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ABSTRACT

Single nucleotide polymorphisms (SNPs) are
increasingly used to tag genetic loci associated
with phenotypes such as risk of complex diseases.
Technically, this is done genome-wide without prior
restriction or knowledge of biological feasibility in
scans referred to as genome-wide association
studies (GWAS). Depending on the linkage disequi-
librium (LD) structure at a particular locus, such
tagSNPs may be surrogates for many thousands of
other SNPs, and it is difficult to distinguish those
that may play a functional role in the phenotype
from those simply genetically linked. Because
a large proportion of tagSNPs have been identified
within non-coding regions of the genome, distin-
guishing functional from non-functional SNPs has
been an even greater challenge. A strategy was
recently proposed that prioritizes surrogate SNPs
based on non-coding chromatin and epigenomic
mapping techniques that have become feasible
with the advent of massively parallel sequencing.
Here, we introduce an R/Bioconductor software
package that enables the identification of candidate
functional SNPs by integrating information from
tagSNP locations, lists of linked SNPs from the
1000 genomes project and locations of chromatin
features which may have functional significance.

Availability: FunciSNP is available from
Bioconductor (bioconductor.org).

INTRODUCTION

Genome-wide association studies (GWAS) have yielded
numerous single nucleotide polymorphisms (SNPs) signifi-
cantly associated with many phenotypes (P-value< 9e�06).
In some cases, dozens of SNPs, called tagSNPs, mark each
of a number of distinct loci in complex diseases, such as
prostate (>50 loci), breast (>20 loci), ovarian (>10 loci),
colorectal (>10 loci) and brain cancers (>5 loci), but the
mechanisms by which these polymorphisms exert
their functions remains largely unknown (1–3). Since
most of the tagSNPs (>80%) are found in non-protein
coding regions (intergenic and intron regions; Figure 1),
identifying functional and/or causal variants has been an
important limitation of GWAS data interpretation (4).
Several hypotheses have been proposed to explain this
phenomenon (3,5), such as effects via largely unannotated
transcripts (e.g. non-coding RNAs and rare splice
variants) or gene regulatory sequences (e.g. insulators,
enhancers or silencers). Testing for the effects of risk
SNPs at regulatory sequences has been successful; for
example, genomic enhancers identified by histone
mapping were shown to be highly enriched across a
number of diverse GWAS studies (6), and at the gene
desert of chromosome 8q24 where specific enhancers
were identified as differentially affected by SNP alleles
(7). However, assigning putative functionality to many
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other GWAS tagSNPs has only been successful when fine
mapping around a known risk region was performed (8,9).
Linkage disequilibrium (LD) is defined as the

non-random association of alleles at two or more loci.
In population genetic studies, LD is influenced by the
rate of recombination, mutation, genetic drift or selection.
Due to the nature of LD, each individual locus identified
in an association study can yield up to hundreds of surro-
gate SNPs for each linked group of tagSNPs. The first step
in any in silico analysis is to take a genomic window
around each tagSNP and extract all known variants
(at least with a minor allele frequency of �1%) with the
assumption that the functional and/or causal variant(s) is
likely contained within this window (3,4). Within this
genomic window, LD structure between populations and
genotype can be used to subsequently refine estimates of
risk, but the number of linked SNPs can generally still be
quite large. To aid in identifying a full spectrum of
variants in the genome, the 1000 genomes project
recently released a catalog of human genomic variants
(minor allele frequency of �1%) across many different
ethnic populations (2,11). Initially, the 1000 genomes
project goal was to sequence up to 1000 individuals, but
has since sequenced more than 2000 individuals, thereby
increasing our current knowledge of known genomic
variations, which currently is at just over 50 million

SNPs genome wide (�2% of the entire genome and on
average 1 SNP every 60 bp) (2).

Ascertaining biological function for each SNP requires
well-planned, and often expensive and time-consuming,
molecular biology experiments (9). Thus, analyzing the
large number SNPs linked to any particular locus in
practice requires a systematic bioinformatic evaluation
and prioritization to narrow the set of likely functional
candidate variants. In a recent perspective paper, we and
others recently formulated a well-ordered approach in
assigning functionality to coding and non-coding risk
regions (3). In this approach, a set of molecular (in vitro
and in vivo) as well as bioinformatic (in silico) tools and
strategies are used to prioritize regions of interest within
identified loci for subsequent functional follow-up studies.
Several bioinformatic tools have been reported previously
which take into account the LD structure and gene expres-
sion effect (eQTL) or likely impact on mutation(s) that
causes amino acid substitution and protein function or
other known observable phenotypic associations, such as
clinical features (12,13). However, these tools rely
primarily on gene annotations and do not incorporate
the critical non-coding genomic features known to have
regulatory function and likely to underlie many of the
tagSNPs identified outside of gene regions in complex
diseases.

Recently, with the advent of advanced sequencing
technologies (next-generation sequencing, NGS),
genomic architecture and regulatory elements in non-
coding regions are becoming well characterized and
annotated via sequence-based chromatin mapping/
epigenomics techniques (14–17). Coupling high-
throughput sequencing to chromatin immunoprecipitation
for regulatory proteins (e.g. transcription factor or histone
marks), known as ChIP-seq, has provided us with a much
more comprehensive view of the genomic regions that
regulate transcription (Supplementary Figure S1A).
Specifically, it enables mapping of genomic regions of
DNA fragments bound by transcription factors, epigen-
etic histone marks or other proteins at an amazing
resolution. Many ChIP-seq algorithms are currently
available to assist in identifying these enriched regions
or ‘peaks’ (18). Since the current prevailing consensus is
that identified ChIP-seq peaks are highly correlated to
biological function, we define the collection of peaks for
an experimental type as a ‘biofeature’.

In addition to profiling genomic regions marked by
distinct protein:DNA interactions, the advancement in
sequencing technologies have also been used to demarcate
regions of the genome defined as either euchromatin
(lightly packed form of chromatin) or heterochromatin.
Even mapping of subtle nucleosome-depleted regions
(NDR) as found at promoters and enhancers is now
possible. Specifically, it has been noted that a variety of
different histone modifications exists on well-positioned
nucleosomes surrounding NDRs in a variety of cell
types depending on their differentiated state (19).
Currently, two distinct technical methods are used to
profile NDR in an unbiased manner. DNase I hypersen-
sitive regions are generally regions demarcate ‘sites of
action’ in the genome which includes active promoters
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Figure 1. Summary of all known GWAS SNPs across a number of
different cancer types. GWAS SNPs were annotated using known
genomic features supplied by HOMER (version 3.9) (10), using build
hg19 as reference. GWAS SNPs were extracted from the UCSC
Genome table browser, track name ‘gwasCatalog’ with a P-value
cut-off of 9e�06 (1).
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and enhancers. Formaldehyde-assisted isolation of regula-
tory elements (FAIRE) is a similar approach used to
characterize open chromatin structures genome-wide
when coupled with deep sequencing; however, the
method does not include any enzymatic steps and is
therefore simpler to use. Recently, Song et al. identified
regulatory elements that shape cell-type identity and
found that FAIRE-seq and DNaseI-seq identify distinct
but overlapping profiles of NDR (20).

Work by large consortia groups such as the Encyclopedia
of DNA Elements (ENCODE) (14), the Roadmap
Epigenomics Mapping Consortium (21) and The Cancer
Genome Atlas (TCGA) (22), have made publicly available
a growing catalog of many different histone marks, tran-
scription factors and genome-wide sequencing data sets
for a variety of different diseases and cell lines, including
well-characterized normal and cancer cell lines, such as
IMR90 (fibroblast), MCF7 (breast cancer), HCT116
(colon cancer), U87 (brain cancer) and LNCaP (prostate
cancer). Integrating and correlating many of these
publicly available data with unpublished genomics and
epigenomics data was recently described in a study of
the first colon cancer methylome (17). This study illustrated
the power of integrating whole-genome DNA methylation
data with publicly available ChIP-seq data sets to gain
novel insights into the biology of the cancer epigenomic
architecture, specificallywith respect to the 3Dorganization
of chromosomes with the cell nucleus that lead to
changes in gene expression. The number of cell line with
whole-genome chromatin maps is rapidly increasing,
alongwith the diversity ofmapping techniques—innovative
new techniques include ChIA-PET (23), ChIP-exo (24),
ChIRP (25) and NOMe-seq (26). This wealth of chromatin
and epigenomics data will be invaluable in interpreting
disease polymorphisms, but tools to exploit it do not cur-
rently exist.

Here, we describe a new bioinformatic tool, called
Functional Identification of SNPs (FunciSNP) to aid in
the identification of candidate functional SNPs associated
with a phenotype by integrating and correlating knowledge
obtained from three whole-genome sequencing data types
(1000 genomes, GWAS SNPs and sequence-based chroma-
tin maps). Integrating non-coding regions as annotated by
chromatin mapping helps inform and prioritize candidate
regulatory regions for follow up molecular experiments.
Using FunciSNP, we test the hypothesis that there may
be many more putative functional SNPs associated
with a phenotype that are in LD to the original tagSNP.
To introduce and describe FunciSNP’s utility and applica-
tion, we used glioblastoma multiforme (brain cancer) as an
example GWAS phenotype (27–30). We extract ENCODE
ChIP-seq data for binding of two distinct transcription
factors (TFs) in a glioma cell line, U87 (14), as these sites
may have functional significance for the GBM cancer
phenotype. We identified several putative functional
SNPs overlapping the transcription factor (TF) binding
sites, and promoter regions of well-annotated genes,
which are in strong LD to the GWAS tagSNP. Many,
but not all, of the genes near these candidate regulatory
SNPs have been previously reported to be important in
glioblastoma development and risk.

MATERIALS AND METHODS

FunciSNP package

FunciSNP is an R package, which is licensed under the
General Public License (GPLv3) and is freely available
through the Bioconductor repository (31). By developing
the package in R and conforming to the strict guidelines
for package submission to Bioconductor, we are able to
utilize and incorporate existing R packages and statistics
to assist in identifying candidate functional SNPs.
FunciSNP builds upon and integrates the following
Bioconductor core packages: Rsamtools, GGtools,
VariantAnnotation, snpStats and ChIPpeakAnno. A
schematic overview is described in Figure 2.
In order to successfully run FunciSNP, two inputs are

required: GWAS tagSNP information and a set of
user-defined NGS peak files (biofeatures). GWAS
tagSNPs and NGS peaks were discussed in the
‘Introduction’ above. Specifically, biofeatures are defined
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Figure 2. Schematic flowchart to describe FunciSNP. Purple boxes
represent process before integration with biofeature. Red boxes
represent information after integration with biofeature.
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here as a collection of genomic regions identified by deep
sequencing of a particular experimental type. These
genomic regions were computationally identified using
currently available ‘peak calling’ algorithms as discussed
in a recent report (32). During an initial run, FunciSNP
extracts all available 1000 genomes SNPs (1kgSNP)
around a user-defined window centered on each tagSNP
(Figure 2). By default, this window size is defined as
200 000 base pairs (100 000 bp on either side of the
tagSNP). User can easily define this window by setting
the window.size argument in getFSNPs(). The informa-
tion on each 1kgSNP is then used to find overlaps with
each defined biofeature. Only those 1kgSNPs that overlap
a biofeature annotation are used to calculate the R2,
D0 and genomic annotations (distance to nearest TSS,
nearest lincRNA, genomic characterization, such as gene
bodies and promoters, see Section 3 of Supplemental Text
for more detail). R2 and D0 are useful calculations to
access the degree of LD between two alleles. In this case,
we use these calculations to evaluate the degree of correl-
ation or association between the original GWAS tagSNP
and the identified 1kgSNP overlapping a biofeature.
FunciSNP will use these two parameters to filter the list
even further to identify the most likely candidate func-
tional SNP associated with the phenotype. In addition,
FunciSNP can provide R2, D0 and genomic annotations
for all 1kgSNPs extracted from the 1000 genomes project,
independent of any available biofeature. For more fine
grained study, FunciSNP will output this data in an
annotated table (Supplemental Table S1) that contains
an entry for each unique combination of tagSNP,
YAFSNP and biofeature peak. From this table, users
are free to appropriate the totality data created by
FunciSNP, for export or use in the wide variety of
packages in the Bioconductor and R ecosystems. This
application is useful when knowledge about all SNPs in
LD to the tagSNP is important, regardless of the
overlapping biofeature. And, finally, FunciSNP contains
several custom plots and summary functions to aid in
making informed hypothesis of the newly identified
candidate functional SNPs (see Supplemental Text for
more details).

Glioma GWAS SNP data

Seven tagSNPs associated with glioma were obtained from
recent GWAS (27–30). Four of the seven tagSNPs were
randomly selected as an example set. The ‘snp.regions’ file
is organized in a tab or whitespace separated file with
three columns: genomic position, rs number and popula-
tion for each tagSNP. See Supplemental Text for more
information on how to organize a ‘snp.regions’ file
for input. Using correctly matching genome reference
coordinates is critical, and hg19 coordinates were used
throughout this study.

Biofeature annotation data

ChIP-seq peaks, regions in the genome identified by
deep sequencing of immunoprecipation of a specific
DNA:protein complex, for all available ENCODE data
associated with glioma cell lines were obtained through

ENCODE’s public repository (14). Only two distinct
ChIPseq types were available as biofeatures for U87,
a glioma cell line: neuron-restrictive silencer factor
(NRSF) and RNA polymerase II (Pol2). These two peak
files (biofeatures) were used as FunciSNP biofeature
inputs in this example. Each ChIP-seq data set was
collected and translated into a standard BED format. In
addition to user-defined biofeatures, FunciSNP also
contains a list of all known annotated promoters as
defined by a window around a known transcription start
site (TSS). The window parameter for promoters is �1000
to +100 bp from the TSS. FunciSNP also contains
information on known CTCF binding sites (33) as well
as DNaseI hypersensitive location across a number of
different cell lines (14). CTCF and DNaseI sites make
up a large fraction of open chromatin regions throughout
the genome and thus represent a set of regions likely to be
highly enriched in gene regulatory elements (6). We also
included FAIRE-seq peaks and we believe the combin-
ation of NDR peaks will assist in making informed
decision of candidate functional SNPs (see ‘Introduction’
section). FAIRE-seq peaks were extracted from more than
100 different cell types, collected from the UNC FAIRE
ENCODE data. Peaks were filtered such that only peaks
with a P-value below 0.01 were considered significant.
The remaining peaks from each cell type were then
merged into a single file representing clusters, across cell
types, of FAIRE peaks. Each peak data set is defined in
FunciSNP as a biofeature. See Supplemental Material
for more information as well as how to load publicly
available peak files from ENCODE.

1000 genomes SNPs

All SNPs within the specified window surrounding each
tagSNPs were extracted directly from FTP servers from
the 1000 genomes public repository. From time to time,
based on server load, connection to one of the FTP servers
may become interrupted, leading to corruption of 1000
genomes data downloaded by FunciSNP. Several checks
are in place to check the server status and the reliability of
the data. Data is initially requested from either EBI or
NCBI server at random, with a short wait time between
requests. If a problem is detected (either the connection
cannot be made, or the data is incomplete), the request
is resubmitted to the alternate server. This repeats until
successful, and allows for the process to run unattended
to completion. The GenomicRanges package
(version� 1.6.7) from Bioconductor allows for efficient
downloading of only those 1kgSNPs overlapping the
selected biofeatures. This allows for much shorter
execution times.

Statistical and data analysis

LD is defined as the non-random association between
allelic markers on a chromosome and is classically
measured using one of two estimators, D0 or R2 (34).
Each correlated SNP pooled from the 1000 genomes
database along with available population identification is
used to calculate the R2 and D0. All plots and summary
outputs are generated using R (version 2.14) (31) and
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most of FunciSNP’s plots are generated using ggplot2
(http://had.co.nz/ggplot2/).

The two respective measures of LD are generated
between all SNPs (1000 genomes project SNPs and the
tagSNP) that overlap at least one biofeature. The
snpStats package (available through bioconductor)
provides an efficient mechanism to calculate LD and
store SNP genotypes. We extend this structure to
provide the 3� 3 genotype table and 2� 2 haplotype
table required to perform further calculations. The
P-value is the result of a Fisher’s Exact Test performed
on the 2� 2 table of haplotype frequencies, and can be
useful as a guide to evaluating the R2 and D0 measures of
LD. Crucially, all calculations are done solely within the
population of the selected tagSNP, allowing population
specific measures of LD. For the cases wherein tagSNP’s
population is given as ALL, all calculations are repeated
for each group (AFR, AMR, ASN and EUR). Since
multiple P-values are calculated, we corrected the
P-values by Benjamini-Hochberg (BH) method. BH is
set by default in FunciSNP, but user may invoke any
one of the available multiple testing correction (see
‘p.adjust()’ function in R).

All data is contained in a nested collection of objects
that can be exposed to allow the user to extend their
analysis in ways that are not built into FunciSNP itself.
The primary object output by FunciSNP is a TSList object
that contains a list of the TagSNP objects. Each TagSNP
object is represented by its rs number followed by
the population in which it was examined (ex:
rs10936599:EUR). This object contains data representing
the chromosomal position, the reference SNP cluster ‘rs’
ID, the population in which it was studied, the reference
and alternate allele, the genotype information across the
population for the tagSNP, the R2 and D0 measures of LD
between the tagSNP and all 1000 genome SNPs within the
examined window that overlap at least one biofeature, and
a CorrelatedSNP object. The CorrelatedSNP object
contains similar information, but for all 1000 genomes
SNPs within the examined window. Additionally, it
contains data that identify which potentially correlated
SNPs overlap biofeatures, which biofeatures those
include, and the genomic location of that biofeature.
Handles to all data are exposed, for example, to access
the genotype information for all SNPs within the
examined window for SNP rs6010620:EUR that
overlap at least one biofeature in our example data set
one would enter the following command: > EUR.
overlapping.snps.geno(glioma[‘‘rs6010620’’]).

Gene annotations close to each surrogate SNPs over-
lapping at least one biofeature are used to annotate the
genomic context of the SNP, using existing Bioconductor
packages. VariantAnnotation (version� 1.0.5) was used
to annotated genomic context with respect to gene
annotations—exon, intron, 50UTR, 30UTR, promoter,
lincRNA or intergenic. TxDb.Hsapiens.UCSC.
hg19.knownGene (version� 2.6.2) provides the list of
known genes from the UCSC genome browser.
ChIPpeakAnno (version� 2.2.0) (35) is used to identify
the nearest gene(s) or long non-coding RNAs
(lincRNAs). LincRNA information was obtained

directly from the UCSC Genome table browser. This
genomic context information was used for all summary
plots, summary tables and to generate BED files used to
visualize results in a genome browser such as UCSC
Genome Browser (see ‘Results’ and ‘Supplemental
Material’ sections for more information).

Computing time

Running FunciSNP takes on average 3.8 s per 10 000 bp
window size centered on a tagSNP using one single central
processing unit (CPU) core (Supplementary Figure S1B).
In order to increase the processing speed, we incorporated
R’s base package (parallel) to run processes across
multiple CPUs. Depending on the total number of
original tagSNPs, users can specify as many CPUs
necessary to run analysis. For example, if user has four
available CPU and wants to only analyze two tagSNP,
then the maximum number of CPU is 2. Using
maximum number of CPU cores to tagSNP (n=4),
FunciSNP completed the analysis on average 1.5 s per
10 000 bp window size centered on a tagSNP
(Supplemental Figure S1B). If we increase the total
number of biofeatures, it does not significantly change
the run time (data not shown). Since FunciSNP down-
loads information from the 1000 Genomes FTP server
for each tagSNP surrounding a predetermined window
size, the final time can vary significantly.

Vignette

A user guide is provided which details each command and
output. See Supplemental Text for more information.

RESULTS

Identification of several new candidates functional SNPs
overlapping genomic biofeatures associated with glioma
(brain cancer)

To test FunciSNP, we used four known brain cancer
tagSNPs derived from recent GWAS (27–30) and avail-
able biofeatures specific to glioma cell lines (U87) as
reported by the ENCODE public data release (14). Five
different biofeatures were incorporated; NRSF and Pol2
regions from U87 cells, along with CTCF binding sites
and DNaseI hypersensitive regions derived from multiple
cell lines, and promoter regions surrounding all annotated
TSSs. Using four tagSNPs position and five different
biological features (ChIPseq for ‘NRSF’, ‘PolII’, CTCF,
DNaseI, DNaseI+CTCF and promoters of approx-
imately 38 000 genes) as two types of input, FunciSNP
identified 1205 candidate SNPs that overlap at least
one biofeature (Supplementary Figure S1C and D).
Each candidate SNP contains an R2 value to the

associated tagSNP (Figure 3A). Using R2 cut-off at 0.5,
we identified 48 candidate SNPs overlapping at least
one biofeature. This value represents 3.98% of the total
available candidate SNP in LD to all four tagSNPs.
In addition, we found three biological features for which
three candidate SNPs overlap. Interestingly, tagSNP
rs6010620 (28) is associated with 40 different candidate
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Figure 3. (A) Distribution of R2 values of all YAFSNPs. Each marked bin contains the total number of YAFSNPs. The sum of all the counts would
total the number of correlated SNPs. (B) Distribution of R2 values of all YAFSNPs divided by the tagSNP and by its genomic location.
(C) Histogram distribution of R2 value for all 1kgSNP extracted and overlaps PolII. R2 values are determined by its association to the tagSNP.
(D) Scatter plot of the R2 and distance to tagSNP for all 1kgSNP extracted and overlap PollI. (E) Stacked bar chart summarizing all correlated SNPs
for each of the identified genomic features: exon, intron, 5UTR, 3UTR, promoter, lincRNA or in gene desert. R2 cut-off at 0.5. This plot is most
informative if used with a rsq value. (F) Heatmap of the number of 1kgSNPs by relationship between tagSNP and biofeature. Total number of
YAFSNPs is listed within each quadrant to represent the number of potential candidate functional SNPs overlapping a biofeature (y-axis) which are
in LD to the original tagSNP (x-axis).
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SNPs which overlap at least one biofeature, and four of
them overlap at least three biofeatures (Figure 3B and C,
Supplementary Figure S1D and 2A–C). We refer to each
newly identified SNPs as a ‘YAFSNP’ (yet another candi-
date functional SNP), since they are now known to
overlap a number of different biofeatures and are in LD
to the tagSNP or phenotype, in this case brain cancer.

In addition, we annotated each YAFSNPs to the
nearest gene by using ‘geneSum’ set to TRUE
(Supplementary Figure S1E). Interestingly, CDKN2B
and TNFRSF6B (RETL1) were reported previously to
have a functional role in glioma development and
high-risk association in brain cancer (28,36). Figure 3D

describes the relative position of all newly identified
YAFSNPs to the associated tagSNP. TagSNP
‘rs6010620’ (28) contains many more YAFSNPs with
R2
� 0.5, the majority of which are contained in a small

cluster between +0 and +20kb from the tagSNP.
Interestingly, another significant set of YAFSNPs in
strong LD lies about 60 kb downstream (Figure 3D and
Supplementary Figure S2D–F).

Genomic annotation of candidate functional SNPs
for glioma

The majority of our identified YAFSNPs with R2> 0.5 to
the associated tagSNP are enriched in introns but depleted
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Figure 4. FunciSNP results viewed in UCSC genome browser. Tracks are ordered in the following manner: known GWAS hits, dbSNP135,
FunciSNP result, biofeatures, refseq genes and known lincRNA. TagSNP is highlighted in the FunciSNP result track and each YAFSNP is color
coded to reflect the number of biofeatures which it overlaps. The color ranges from blue (low number of biofeature overlap) to red (high number of
overlap). Each YAFSNP is highlighted by its known rsID and the calculated R2 value. The results are saved in a UCSC genome session: http://goo
.gl/xrZPD.
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in intergenic regions and promoters (Figure 3E). The
cross-indexed heatmap (Figure 3F) highlights the relation-
ship between each tagSNP and the number of associated
biofeatures of each type. This figure is informative because
it assists in highlighting specific tagSNPs with the most
number of correlated SNPs overlapping a number of
distinct biofeatures. Again, it is clearly visible that
rs6010620 contains the most number of associated
YAFSNPs which overlap several biofeatures, whereas
rs2736100 contains very limited number of YAFSNPs
which overlap only one biofeature (Figure 3F). In
addition to visualizing the data in this heatmap, user can
also extract information directly from the data matrix
outputted from FunciSNPAnnotateSummary() (see
Supplemental Text for additional insight into extracting
information from the results).
Another feature we developed into FunciSNP is the

ability to output the entire FunciSNP results in a
standard UCSC BED file which can then be loaded into
any genome browser (Figure 4). In this case, we extracted
all YAFSNPs associated with tagSNP rs6010620 and
highlighted all YAFSNPs in red along with the
overlapping biofeatures. This provides genomic context
to the final results, which illustrates all associated
YAFSNPs overlapping a number of different promoters
of genes and the relative genomic position to each other.
In addition, using UCSC genome browser to visualize
FunciSNP results offers the opportunity to add additional
publicly available tracks (e.g. ENCODE TF binding
motifs and conservation; Figure 4) to assist in formulating
hypotheses and in selecting candidate functional SNPs for
follow up studies. In our example, it is now clear that the
central cluster of YAFSNPs overlap two large regions of
PolII that mark the transcripts for RTEL1-TNFRSF6B
and ZGPAT. At about 60 kb downstream of tagSNP,
another set of interesting YAFSNPs overlap PolII
marking in the promoter regions of the SLC2A4RG and
LIME1 transcripts. A third and fourth set of YAFSNP
loci occur about 20 and 40 kb upstream—interestingly,
one of these (rs6062293) overlaps one of the rare NRSF
sites within the STMN3 gene.

DISCUSSION

Because many GWAS were performed using microarray
technologies that contained only a small fraction of SNPs
which were determined using a limited number of
populations, it is likely that they often do not contain
the functional SNP responsible for risk, but rather a
linked surrogate. As described in Freedman et al. (3),
methods are needed to specifically identify and prioritize
functional candidate SNPs in non-coding regions that may
be more likely to confer risk to the disease than the
GWAS-identified tagSNP. However, to our knowledge,
no open source or freely available tool exists to perform
these functions. We developed FunciSNP to fully integrate
information derived from GWAS, 1000 genomes database
and chromatin mapping/epigenomics data in order to
identify candidate functional SNPs. We expect
FunciSNP will better assist molecular epidemiologist and

biologist in characterizing candidate markers for risk in
complex diseases such as cancer, diabetes, obesity,
Alzheimer’s disease and others.

In order to describe a proof-of-principle case for
FunciSNP, we used glioma (brain cancer) as an example
because the biological significance of GWAS tagSNPs is
not currently understood. We integrated five distinct
biological features with four glioma-associated tagSNPs.
We identified a region containing SNPs that are highly
linked to tagSNP rs6010620 and overlap at least one
biofeature. We expect most, if not all, of these candidate
SNPs to have highly correlated functional relevance in the
context of brain cancer. Follow-up molecular experiments
and epidemiological studies are required to validate their
putative function and associated risk in brain cancer.

We have performed analyses using FunciSNP in breast,
prostate, colon and ovarian cancer with very high success
in validating candidate functional SNPs/regions in poten-
tial enhancer region by using in-vitro enhancer assays
(manuscripts submitted/or in preparation). Thus, the iden-
tification, characterization and possible clinical link of
these newly identified putative functional SNP and the
associated genomic regions should become a lasting
legacy of GWAS and ultimately justify the initial
substantial investment into these studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–2 and Supplementary Methods.
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