitability of endan-

gered species, and the study of paleogeography [21]. An SDM model, i.e., the maximum

entropy model (MaxEnt), has many advantages, including short running time, easy operation,

small sample size and high simulation precision, and was applied to simulate the suitable geo-

graphical distribution of species suitability [22–24]. In recent years, many researchers have

used MaxEnt to simulate the distribution of many plant diseases, such as citrus huanglongbing

(caused by Candidatus liberibacter) [25], maize downy mildew (caused by Peronosclerospora
maydis) [26], wheat blast (caused byMagnaporhe grisea) [27], South American leaf blight

(caused byMicrocyclus ulei) [28], and pine wilt disease (caused by Bursaphelenchus xylophilus)
[29]. MaxEnt performs well in this type of application and is widely accepted by ecologists.

Climate change has greatly influenced the distribution of various species, and future climate

change will change the habitat, range, and distribution of many species [30–32]. Plant disease

is one of the most serious biological disasters to impact agricultural production and is con-

strained by climate change, host plants, tillage management and farming systems [33–35]. The

distribution and abundance of plant diseases are highly influenced by climatic factors (i.e.,

temperature, moisture, humidity and their seasonal variations) [36, 37]. Temperature is one of

the most influential environmental factors affecting the distribution and abundance of differ-

ent species [38, 39]. In the context of global climate change, where trends indicate increasing

temperatures, variations in precipitation and more frequent and extreme weather events have

occurred. Additionally, the environment has changed, which has resulted in changes in the

areas and periods of plant diseases and led to changes in distribution, occurrence, epidemiol-

ogy and population structure [40, 41]. SDM is an effective tool for studying the impact of

future climate change on species distribution and provides a variety of realistic scenarios to

expound the influence of climatic factors on the epidemiological traits of pathogens. SDMs uti-

lize a series of greenhouse gas emission scenarios, which are based on global climate models

(GCMs), to analyze the influence of climate change on current and future habitat suitability of

various species [42]. Accurate predictions regarding the future state of species will not be pro-

vided in SDM at any given point in time, but the possible niche that species may occupy in the

future is provided [43].

Present studies of Psa are mainly focused on species classification [7, 44], molecular biology

[45–47], analysis of biological characteristics [48, 49], pathogenicity differentiation[50–52],

rapid detection methods [48, 53, 54], and disease control [55, 56]; however, systemic research
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about the influence of climate change on the niches specific to Psa is lacking. In an effort to

analyze the effects of climate change on the potential distribution of Psa, MaxEnt was utilized

to model the current niches of Psa in China, as well as the future Psa niches under climate

change scenarios; additionally, this study identified climatic variables important for the poten-

tial establishment of Psa. These results can provide an important reference and theoretical

basis for the development of reasonable prevention and control measures.

Materials and methods

Occurrence records of Psa

In this study, the occurrence points of Psa were obtained from field data collected by the

authors in the Chinese provinces of Sichuan and Shaanxi, from the published literature, and

from the online databases GBIF and EPPO (S1 Table). When coordinates were published, we

used the records directly. If there were only localities, Google Earth was used to collect coordi-

nates of the records. All occurrence records were checked for accuracy in ArcGIS prior to use.

Records with obvious geocoding errors were discarded, and duplicate records were removed

manually. All records were imported into Microsoft Excel and saved as “�.CSV” format.

Environmental variables

From the WorldClim database (http://www.worldclim.org), we obtained 67 environmental

variables (19 bioclimatic variables and 48 monthly averages of temperature and precipitation)

for the current period [57, 58]. In the Worldclim database, ‘current period’ was defined from

1950 to 2000, and these data have been widely used in creating species distribution models. In

2013, the Fifth Assessment Report was released by the UN’s Intergovernmental Panel on Cli-

mate Change (IPCC), and four representative concentration pathways (RCPs, including

RCP2.6, RCP4.5, RCP6.0 and RCP8.5) were published in the report [59, 60]. The impacts of

climate change strategies on greenhouse gas emissions are considered more in the RCPs sce-

narios, and the projection of future climate change is more scientifically described. RCP4.5

and RCP6.0 are medium greenhouse gas emission scenarios, and RCP4.5 is of higher priority

than RCP6.0 [61, 62]. Therefore, RCP2.6 (the minimum greenhouse gas emission scenario),

RCP4.5 (the medium greenhouse gas emission scenario) and RCP8.5 (the maximum green-

house gas emission scenario) for the 2030s (2021–2040), 2050s (2041–2060), 2070s (2061–

2080) and 2080s (2071–2090) were selected for the future model prediction of Psa in China.

The future environmental variables were downloaded from the Climate Change, Agriculture

and Food Security (CCAFS) website. All environmental variables were in raster format with a

2.5-arc minute resolution (~4.5 km2).

Environmental variables derived from WorldClim and CCAFS, which has been widely

used in the prediction of the potential distribution of species, can reflect the characteristics of

temperature and precipitation as well as their seasonal variation characteristics. The 19 biocli-

matic variables with strong biological significance explained the adaptation of species with

extreme environmental factors. These variables were also suitable for describing the distribu-

tion of species across large scales such as the intercontinental scale [63, 64]. Due to the various

reasons mentioned above, the environmental variables provided above were chosen as the ini-

tial variables to be used in the modeling in this article. Based on Worthington’s [65] method

on how to filter available variables for modeling, the jackknife test was used to evaluate each

variable’s contribution to the simulation, and 25 variables were removed due to their lack of

contribution (percent contribution = 0). Next, the highly correlated variables were eliminated,

and variables with a Pearson’s |r|�0.8 were retained. After this process, 22 variables (S2 Table)

were retained to simulate the current and future distributions of Psa in China.
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Distribution modeling

MaxEnt software was utilized to predict the suitable habitat distribution of Psa in China [66].

MaxEnt uses presence-only and small sample size data to model habitat suitability as a func-

tion of environmental variables, and it is consistently among the highest performing SDM

methods [67]. Response curves indicate the relationships between climatic variables, and the

predicted probability of the presence of Psa was determined by MaxEnt. The percent contribu-

tion and permutation importance of environmental variables were calculated, and jackknife

procedures were executed in MaxEnt. These analysis methods are all useful to measure the

importance of the environmental variables. There were 10 replicates, and a random test per-

centage was chosen for each replicate. The remaining model values were set to default values

[68–71].

MaxEnt estimates the probability a species will be present based on presence records and

randomly generates background points by finding the maximum entropy distribution. An

estimate of habitat suitability for a species was exported from MaxEnt, and its range gener-

ally varied from 0 (lowest) to 1 (highest). Model predictions were imported into a geo-

graphic information system (GIS), and maps were generated using ArcMap. Four arbitrary

categories of habitat suitability for Psa were defined as no suitability (0–5), low suitability

(5–33), medium suitability (33–66) and high suitability (66–100) based on predicted habitat

suitability.

In this study, the ROC curve method was utilized to assess the model’s explanatory power

[72]. The AUC (area under roc curve) is an effective threshold-independent index that can

evaluate a model’s ability to discriminate presence from absence (or background). The evalua-

tion criterion of AUC is illustrated in S3 Table [63].

For reducing the bias of estimation, in 1949, Quenouille [73] proposed an unbiased method

of nonparametric estimation, and Tukey renamed it jackknife in 1958 [74]. This method can

estimate parameters and adjust the deviation without assumptions of distribution probability.

In SDM, the jackknife method was used to analyze the effects of environmental variables on

model results to choose dominant factors. The specific process involves 1. Calculating the

training gain for the model with only variable. Higher training gain indicates that the variable

has high prediction power and contributes greatly to species distribution; 2. Calculating the

training gain for the model without a specific variable and analyzing the correlation between

the removed variable and the omission error. If the removal of an environmental variable leads

to a significant increase in the omission error, it indicates that the variable has a significant

effect on the model’s prediction; 3. Calculating the training gain for the model with all vari-

ables [68].

Models of the mean center of highly suitable areas

The mean centers of highly suitable areas of Psa in China were calculated according to Yue’s

[75] formula:

xðtÞ ¼
XI

i¼1

siðtÞ � XiðtÞ
SðtÞ

yðtÞ ¼
XI

i¼1

siðtÞ � YiðtÞ
SðtÞ

8
>>>><

>>>>:

In this formula, t is the variable of time (i.e., current, 2030s, 2050s, 2070s and 2080s), I is the

patch number of highly suitable areas, Si(t) is the area of ith patch of highly suitable areas, S(t)
is the total area of highly suitable areas, (Xi(t), Yi(t)) are the longitudinal and latitudinal
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coordinate, respectively, of the geometric center of the ith patch of highly suitable areas, and (x
(t), y(t)) are the mean centers of the highly suitable areas. The shift in distance and direction of

highly suitable areas in the period from t to t + 1 are, respectively, formulated as Yue [75],

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxðt þ 1Þ � xðtÞÞ2 þ ðyðt þ 1Þ � yðtÞÞ2
q

y ¼ arctg
yðt þ 1Þ � yðtÞ
xðt þ 1Þ � xðtÞ

� �

where D is the shift in distance of the highly suitable area during the period of t to t+1; θ is the

shift in direction of the highly suitable areas, where east is defined as 0˚, north is defined as

90˚, west is defined as 180˚ and south is defined as 270˚.

Describe the same contents as “Materials and methods” sections with step-by-step protocol

on my protocols.io: http://dx.doi.org/10.17504/protocols.io.mdic24e

Results

Model performance and contributions of variables

In this study, from the ROC curves, AUC values were used to evaluate the performance of the

MaxEnt model. Many studies showed that an AUC of high values led to better results that sig-

nificantly differed from the random predictions. The accuracy of prediction of Psa during the

current period was found to be “excellent” (AUCmean = 0.963, Fig 1) according to the identified

evaluation criteria (S3 Table).

Fig 2 shows that the MaxEnt models that predicted the distribution of Psa in the future

period performed “excellent”, with high AUC values (0.949–0.964). The results indicate that

the simulations have high reliability and can be used to analyze the impact of climate change

on the distribution of Psa in China.

Among the environmental variables, the maximum temperature in April (19%), mean tem-

perature of coldest quarter (14%), precipitation in May (11.5%) and minimum temperature in

October (10.8%) played major roles in the spread of Psa (Table 1 and Fig 3) and individually

contributed more to run the model. The other 18 environmental variables, including tempera-

ture (maximum temperature in September, October, November, and December; minimum

temperature in March, April, and November; mean temperature in May; mean diurnal range,

max temperature of the warmest month, min temperature of the coldest month, annual tem-

perature range, mean temperature of the driest quarter), annual precipitation (precipitation in

September and December, annual precipitation, precipitation of the driest month) and alti-

tude, individually contributed less (a combined total contribution of 44.7%) to run the model.

Considering the importance of permutation, the mean temperature in May (21.8%), mean

temperature of coldest quarter (14.8%) and mean diurnal range (10%) each played a vital role

in predicting the probable distribution of Psa, and individually, they contributed more than

the other variables to run the model.

Predicting the distribution of Psa in China

ArcGIS 10.0 was used to analyze the simulation results from the MaxEnt model for further

study. The result showed that the area from latitude 25˚ to 36˚N and from longitude 101˚ to

122˚E was the primary potential suitable region of Psa in China. Based on the division criteria

of suitability for Psa, the main suitable regions of Psa in China were extracted by ArcGIS (Fig

4). The potential suitable areas were mainly located in the provinces of Sichuan, Shaanxi,

Chongqing, Hubei, Zhejiang, Gansu, Guizhou, Hunan, Jiangsu, Henan and Anhui, which
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occupied 27.78% of the land of China. The highly suitable area (with suitability values between

66 and 100) was mainly concentrated in Northeast Sichuan, South Shaanxi, most of Chong-

qing, West Hubei and Southwest Gansu. The areas of highly suitable areas in the major pro-

ducing provinces were analyzed statistically (Table 2), and it showed that the most suitable

areas of Psa occupied 4.94% of the land of China. Sichuan (1.38%), Shaanxi (0.84%), Hubei

(0.6%), Chongqing (0.59%) and Zhejiang (0.48%) were considered to be the major suitable

provinces for Psa.

Area change, shift in distance and direction of mean centers of Psa under

climate change scenarios

Under scenario RCP2.6 (Table 3 and Fig 5), comparing the future suitable areas with the cur-

rent suitable areas showed that areas of high suitability would have the greatest increase in the

2080s; the increase would be 11.71×104 km2 and account for 124.63% of the current predicted

area. From the present to the 2080s, the mean centers of highly suitable areas would shift from

Yunyang (current) to Jianshi (2030s), Fengjie (2050s and 2070s) and Enshi (2080s). The shift

in distance of the mean centers from the present location to the simulated location in the

2080s is approximately 73.87 km to the southeast (Table 4 and Fig 6).

Scenario RCP4.5 indicated that the highly suitable areas would increase 7.02×104 km2,

4.73×104 km2, 2.41×104 km2, 3.48×104 km2, respectively (Table 3 and Fig 5). The mean centers

would shift from Yunyang (current) to Fengjie (2030s), Enshi (2050s), Fengjie (2070s) and

Yunyang (2080s). The shift in distance of the mean centers from the present location to the

simulated location in the 2080s is approximately 44.31 km to the northeast (Table 4 and Fig 6).

Under scenario RCP8.5 (Table 3 and Fig 5), the highly suitable areas showed a decreasing

trend from the present to the 2080s, and the reductions would be 0.04×104 km2, 1.18×104 km2,

9.66×104 km2 and 3.45×104 km2, respectively. The mean centers of highly suitable areas would

shift from Yunyang (Current) to Shengnongjia (2030s), Wuxi (2050s), Kaizhou (2070s) and

Wuxi (2080s). The shift in distance of the mean centers from the present to the 2080s is

approximately 50.83 km to the northeast (Table 4 and Fig 6).

Fig 1. ROC curve and AUC value under the current period (10 runs). The current period is from 1950 to 2000.

https://doi.org/10.1371/journal.pone.0192153.g001
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Response of variables to suitability

Response curves indicated the relationships between environmental variables and the pre-

dicted probability of the presence of Psa. Individual response curves for different variables

(model created using only the corresponding variable) showed that the predicted probability

of the presence of Psa showed a similar pattern to the Poisson distribution (Table 5 and Fig 7).

According to the response curve of mean temperature of the coldest quarter, the probability

of Psa occurrence increased up to 8.1˚C and deceased sharply after that. Similar trends were

observed for maximum temperature in April, and the response curve indicated that Psa would

survive in locations where the maximum temperature in April was between 13.7–23.6˚C; how-

ever, the probability of Psa decreased rapidly above 21.2˚C. The response curve of precipita-

tion in May indicated that higher levels of precipitation (50.1–317 mm) in May would be

conducive for the development of cankers caused by Psa. The response curve of the minimum

Fig 2. ROC curves and AUC values in future periods. The future periods is 2030s (2021–2040), 2050s (2041–2060), 2070s (2061–

2080) and 2080s (2071–2090).

https://doi.org/10.1371/journal.pone.0192153.g002
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temperature in October showed that Psa can tolerate a wider range of temperatures (3.6 to

17.1˚C) in October.

Discussion

Model selection and evaluation

At present, most studies researching Psa are concentrated on small-scale ranges, while there

are relatively few studies that examine the potential geographic distribution of Psa on large

scales and model future niches under climate change scenarios. Based on the maximum

entropy principle, the MaxEnt software uses the species distribution data and the environmen-

tal variables to analyze the distribution state of the species when the entropy is the largest [76].

Numerous studies show that MaxEnt performs better than other niche models and has advan-

tages, such as short running time, easy operation, small sample size and high simulation preci-

sion [68, 77–79]; therefore, this study was designed to examine the large scale and future

distribution of Psa using MaxEnt theory.

The results showed that the choice of environmental variables has a certain influence on the

prediction results of niche models. Many researchers that use the MaxEnt model to predict the

geographical distribution of species non-selectively use all of the environmental factors or the

major environmental factors [59, 80–82]. The environmental variables, which were obtained

from the WorldClim database and CCAFS, are based on temperature and rainfall data based

on the different needs of the occurrence calculations. Therefore, there are inevitable relation-

ships between the auto correlation of these variables, multiple linear repetition and other

Table 1. Estimates of contribution and permutation importance of environmental variables in MaxEnt modeling

of Psa.

Variables Percent contribution Permutation importance

Maximum temperature in April (˚C) 19 2.3

Mean temperature of the coldest quarter (˚C) 14 14.8

Precipitation in May (mm) 11.5 2.6

Minimum temperature in October (˚C) 10.8 1

Maximum temperature in October (˚C) 8.7 0.5

Precipitation in September (mm) 6.4 5.4

Mean diurnal range (˚C) 5.7 10

Minimum temperature of the coldest month (˚C) 3.8 7.7

Maximum temperature in February (˚C) 2.9 0.2

Annual temperature range (˚C) 2.7 5

Maximum temperature in December (˚C) 2.6 1.1

Annual precipitation (mm) 2.3 2.7

Maximum temperature in September (˚C) 1.7 0.4

Altitude (m) 1.3 2.2

Maximum temperature of the warmest month (˚C) 1.2 2.7

Mean temperature of the driest quarter (˚C) 1.1 7.5

Mean temperature in May (˚C) 1.1 21.8

Minimum temperature in November (˚C) 0.8 0.6

Minimum temperature in April (˚C) 0.7 0.3

Precipitation of the driest month (mm) 0.6 1.7

Precipitation in December (mm) 0.6 7.4

Minimum temperature in March (˚C) 0.4 1.7

Maximum temperature in November (˚C) 0.1 0.1

https://doi.org/10.1371/journal.pone.0192153.t001
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issues. Studies have confirmed that these highly relevant variables introduce redundant infor-

mation into the model prediction process, which affects the prediction results [65, 83, 84]. To

avoid these problems when modeling, relevant analysis and effective screening of environmen-

tal variables should be carried out before subsequent analyses occurs. In this study, the impor-

tance of the variables was evaluated by examining the contribution rate of each factor to

species distribution. The environmental variables with small contribution rates were excluded,

and the correlation of the selected variables was analyzed using only the leading the environ-

mental variables; additionally, the model was reconstructed to reduce the impact of redundant

information on the simulation results and to improve the accuracy of the prediction results.

At present, the most widely used method for model accuracy evaluation is the ROC curve

method (AUC method). Because AUC is not affected by diagnostic thresholds, as it provides

performance evaluation results at all threshold ranges, it is now recognized as a niche model

evaluator. AUC values range from 0.5 to 1, where the closer the value is to 1, the higher the

accuracy of the model [85, 86]. In this study, the AUC average values of the simulated training

set based on the dominant environmental variables were greater than 0.949 (i.e., very close to

1), and the predicted results reached the "excellent" level, indicating that the geographical dis-

tribution of the predicted model is in high agreement with the actual distribution. In addition,

this study used ArcGIS to postulate the raster files of the MaxEnt output so that the distribu-

tion data of the target species and the environmental variable data corresponded to the grid

cells, effectively reduced system error, and further improved the accuracy of the data.

Predicting the distribution of Psa in China

The present use of GIS technology to simulate the spatial distribution patterns of species is an

important tool. More and more studies have used GIS and statistical analysis methods to iden-

tify the relationship between species richness and spatial heterogeneity [87–89]. In this study, a

combination of MaxEnt and ArcGIS was used to predict the potential geographic distribution

Fig 3. Jackknife test for variable importance of Psa habitat suitability distribution. Values shown are averages over

10 replicate runs.

https://doi.org/10.1371/journal.pone.0192153.g003
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Fig 4. Distribution of core suitable areas of Psa under current climate condition in China. The probability of Psa is

shown in the color scale in the legend. Red indicates highly suitable area with>66 probability of occurrence, orange

indicates moderately suitable area with 33–66 probability of occurrence, yellow indicates poorly suitable area with

5–33 probability of occurrence and white indicates unsuitable area.

https://doi.org/10.1371/journal.pone.0192153.g004

Table 2. Analysis of highly suitable main distributions of Psa.

Province Highly suitable (km2) Total (km2) Percentage (of highly suitable areas in the province, %) Percentage (of highly suitable areas in China, %)

Sichuan 133055.6 455139 29.23 1.38

Shaanxi 81111.11 204167 39.73 0.84

Chongqing 56319.44 77083 73.06 0.59

Hubei 57569.44 175556 32.79 0.60

Zhejiang 46111.11 94816 48.63 0.48

Gansu 29166.67 414930 7.03 0.30

Guizhou 28680.56 159722 17.96 0.30

Anhui 16319.44 133680 12.21 0.17

Hunan 12083.33 194374 6.22 0.13

Henan 2013.89 161180 1.25 0.02

China 475486.11 9618680 — 4.94

https://doi.org/10.1371/journal.pone.0192153.t002
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of Psa in China. The results showed that, under current climatic conditions, the area from lati-

tude 25˚ to 36˚N and from longitude 101˚ to 122˚E is the primary potential suitable area of Psa

in China. The highly suitable area was mainly concentrated in Northeast Sichuan, South

Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and occupied 4.94% of land

in China. From 2014 to 2016, we investigated the occurrence of kiwifruit bacterial canker in

Sichuan and Shaanxi provinces. The result showed that the disease is mainly distributed in

Guangyuan, Bazhong, Mianyang, Chengdu, Yaan and Yibin in Sichuan province, and in Xian,

Baoji and Weinan in Shaanxi province. The potential distribution of this study was highly

coincident with the locations of field surveys in Shaanxi and Sichuan. In an earlier study, Shao

et al [19] simulated the potential distribution of Psa at the state level using a fuzzy mathematics

comprehensive evaluation. The results showed that potential areas of the pathogen were

mainly distributed in Sichuan, Yunnan, Guizho, Fujian, Anhui, Hunan, Hubei, Henan,

Jiangxi, Shaanxi, Zhejiang, Chongqing and Tibet. Our model predictions are aligned with the

predictions of Shao et al [19].in most of the kiwifruit growing areas, but they significantly dif-

fered in other areas such as Yunnan and Tibet. The differences could be due to the model sim-

ulation theory and specific assumptions, types of environmental variables and calibration

settings. For instance, as a type of correlative model, fuzzy mathematics comprehensive evalua-

tion based on direct measures of physiological variables ignores biotic interactions, while Max-

Ent is based on observations and includes the effects of biotic interactions.

In this study, the area under three climate change scenarios was statistically analyzed with

ArcGIS to identify the trends of the area impacted by disease. The results showed that under

both scenario RCP2.6 and scenario RCP4.5, suitable areas of Psa would increase until the

2080s; in contrast, under scenario RCP8.5, the highly suitable areas decreased from the present

until the 2080s. This indicated that different emission scenarios have different and opposite

effects on the potential distribution of Psa in China.

Climate is a decisive factor in species distribution, while changes in species distribution pat-

terns are the most clear and direct reflection of climate change. Climate change characteristics

influenced by global warming have been changing the structure and function of terrestrial eco-

systems, thus changing the biological habitats and geographical distribution of species [32, 36,

38, 41]. To understand the response of Psa to climate change, we calculated and analyzed the

position of the mean center in different grades and the center’s shift over time based on the

Table 3. Predicted suitable areas for Psa under current and future climatic conditions.

Decade Scenarios Predicted area/×104 km2 Account of the proportion of current predicted area (%)

Poorly Moderately Highly Poorly Moderately Highly

Current — 102.17 118.13 47.55 — — —

2030s RCP2.6 102 119.41 56.89 99.83 101.09 119.64

RCP4.5 114.64 115.55 54.57 112.2 97.81 114.77

RCP8.5 111.22 118.01 47.51 108.85 99.89 99.92

2050s RCP2.6 114.74 124.18 48.41 112.3 105.11 101.81

RCP4.5 106.69 111.06 52.28 104.42 94.01 109.96

RCP8.5 123.56 117.95 46.37 120.94 99.84 97.52

2070s RCP2.6 120.95 130.33 47.95 118.38 110.32 100.85

RCP4.5 115.83 126.8 49.96 113.37 107.34 105.06

RCP8.5 129.68 131.97 37.89 126.92 111.72 79.71

2080s RCP2.6 112.06 119.01 59.26 109.68 100.71 124.63

RCP4.5 104.47 124.57 51.03 102.24 105.54 107.32

RCP8.5 166.13 123.47 44.1 162.6 104.52 92.74

https://doi.org/10.1371/journal.pone.0192153.t003
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calculation method used by Yue et al [75]. The results showed that mean centers of highly suit-

able areas will change in a variety of ways under the three emission scenarios until the 2080s.

Under scenario RCP4.5 and scenario RCP8.5, the mean centers will move to the northwest.

The movement may be related to the increase in the average temperature and precipitation. In

addition, from the simulation results, no obvious regularities were found in the location and

displacement of the mean centers under the different scenarios. This may be due to the lack of

continuity between current and future climate variables. The current period is from 1950 to

2000, while the future period is from 2030 to 2080, and there is a gap between 2000 and 2030.

Fig 5. Distribution of core suitable areas of Psa under different climate change scenarios in China. The probability of Psa is shown in the color scale in the legend.

Red indicates highly suitable area with>66 probability of occurrence, orange indicates moderately suitable area with 33–66 probability of occurrence, yellow indicates

poorly suitable area with 5–33 probability of occurrence and white indicates unsuitable area of occurrence.

https://doi.org/10.1371/journal.pone.0192153.g005
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The reciprocating movement of the mean center may be due to the lack of data during this

period.

Effects of climatic factors on the distribution of Psa

Studying the interaction between species and the environment is an essential aspect of species

ecology[90]. The relationship between the probability of species presence and dominant

Table 4. Shifts in distance and direction of the mean centers of highly suitable areas in different periods.

Period RCP2.6 RCP4.5 RCP8.5

Displacement (km) Direction Displacement (km) Direction Displacement(km) Direction

From T1 to T2 98.89 Southeast 5.84 Southeast 111 Northeast

From T2 to T3 58.22 Northwest 38.38 Southeast 61.26 Southwest

From T3 to T4 13.24 Northeast 31.05 Northeast 100.83 Northwest

From T4 to T5 61.53 Southeast 83.58 Northwest 98.31 Southeast

From T1 to T5 73.87 Southeast 44.31 Northwest 50.83 Northeast

https://doi.org/10.1371/journal.pone.0192153.t004

Fig 6. Center displacement of highly suitable areas during different periods.

https://doi.org/10.1371/journal.pone.0192153.g006
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environmental variables was analyzed in this paper, and the response curves were created by

MaxEnt. The analysis showed that the probability of species presence changed as a result of the

dominant environmental variables (maximum temperature in April, mean temperature of the

coldest quarter, precipitation in May and minimum temperature in October). Both the precip-

itation and temperature variables were strongly correlated with the distribution of Psa. Our

results were in good agreement with some previous research conclusions. For example, previ-

ous research by Marcelletti and Scortichini found low temperature, abundant rainfall and high

humidity were the most favorable conditions for disease development [91], and this is in

accordance with the trends we observed in the response curve of precipitation in May. The

model results showed that the probability that Psa would be present decreased rapidly above

21.2˚C, which is consistent with the previous experimental findings of Serizawa and Ichikawa,

who found that once temperatures exceeded 25˚C, the harm caused by Psa weakened [91].

Other research showed that when the average temperature reached 20˚C, the spread of the dis-

ease was inhibited [92]. Overall, these studies suggested that the occurrence of Psa is closely

related to climate, and further studies about this will be useful for predicting and forecasting

the kiwifruit canker.

Limitations in this research and the future directions

Although the MaxEnt model predicts the advantages of simple operation, small sample

demand and high prediction accuracy, there are some limitations that are similar to other

niche prediction models.

1. The environmental variables used in the prediction by the MaxEnt model are all climatic

variables except for altitude. The 19 bioclimatic variables are the climatic extremes, i.e., the

maximum and the minimum of the actual distribution of Psa. The MaxEnt model shows

the maximum likelihood of species distribution and cannot be prepared to express species

in the main areas of actual distribution. The above forecast results are more focused on

understanding and demonstrating the potential geographical distribution of Psa and reveal-

ing the climate characteristics suitable for the distribution of species.

2. The basic niche is an ideal niche, which refers to the maximum niche that a species occupies

under ideal living conditions without competition by any other species. The theory only

needs to consider the influence of abiotic factors. When the prediction of the suitable area

is based not only on the demand of the species in the niche but also on the actual living

environment, the biological factors (such as the interaction between species, the vegetation

type, geomorphological features, the species own diffusion ability and the soil type) will also

have a significant impact on the potential distribution of the predicted species. Based on the

above reasons, it can be deduced that the model predicts a niche that is larger than the

actual niche occupied by Psa. In this regard, the next step, in addition to considering the

impact of climate factors, should consider the interaction between species and other biolog-

ical factors expressed in order to improve the model’s predictive effect.

Table 5. The suitable range of dominant environmental variables affecting the potential distribution of Psa.

Environmental variables Suitable range Optimum value

Maximum temperature in April (˚C) 13.7–23.6 21.2

Mean Temperature of the Coldest Quarter (˚C) -3.9–9.3 8.1

Precipitation in May (mm) 50.1–317 83

Minimum temperature in October (˚C) 3.6–17.1 10.3

https://doi.org/10.1371/journal.pone.0192153.t005
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3. Over the past 30 years, with the continuous discharge and maintenance of greenhouse

gases, the global climate is warming abnormally, and climate change can cause changes in

species growth and distribution patterns. The environmental variables used in this study

were derived from the world climate database, the WorldClim, which includes data from

1950-2000s; however, this database is missing recent climate data for at least the past 10

years. In the future, the missing data should be filled in so that the forecast results are more

accurate and reliable.

Conclusions

In this study, we successfully modeled the current niches of Psa in China, as well as future

niches under three climate change scenarios, which allowed for the identification of climatic

variables important for the potential establishment of Psa. This study concludes that under sce-

nario RCP2.6 and RCP4.5, the habitat suitability of Psa will increase until the 2080s. We sug-

gest that future climate scenarios should be included in the control measures of Psa, which

were created by the institutions responsible for agricultural management.
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ronmental suitability for Agrilus auroguttatus (Coleoptera: Buprestidae) in Mexico using MaxEnt and

database records of four Quercus (Fagaceae) species. Agricultural & Forest Entomology. 2016; 4:

409–418. https://doi.org/10.1111/afe.12174

58. Shrestha UB, Bawa KS. Impact of Climate Change on Potential Distribution of Chinese Caterpillar Fun-

gus (Ophiocordyceps sinensis) in Nepal Himalaya. Plos One. 2014; 9: e106405. doi: Impact of Climate

Change on Potential Distribution of Chinese Caterpillar Fungus (Ophiocordyceps sinensis) in Nepal

Himalaya https://doi.org/10.1371/journal.pone.0106405 PMID: 25180515

59. Remya K, Ramachandran A, Jayakumar S. Predicting the current and future suitable habitat distribution

of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecological Engineer-

ing. 2015; 9: 184–188. https://doi.org/10.1016/j.ecoleng.2015.04.053

60. Petersen MJ. Evidence of a climatic niche shift following North American introductions of two crane flies

(Diptera; genus Tipula). Biological Invasions. 2013; 4: 885–897. https://doi.org/10.1007/s10530-012-

0337-3

61. Gelviz-Gelvez SM, Pavón NP, Illoldi-Rangel P, Ballesteros-Barrera C. Ecological niche modeling under

climate change to select shrubs for ecological restoration in Central Mexico. Ecological Engineering.

2015;: 302–309. https://doi.org/10.1016/j.ecoleng.2014.09.082

62. Jiang HJ, Liu T, Li L, Zhao Y, Pei L, Zhao JC. Predicting the Potential Distribution of Polygala tenuifolia

Willd. under Climate Change in China. Plos One. 2016; 9: e0163718. https://doi.org/10.1371/journal.

pone.0163718 PMID: 27661983

63. Zhang L, Cao B, Bai C, Li G, Mao M. Predicting suitable cultivation regions of medicinal plants with Max-

ent modeling and fuzzy logics: a case study of Scutellaria baicalensis in China. Environmental Earth

Sciences. 2016; 5: 361. https://doi.org/10.1007/s12665-015-5133-9

64. Choudhury MR, Deb P, Singha H, Chakdar B, Medhi M. Predicting the probable distribution and threat

of invasive Mimosa diplotricha Suavalle and Mikania micrantha Kunth in a protected tropical grassland.

Ecological Engineering. 2016; December: 23–31. https://doi.org/10.1016/j.ecoleng.2016.07.018

65. Worthington TA, Zhang T, Logue DR, Mittelstet AR, Brewer SK. Landscape and flow metrics affecting

the distribution of a federally-threatened fish: Improving management, model fit, and model transferabil-

ity. Ecological Modelling. 2016;: 1–18. https://doi.org/10.1016/j.ecolmodel.2016.09.016

66. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distribu-

tions. Ecological Modelling. 2006; 3–4: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

67. Bradie J, Leung B. A quantitative synthesis of the importance of variables used in MaxEnt species distri-

bution models. Journal of Biogeography. 2017;: https://doi.org/10.1111/jbi.12894

68. Kumar S, Yee WL, Neven LG. Mapping Global Potential Risk of Establishment of Rhagoletis pomonella

(Diptera: Tephritidae) Using MaxEnt and CLIMEX Niche Models. Journal of Economic Entomology.

2016; 5: tow166. https://doi.org/10.1093/jee/tow166 PMID: 27452001

69. Penado A, Rebelo H, Goulson D. Spatial distribution modelling reveals climatically suitable areas for

bumblebees in undersampled parts of the Iberian Peninsula. Insect Conservation & Diversity. 2016; 5:

391–401. https://doi.org/10.1111/icad.12190

70. Bosso L, Febbraro MD, Cristinzio G, Zoina A, Russo D. Shedding light on the effects of climate change

on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biological Invasions. 2016;

6: 1759–1768. https://doi.org/10.1007/s10530-016-1118-1

71. Rameshprabu N, Swamy PS. Prediction of environmental suitability for invasion of Mikania micrantha in

India by species distribution modelling. Journal of Environmental Biology. 2015; 3: 565–570.

72. Peterson AT, Pape M, f x, Eaton M. Transferability and model evaluation in ecological niche modeling:

a comparison of GARP and Maxent. Ecography. 2007; 4: 550–560. https://doi.org/10.1111/j.0906-

7590.2007.05102.x

73. Quenouille MH. Approximate Tests of Correlation in Time-Series. Journal of the Royal Statistical Soci-

ety. 1949; 1: 68–84. https://doi.org/10.1017/S0305004100025123

74. Tukey JW. Bias and Confidence in Not Quite Large Samples. Annals of Mathematical Statistics. 1958;

2: 614. https://doi.org/10.1214/aoms/1177706647

75. Yue TX, Fan ZM, Chen CF, Sun XF, Li BL. Surface modelling of global terrestrial ecosystems under

three climate change scenarios. Ecological Modelling. 2011; 14: 2342–2361. https://doi.org/10.1016/j.

ecolmodel.2010.11.026

Predict the distribution of Pseudomonas syringae pv. actinidiae in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0192153 February 1, 2018 20 / 21

https://doi.org/10.1007/s10658-014-0515-5
https://doi.org/10.1007/s10658-014-0515-5
https://doi.org/10.1111/ppa.12066
https://doi.org/10.1111/afe.12174
https://doi.org/10.1371/journal.pone.0106405
http://www.ncbi.nlm.nih.gov/pubmed/25180515
https://doi.org/10.1016/j.ecoleng.2015.04.053
https://doi.org/10.1007/s10530-012-0337-3
https://doi.org/10.1007/s10530-012-0337-3
https://doi.org/10.1016/j.ecoleng.2014.09.082
https://doi.org/10.1371/journal.pone.0163718
https://doi.org/10.1371/journal.pone.0163718
https://doi.org/10.1007/s12665-015-5133-9
https://doi.org/10.1016/j.ecoleng.2016.07.018
https://doi.org/10.1016/j.ecolmodel.2016.09.016
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1111/jbi.12894
https://doi.org/10.1093/jee/tow166
https://doi.org/10.1111/icad.12190
https://doi.org/10.1007/s10530-016-1118-1
https://doi.org/10.1111/j.0906-7590.2007.05102.x
https://doi.org/10.1111/j.0906-7590.2007.05102.x
https://doi.org/10.1017/S0305004100025123
https://doi.org/10.1214/aoms/1177706647
https://doi.org/10.1016/j.ecolmodel.2010.11.026
https://doi.org/10.1016/j.ecolmodel.2010.11.026
https://doi.org/10.1371/journal.pone.0192153


76. Elith J, Yates CJ. A statistical explanation of MaxEnt for ecologists. Diversity & Distributions. 2011; 1:

43–57.

77. Sobekswant S, Kluza DA, Cuddington K, Lyons DB. Potential distribution of emerald ash borer: What

can we learn from ecological niche models using Maxent and GARP? Forest Ecology & Management.

2012; 4: 23–31. https://doi.org/10.1016/j.foreco.2012.06.017

78. Qin Z, Zhang JE, Ditommaso A, Wang RL, Wu RS. Predicting invasions of Wedelia trilobata (L.) Hitchc.

with Maxent and GARP models. Journal of Plant Research. 2015; 5: 1–13. https://doi.org/10.1007/

s10265-015-0738-3

79. Cai JY, Zhang MM, Su HJ, Zhang HB. Application of Ecological Niche Models for Selection of Species

Habitat. Journal of EConomic Animal. 2014; 1: 47–52. https://doi.org/10.13326/j.jea.2014.0012

80. Yi YJ, Cheng X, Yang ZF, Zhang SH. Maxent modeling for predicting the potential distribution of endan-

gered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering. 2016;: 260–269.

https://doi.org/10.1016/j.ecoleng.2016.04.010

81. Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS. Maxent modeling for predicting the potential distribu-

tion of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering.

2013; 1: 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004

82. Merow C, JAS Jr. A comparison of Maxlike and Maxent for modelling species distributions. Methods in

Ecology & Evolution. 2014; 3: 215–225. https://doi.org/10.1111/2041-210X.12152

83. Dormann CF, Singer A. Correlation and process in species distribution models: bridging a dichotomy.

Journal of Biogeography. 2012; 12: 2119–2131. doi: Correlation and process in species distribution

models: bridging a dichotomy

84. David H. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions. 2013; 1: 43–57.

https://doi.org/10.1111/j.1472-4642.2010.00725.x
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