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Abstract

For studying cancer and genetic diseases, the issue of identifying high correlation genes

from high-dimensional data is an important problem. It is a great challenge to select relevant

biomarkers from gene expression data that contains some important correlation structures,

and some of the genes can be divided into different groups with a common biological func-

tion, chromosomal location or regulation. In this paper, we propose a penalized accelerated

failure time model CHR-DE using a non-convex regularization (local search) with differential

evolution (global search) in a wrapper-embedded memetic framework. The complex har-

monic regularization (CHR) can approximate to the combination ‘p
1

2
� p < 1

� �
and ℓq (1� q

< 2) for selecting biomarkers in group. And differential evolution (DE) is utilized to globally

optimize the CHR’s hyperparameters, which make CHR-DE achieve strong capability of

selecting groups of genes in high-dimensional biological data. We also developed an effi-

cient path seeking algorithm to optimize this penalized model. The proposed method is eval-

uated on synthetic and three gene expression datasets: breast cancer, hepatocellular

carcinoma and colorectal cancer. The experimental results demonstrate that CHR-DE is a

more effective tool for feature selection and learning prediction.

1 Introduction

Feature selection is a great step forward for selecting biomarkers in biological data with high

dimension and small sample. Among various kinds of feature selection methods, the regulari-

zation methods use different penalty functions embedded in the learning procedure into a sin-

gle process and has lower risk to over-fitting. The well known penalty is the least absolute

shrinkage and selection operator (Lasso, ℓ1-norm) [1], which is performing continuous shrink-

age and feature selection at the same time. Other ℓ1-norm type regularization methods typi-

cally include smoothly clipped absolute deviation (SCAD) [2], group lasso [3], minimax

concave penalty (MCP) [4], etc. Besides, Xu et al [5] has proved that when 0 < p < 1

2
, there is

no significant difference in the performance of ℓp-norm, but the computational complexity to
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solve the ℓ1/2 regularization is much lower than that of the ℓ0-norm; while 1

2
< p < 1, the solu-

tions of the ℓp regularization is more sparse with the decline in p. Under this theory, Chu et al

[6] proposed a naïve harmonic regularization that can approximate ‘p
1

2
� p < 1

� �
penalties.

One limitation of these ℓ1-norm type regularizations is that when the data set contains

strong correlations among the predictors, it tends to select only one feature from the group

and does not even care which one is selected, but these groups may be gene pathways in gene

expression data. In theory, a strictly convex penalty function provides a sufficient condition

for grouping effect of variables and ℓq-norm (q> 1) penalty guarantees strict convexity [7].

Zou and Hastie [8] proposed the Elastic net that mixes the ℓ1 and ℓ2 penalties. After that, some

regularization methods without prior knowledge that combined ℓ2-norm for selecting groups

of variables are SCAD-ℓ2 [7], ℓ1/2 + ℓ2 [9], and so on. While, there are also some regularization

methods with prior knowledge, such as group lasso [3] that has been used for multivariate

analysis of variance model, where each factor may have several levels and can be expressed by

a group of dummy variables. In this article, we employ a complex harmonic regularization

(CHR) [10] that approximates to the combination ‘p
1

2
� p < 1

� �
and ℓq (1� q< 2) to select

the key factors in group among all features. This approach avoided determining the value of p
or q in advance, i.e., we would not need to assume the probability distribution of the data,

before evaluating the grouping effect and spare by the existing regularization methods.

However, the hyperparameters of CHR are sensitive to the resolution, and the hyperpara-

meter tuning is typically done by expert analysis, evolutionary algorithms, bayesian optimiza-

tion and grid search [11]. Jaderberg et al [12] efficiently set the hyperparameters of neural

networks based on the genetic algorithm (GA). Liu et al [13] proposed a hybrid genetic algo-

rithm which combines genetic algorithm with embedded ℓ1/2 + ℓ2 regularization together. Such

evolutionary algorithms are suitable to deal with tuning hyperparameters of these multimodal

penalty functions. GA [14] is the most widely used one in the literature. However, GA is much

slower convergence to optimum for high dimensional problem. Consequently, it cannot handle

the learning model with more hyperparameters. A popular swarm-intelligence-based algorithm

is the particle swarm optimization (PSO) algorithm [15] which is well adapted to the optimiza-

tion of nonlinear functions in multidimensional space. Differential evolution (DE) [16] has

been particularly proposed for continuous search spaces and is very simple to implement. Ves-

terstrom and Thomsen [17] have evaluated the performance of GA, DE and PSO regarding

their general applicability as numerical optimization techniques. Then, they concluded that DE

is less sensitive to parameter changes than other metaheuristic algorithms. Therefore, the DE

can rightfully be regarded as an excellent choice to hyperparameter optimization.

Memetic algorithm [18] is now widely used as a synergy of evolutionary or any population-

based approach with separate individual learning or local improvement procedures for prob-

lem search. Evolution strategy (ES) is the first and oldest evolutionary algorithm, and it is

based on the adaptation and evolution. Covariance matrix adaptation evolution strategies

(CMA-ES) [19] is one of the most recent and powerful versions of memetic algorithm that

combined evolution strategies with local information. The gene-pool optimal mixing evolu-

tionary algorithm (GOMEA) is made for local search applying a strong mathematical back-

ground on the generation of the solutions, but it is considered to be a EA for discrete

optimization problems [20]. Recently, Bouter et al. [21] proposed the real-valued GOMEA

(RV-GOMEA) to cover the real-valued search space. Besides, memetic framework [22] models

memetic algorithms as a process involving feature selection and learning procedure. In this

paper, we present a wrapper-embedded memetic framework that utilizes DE to globally opti-

mize the hyperparameters of non-convex regularization CHR that is a local search to select

biomarkers in group.

The CHR-DE in a memetic framework for biomarker selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0210786 February 14, 2019 2 / 21

Funding: This work was supported by the Macau

Science and Technology Develop Funds (Grant No.

003/2016/AFJ) of Macao SAR of China and China

NSFC project under contract 61661166011 to YL.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0210786


The workflow of our proposed algorithm is shown in Fig 1. Microarray gene expression

data for one certain cancer are collected, processed into a matrix file that contains the genes

(rows) and tissue samples (columns). After setting the CHR’s hyperparameters in DE proce-

dure, CHR starts the learning procedures, and then gives the fitness values feedback to update

its hyperparameters. With a fully trained model, we can get some groups of genes with non-

zero coefficients, which may be the valid biomarkers for this cancer.

The remainder of this paper is organized as follows: the CHR method for survival data in

accelerated failure time (AFT) model is presented in Section 2, the implement of tuning CHR’s

hyperparameters is introduced in Section 3, the experimental results and discussions are illus-

trated in Section 4, a concluding remark is finally made in Section 5.

2 Complex harmonic penalized accelerated failure time model

2.1 Accelerated failure time model

Suppose X denotes the h × k data matrix whose rows are Xi = (xi1, xi2, . . ., xik), 1� i� h, T

denotes the sample vector of a lifetime or time to certain event of interest (τ1, τ2, . . ., τh)T.

Throughout this article we consider failure times (or survival times) that are right censored,

survival time τi = min(ti, ci), where ti is the true survival time, ci is the time to the first censor-

ing event (e.g., study conclusion, date of final follow up) for each subject i. Our survival data

consist of independent observations for h individuals ðti; di; XiÞ
h
i¼1

, where δ is the censoring

indicator, if δi = 0, it represents the right censoring time and δi = 1 means the completed time.

The accelerated failure time (AFT) model is treated as a linear regression between

the survival time τi and the covariates Xi: G(τi) = β0 + xi β
T + εi, i = 1, 2, . . ., h, where

G : ½0; 1Þ ! R, β0 is the intercept, b � Rk is the regression coefficient, and εi are h indepen-

dent random errors with a normal distribution function. Because of the censoring time in the

datasets, the standard least squares approach is not allowed to directly compute the regression

parameters of the covariates in AFT model.

In order to simplify the method, we use the mean imputation method [23] to estimate the

right censored data in the least squares criterion. The estimated value G(τi) of the censoring

Fig 1. The workflow of our proposed the complex harmonic regularization with differential evolution algorithm

(CHR-DE) for selecting biomarkers. Microarray gene expression data for one certain cancer are collected, processed

into a matrix file that contains the genes (rows) and tissue samples (columns). In order to identify tumor subclasses

that are both biologically meaningful and clinically relevant, we apply the differential evolution (DE) to fine tuning the

hyperparameters of the complex harmonic regularization (CHR). After the operations of DE procedure, such as

differential mutation, crossover, adaptive local search and selection, this CHR can be used in the learning procedures,

and then give the fitness values feedback to update its hyperparameters. With a fully trained model, we can get some

groups of genes with non-zero coefficients, which may be the valid biomarkers for this cancer.

https://doi.org/10.1371/journal.pone.0210786.g001
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survival time τi is given by:

GðtiÞ ¼ di logðtiÞ þ ð1 � diÞ fŜðtiÞg
� 1X

tðrÞ>ti

logðtðrÞÞDŜðtðrÞÞ ð1Þ

where t(�) are distinct censored lifetimes in an ascending sort order, r is the number of individ-

uals at risk of failing just before time t(i), Ŝ is the Kaplan-Meier estimator [24] of the survival

function, and DŜðtðrÞÞ is the step of Ŝ at time t(r). Therefore, the least squares approach of AFT

model is to minimize the loss function L(β) for the Gaussian family:

LðbÞ ¼
1

h

Xh

i¼1

ðyi �
Xk

j¼0

bjxijÞ
2

ð2Þ

where the first column of X is all ones, and each censored yi is replaced with the imputed value

G(τi).

2.2 Path seeking algorithm for complex harmonic regularization penalty

Regularization is a way to avoid over-fitting in AFT model and the common form of regulari-

zation for a control parameter λ (λ> 0) is:

b̂ðlÞ ¼ arg min
b

fLðbÞ þ lPðbÞg ð3Þ

where b 2 Rp are the estimated coefficients, L(β) is a loss function and P(β) represents the reg-

ularization term.

In fact, the survival data have different probability distributions of grouping effect and sparse.

In theory, a strictly convex penalty function, such as ℓq (1< q< 2), provides a sufficient condition

for the grouping effect. On the contrary, ℓp (0< p< 1) penalty can provide different sparse evalu-

ation with different p value. The limitation of the existing regularization methods is that a fixed

p (0< p< 1) value ℓp-norm with ℓ2-norm is used to evaluate the grouping effect and spares in

variable selection, thus they often have assumptions about the probability distribution of the data.

Upon our previous work naïve harmonic regularization that can approximate ‘p
1

2
� p < 1

� �

penalties [6], we designed the CHR penalty that can approximate the combination of the

‘p
1

2
� p < 1

� �
and ℓq (1� q< 2) penalties [10]. The CHR penalty can be normally expressed as:

b̂ ¼ argmin
b

LðbÞ þ l1

Xk

j¼1

mðbjÞ þ l2

Xk

j¼1

nðbjÞ

( )

ð4Þ

where 0< a, b< 1; λ1, λ2� 0;

mð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

aðaþ 1Þ
j � j þ

1 � a
a

� �2
s

�
1 � a

a
;

nð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

bðbþ 1Þ
j � j

2
þ

1 � b
b

� �2
s

�
1 � b

b
:

Furthermore, comparing with the fixed p and q, the CHR penalty can suggest a proper

value for p and q in given datasets, and the CHR penalty can be plotted as Fig 2. When a is

close to 0, m(β)� |β| (ℓ1-norm, see Fig 2(c)). When a is close to 1, mðbÞ ¼
ffiffiffiffiffiffi
jbj

p
(ℓ1/2-norm,

see Fig 2(b)). When b is close to 0, n(β)� |β|2 (ℓ2-norm, see Fig 2(e)). When b is close to 1,

n(β) = |β| (see Fig 2(f)), that is same with a closing to 0.

Theorem 1. m(�) and n(�) approximate to the combination of ‘p 1

2
� p < 1

� �
and

ℓq (1� q< 2) regularizations with adjustable p and q to evaluate the grouping effect and

The CHR-DE in a memetic framework for biomarker selection
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sparse of data, i.e.,

lim
a!0

mðbÞ � jbj ðLassoÞ; lim
a!1

mðbÞ ¼
ffiffiffiffiffiffi
jbj

p
ð‘1=2Þ;

lim
b!0

nðbÞ � jbj2 ð‘2Þ; limb!1
nðbÞ ¼ jbj:

Proof.

lim
a!0

mðbÞ ¼ lim
a!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

aðaþ 1Þ
jbj þ

1 � a
a

� �2
s

�
1 � a

a

¼ lim
a!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

ðaþ1Þð1� aÞ2
jbj þ 1

q
� 1

a
1� a

¼ lim
a!0

1þ 2a
2ðaþ1Þð1� aÞ2

jbj þ oðð 2a
ðaþ1Þð1� aÞ2

jbjÞ
2
Þ � 1

a
1� a

¼ lim
a!0

1

ðaþ 1Þð1 � aÞ
jbj þ oðð

2

ðaþ 1Þð1 � aÞ
jbjÞ

2
Þ

� jbj

lim
a!1

mðbÞ ¼ lim
a!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

aðaþ 1Þ
jbj þ

1 � a
a

� �2
s

�
1 � a

a

¼
ffiffiffiffiffiffi
jbj

p

Fig 2. The complex harmonic regularization. (a) the curves represent m(�) at different parameter a values; (b) the

solid curve represents m(�) at the parameter a = 0.99, and the dashed curve is the ℓ1/2 regularization; (c) the solid curve

represents m(�) at the parameter a = 0.01, and the dashed curve is the ℓ1 regularization; (d) the curves represent n(�) at

different parameter b values; (e) the solid curve represents n(�) at the parameter b = 0.01, and the dashed curve is the ℓ2

regularization; (f) the solid curve represents n(�) at the parameter b = 0.99, and the dashed curve is the ℓ1 regularization.

https://doi.org/10.1371/journal.pone.0210786.g002
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There are the inductions of the first two equations. The inductions of other two equations

are similar to these and need not be explained here.

Let g ¼
l1

l1þl2
; l ¼ l1 þ l2 in Eq (4), then the common form of CHR penalty can be re-

expressed as:

b̂ ¼ argmin
b

LðbÞ þ lðg
Xk

j¼1

mðbjÞ þ ð1 � gÞ
Xk

j¼1

nðbjÞÞ

( )

ð5Þ

Therefore, we can use the path seeking algorithm [25] in linear model to sequentially con-

struct a path directly in parameter space that closely approximates that for CHR penalty, with-

out having repeatedly solve numerical optimization problem.

Let ν measure length along the path and Δν> 0 be a small increment. Here, we need to

note that the size of the step Δν can be obtained by

Lðb̂ðnÞÞ � Lðb̂ðnþ DnÞÞ
Lðb̂ðnÞÞ

¼ 0:01 ð6Þ

Define

φjðnÞ ¼ � ½
@LðbÞ
@bj
�
b¼b̂ðnÞ

¼ � ½
@

1

h

Xh

i¼1
ðyi �

Xk

j¼0
bjxijÞ

2

@bj
�
b¼b̂ðnÞ

¼ ½
2

h

Xh

i¼1

xijðyi �
Xk

j¼0

bjxijÞ�b¼b̂ðnÞ

ð7Þ

�jðnÞ ¼ ½
@ðg
Pk

j¼1
mðbjÞ þ ð1 � gÞ

Pk
j¼1

nðbjÞÞ

@jbjj
�
b¼b̂ðnÞ

¼ ½
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aðaþ 1Þjbjj þ ð1 � a2Þ
2

q þ
2ð1 � gÞjbjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2bðbþ 1Þjbjj
2
þ ð1 � b2Þ

2
q �

b¼b̂ðnÞ

ð8Þ

ljðnÞ ¼
φjðnÞ

�jðnÞ
ð9Þ

where λj(ν) is the ratio of these two gradients φj(ν) for loss function Eq (2) and ϕj(ν) for

the penalty function with respect to |βj|. This path seeking scheme can accelerate solving

the CHR penalty. The details of the implementation of CHR penalty are outlined in Algo-

rithm 1.

Algorithm 1 Implementation of CHR penalty

1: Initialize: n ¼ 0; fb̂ jð0Þ ¼ 0g
k

1

2: repeat
3: Compute fljðnÞg

k
1

4: S ¼ fjjljðnÞ � b̂ðnÞ < 0g

5: if S = empty then
6: j� = arg maxj |λj(ν)|
7: else

The CHR-DE in a memetic framework for biomarker selection
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8: j� = arg maxj2S |λj(ν)|
9: end if
10: b̂ j� ðnþ DnÞ ¼ b̂ j� ðnÞ þ Dn � signðlj� ðnÞÞ

11: fb̂ jðnþ DnÞ ¼ b̂ jðnÞgj6¼j�

12: ν  ν + Δν
13: untill λ(ν) = 0

After initializing the path, the vector λ(ν) is computed via Eqs (7)–(9) at each step. Then,

those non zero coefficients b̂ðnÞ 6¼ 0 which have a sign opposite to that of their corresponding

λj(ν) are identified. When the set S is empty, the coefficient corresponding to the largest com-

ponent of λ(ν), in absolute value is selected at line 6. And when there are one or more elements

in the set S, the coefficient with corresponding largest |λj(ν)| within this subset is instead

selected. The selected coefficient b̂ j� ðnÞ is then incriminated by a small amount in the direction

of the sign of its correspond λj�(ν) with all other coefficient remaining unchanged, producing

the solution for the next path point ν + Δν. Iterations continue until all components of λ(ν) are

zero.

Although the complex harmonic penalized AFT model can adapt for different data distribu-

tions, this model has three hyperparameters a, b, γ which are sensitive to the resolution. The

more suitable way thereby is optimized by the evolutionary algorithms to make these regular-

ized hyperparameters more precise and efficient.

3 Complex harmonic regularization in a memetic framework

3.1 A wrapper-embedded memetic framework

Memetic framework [22] models memetic algorithms (MAs) as a process involving feature

selection and learning procedure. The term of MAs, which combine evolutionary algorithms

(EAs) with local search (LS) [26], have recently received much attention from the feature selec-

tion problems. These methods are inspired by Darwin’s principles of natural evolution and

Dawkins defined memes, which unlike genes, can adapt themselves [27].

In most memetic-based feature selection approaches, an EA is used for wapper feature

selection and a LS algorithm is used for filter feature selection. Zhu et al [28] applied genetic

algorithm for wrapper feature selection and used Markov blanket approach as a LS for filter

feature selection. Noman and Iba [29] incorporated a crossover-based LS with adaptive

length in DE resulted into a DE-variant, where the length of the LS algorithm can be

adjusted adaptively using a hill climbing heuristic. However, such memetic-based

approaches have the potential limitation that filter evaluation measures may eliminate

potentially useful features regardless of their performance in the wrapper approaches. In

addition, the wrapper approaches usually involve a large number of assessments, and each

assessment usually takes a considerable amount of time, especially when the numbers of fea-

tures and instances are large. The second limitation of the existing memetic-based feature

selection methods is that they are primarily concerned with the relatively small numbers of

features and instances.

Focusing on these limitations above, regularization method can adapting relationships

between data by designing different penalty functions with original, grouping effect or net

effect. What’s more, regularization methods evaluate features and build model at one stage.

Therefore, we embed CHR penalty into a DE-variant for improving the selection ability under

the global optimization of the non-convex regularization.

The CHR-DE in a memetic framework for biomarker selection
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3.2 Implementation of complex harmonic regularization with differential

evolution (CHR-DE) algorithm

Our proposed wrapper-embedded feature selection approach (CHR-DE) in memetic frame-

work includes population-initialized, differential mutation, crossover, adaptive local search

and selection operations. The first step of the CHR-DE approach is that the DE population is

randomly initialized with each chromosome encoding the penalized hyperparameters (intron)

and the coefficients of each gene in the AFT model (exon). Subsequently, the CHR approach

(local search) is performed on the exon part under the fixed intron part, to reach a local opti-

mal solution or to improve the fitness of individuals in the search population. DE operations

are performed on the intron parts of the chromosomes, and the selection operator generates

the next population. This process repeats itself till the stopping conditions are satisfied. The

details of this approach are outlined in Algorithm 2.

Algorithm 2 The CHR-DE algorithm in memetic framework
Input:
Bounds of solution space hb, lb;
Population size NP;
Individual size ND;
Fitness function f(�); //Embedded with CHR penalty
Crossover rate cr;
Scaling factor F;

Output: Regression coefficient β�.
1: Generate initial population //Begin DE procedure
2: pop  rand(NP, ND) × (hb − lb) + lb
3: for i = 1: NP do
4: Calculate f(pop(i))
5: end for
6: repeat
7: Select popr, pops popt randomly in pop
8: //Differential mutation
9: for i = 1: NP do
10: child(i)  popr + F × (pops + popt)
11: //Crossover
12: jrand = brand × NDc
13: for j = 1: ND do
14: if rand < cr OR j == jrand then
15: offspring(i)(j)  child(i)(j)
16: else
17: offspring(i)(j)  pop(i)(j)
18: end if
19: end for
20: //Selection
21: if f(offspring) � f(pop) then
22: pop  offspring
23: end if
24: end for
25: //Adaptive local search
26: tmpPop  mean(pop) + wL(pop − mean(pop))
27: for i = 1: NP do
28: for j = 1: NP − 1 do

29: rðjÞrand
1

jþ1

30: end for
31: C(1)  0
32: for j = 2: NP do
33: C(j)  r(j − 1)(tmpPop(i − 1) − tmpPop(i) + C(j − 1))
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34: end for
35: offspring  tmpPop(NP) + C(NP)
36: if offspring 2 (hb, lb) AND f(offspring) � f(pop(i)) then
37: pop(i)  offspring
38: end if
39: end for
40: untill stopping criterion is met

3.2.1 Chromosome representation: Intron and exon. The first step of the CHR-DE

approach is that the population of NP individuals initializing randomly with each chromosome

which adopts the “intron + exon” encoding [13] to construct the penalized hyperparameters

(intron) and the coefficients of each gene in the AFT model (exon), i.e., c = (a, b, γ, β1, β2, � � �,

βk). In CHR scheme, there are three parameters in intron part pop ¼ ½a; b; g�NP
1

which should

cover this range by uniformly randomizing individuals with minimum and maximum bounds

lb, hb in the search space. DE searches for a global optimum in intron part which is ND dimen-

sional real parameter space RND :

pop ¼ randðNP; NDÞ � ðhb � lbÞ þ lb ð10Þ

where rand is a uniformly distributed random number lying between 0 and 1. Meanwhile, the

CHR is performed on exon part for each introns in individuals, i.e., β to reach a local optimal

solution and to gain the fitness of each individuals.

3.2.2 Fitness definition. The mean squared error (MSE) and the concordance index (CI)

are two criteria used to design a fitness function. In statistics, the MSE measures the average of

the squares of the errors, which is evaluated by Eq (11) for survival data.

mseðbÞ ¼
1

h

Xh

i¼1

ðti � t̂ iÞ
2

ð11Þ

where the predicted value t̂ i ¼ expð
Pk

j¼0
bjxijÞ.

In survival analysis, the CI is the standard performance measure for model assessment and

quantifies the quality of rankings by Eq (12).

ciðbÞ ¼
P

i

P
j 1 ðt̂ i < t̂ j and di ¼ 1Þ

P
i

P
j 1 ðti < tj and di ¼ 1Þ

ð12Þ

We employ the weighted-sum method [30] to change this bi-objective problem into a single

objective problem. Thus, the individual with low MSE and high CI produces a high fitness

value by Eq (13).

fitnessi ¼ wM � ð1 �
MSEi

PNP
i¼1

MSEi

Þ þ wC � CIi ð13Þ

where wM is the weight of MSE for the individual i in the population, wC is the CI for this indi-

vidual. These weight factors can be adjusted according to what people value as an important

weight, e.g., if MSE is more important than CI, we set the weight factors wM = 95%, wC = 5%.

Furthermore, the results with different values of wM and wC can be found in the S1 Appendix.

3.2.3 Differential mutation operation. After initialization, DE uses a differential muta-

tion operator based on linear combination.

child ¼ popr þ F � ðpops þ poptÞ ð14Þ

The indices r, s, t are mutually exclusive integers randomly generated within the range [1,

NP]. These indices are randomly generated once for each mutant vector child. The scaling
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factor F 2 [0, 1+[ is a positive value which cannot be much greater than 1 for scaling the differ-

ence vector [31].

3.2.4 Crossover operation. To enhance the potential diversity of the population, a cross-

over operation applied to each pair of the target vector pop and its corresponding mutant vec-

tor child to generate a trial vector offspring. We employ the binomial (uniform) crossover to

create a single trial vector. This crossover is defined for each jth component of the ith parame-

ter vector as follows:

offspringi;j ¼

childi;j if rand < cr or j ¼ jrand

popi;j otherwise

8
<

:
ð15Þ

where jrand 2 [1, 2, � � �, ND] is a randomly chosen index, which ensures that offspring gets at

least one component from child.

3.2.5 Adaptive local search. Usually in EAs the solutions with better fitness values are

generally for reproduction, thus we use adaptive simplex crossover local search strategy for

exploring the neighborhood of the best individual of population. Firstly, we expand the popu-

lation with simplex crossover:

tmpPop ¼ meanðpopÞ þ wLðpop � meanðpopÞÞ ð16Þ

where wL is the control parameter of this local search. Then, generating the offspring upon the

expansion population in Eqs (17) and (18).

Ci ¼
0; ði ¼ 1Þ

ri� 1ðtmpPopi� 1 � tmpPopi þ Ci� 1Þ; ði ¼ 2; � � � ;NpÞ

(

ð17Þ

offspring ¼ tmpPopNP
þ CNP

ð18Þ

3.2.6 Selection operation. The solutions with better fitness values are generally preferred

for reproduction, as they are more likely to be in the proximity of a basin of attraction. There-

fore, we deterministically select the best individual of the population for exploring its neigh-

borhood using the selection operation that is described as

pop ¼
offspring if f ðoffspringÞ � f ðpopÞ

pop otherwise

(

ð19Þ

where f(�) is the fitness function in Eq (13) to be maximized. Therefore, if the new trial vector

yields an equal or higher value of the fitness function, it replaces the corresponding target vec-

tor in the next generation; otherwise the target is retained in the population. Hence, the popu-

lation either gets better or remains the same in fitness status, but never deteriorates.

4 Results and discussion

4.1 Synthetic datasets

To demonstrate the performance of our proposed regularization procedure, we assume that

the graph modules with 200 key factors (KFs) and that each regulates 10 different genes for a

total of 2200 variables. Among these models and genes, 4 KFs and their 10 regulated genes (44
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variables in total) are associated with the response based on the following model:

Y ¼
X44

u¼1

buXu þ ε ð20Þ

where the independent random noise ε* N(0, 1), and the non-zero coefficients are specified

as

bu ¼ ð2;
2
ffiffiffiffiffi
10
p ; � � � ;

2
ffiffiffiffiffi
10
p

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
10

; � 2;
� 2
ffiffiffiffiffi
10
p ; � � � ;

� 2
ffiffiffiffiffi
10
p

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
10

; 4;
4
ffiffiffiffiffi
10
p ; � � � ;

4
ffiffiffiffiffi
10
p

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
10

; � 4;
� 4
ffiffiffiffiffi
10
p ; � � � ;

� 4
ffiffiffiffiffi
10
p

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
10

Þ:

For each KF, the X value is simulated from a N(0, 1) distribution, and conditional on the

value of KF, we simulate the expression levels of the genes that they regulated from a condi-

tional normal distributions % of 0.2, 0.5, 0.7, and 0.9, respectively. For example, if the x1 is KF

of xi, i = 2, 3, � � �, 10, then we can define this group is xi = % × x1 + (1 − %) × xi. Therefore, we

have a total of 2200 variables and 44 of them are relevant.

All of penalties in our experiments are solved by the general path seeking method [25]. The

original DE for feature subset selection was conducted by Khushaba et al. [32]. For each

model, we use two-thirds of simulated data for training and remaining one-third for testing

with 600 samples. A 10-fold cross validation (CV) is conducted on training set for tuning

parameters of all approaches. In our experimentation, the scaling factor F = 0.9, cross rate

cr = 0.9, and the weight factors wM = 95%, wC = 5%, wL = 1 respectively. Because the popula-

tion size should be small [29], we set NP = 4, and the stoping criterion of 10,000. In addition,

we also calculate both sensitivity and specificity for each procedure, where

sensitivity ¼
# correctly selected genes

# non‐zero in bu

¼
# correctly selected genes

44

ð21Þ

specificity ¼
# correctly rejected genes

# zero in bu

¼
# correctly rejected genes

2200 � 44

ð22Þ

To further evaluate the performance of each penalties, we employ the prediction mean-

squared errors (MSE) and the concordance index (CI) with standard errors.

After repeating the each penalties 50 times, the averaged results are summarized in Table 1.

Generally, our proposed CHR-DE approach gives lower MSE with higher CI than other

approaches. The CHR-DE also results in much higher sensitivity with comparable specificity

for identifying the relevant features. The Lasso and ℓ1/2 without ℓ2-norm have strong selectivity

especially in high grouping effect data % = 0.7, 0.9. With the correlation % increasing among

genes, these no grouping effect penalties select a few genes, e.g., the sensitivity of ℓ1/2 is from

0.790 down to 0.091 (only selecting these 4 non-zero coefficient KFs) with highest specificity

0.998. The wrapper methods DE and CMA-ES have weaker selectivity than other grouping

effect penalties, e.g., Elastic net, ℓ1/2 + ℓ2 and CHR, especially in the data containing low corre-

lation features % = 0.2. Although other grouping effect penalties have lower specificity, they

perform well and select more correct genes whose coefficients β is non-zero, no matter what

the conditional normal distributions %. Comparing with the CHR’s hyperparameters tuning

The CHR-DE in a memetic framework for biomarker selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0210786 February 14, 2019 11 / 21

https://doi.org/10.1371/journal.pone.0210786


by grid search (CHR-GS), the CHR-DE utilizes the evolutionary algorithm to skip redundant

parameter settings or to add new ones and ultimately achieves better performance.

4.2 Real datasets

We demonstrate the proposed methods by analyzing microarray expression data from NCBI’s

gene expression omnibus (GEO) with the accession number, including breast cancer

(GSE22210) [33], hepatocellular carcinoma (HCC, GSE10141) [34] and colorectal cancer

(CRC, GSE103479). To evaluate our CHR-DE method, we divide these datasets at random

two-thirds samples become training set and the remainders are test set. The details about these

above datasets are shown in Table 2. Besides, the Figs 3–5 show the pathways of some selected

genes by CHR-DE method in three different cancers rendered with cBioPortal [35]. The query

genes are outlined with a thick border, and all other genes are automatically identified as

altered in one cancer. Darker red indicates increased frequency of alteration (defined by

Table 1. Results of the synthetic data, sensitivity, specificity, mean-squared-error (MSE), concordance index (CI) are based on 50 simulations. Standard errors are

given in parentheses.

% Penalty Sensitivity Specificity MSE CI

0.2 Lasso 0.863 (0.152) 0.996 (0.013) 21.911 (3.268) 0.841 (0.018)

ℓ1/2 0.790 (0.082) 0.998 (0.001) 11.318 (2.131) 0.849 (0.016)

DE 0.809 (0.066) 0.990 (0.012) 20.451 (1.875) 0.879 (0.017)

CMA-ES 0.746 (0.063) 0.986 (0.015) 20.786 (2.666) 0.861 (0.016)

Elastic net 0.840 (0.164) 0.936 (0.014) 8.649 (1.918) 0.883 (0.026)

ℓ1/2 + ℓ2 0.922 (0.136) 0.953 (0.016) 6.777 (1.754) 0.901 (0.016)

CHR-GS 0.977 (0.066) 0.956 (0.015) 6.746 (1.713) 0.912 (0.014)

CHR-DE 0.988 (0.081) 0.962 (0.012) 6.461 (1.520) 0.914 (0.012)

0.5 Lasso 0.795 (0.117) 0.996 (0.013) 21.615 (3.380) 0.880 (0.023)

ℓ1/2 0.272 (0.052) 0.998 (0.001) 11.475 (2.462) 0.929 (0.034)

DE 0.871 (0.071) 0.992 (0.013) 18.518 (2.924) 0.946 (0.029)

CMA-ES 0.735 (0.067) 0.986 (0.016) 18.614 (2.132) 0.949 (0.025)

Elastic net 0.818 (0.183) 0.928 (0.015) 9.605 (2.764) 0.961 (0.035)

ℓ1/2 + ℓ2 0.886 (0.167) 0.931 (0.014) 9.391 (3.479) 0.966 (0.028)

CHR-GS 0.928 (0.035) 0.947 (0.017) 9.375 (2.466) 0.969 (0.023)

CHR-DE 0.931 (0.054) 0.949 (0.013) 8.031 (2.357) 0.972 (0.027)

0.7 Lasso 0.681 (0.023) 0.997 (0.014) 29.822 (2.945) 0.882 (0.022)

ℓ1/2 0.091 (0.003) 0.998 (0.001) 22.850 (2.397) 0.945 (0.028)

DE 0.720 (0.039) 0.991 (0.012) 15.727 (2.628) 0.963 (0.030)

CMA-ES 0.680 (0.028) 0.987 (0.016) 16.017 (1.922) 0.966 (0.025)

Elastic net 0.863 (0.192) 0.853 (0.015) 12.873 (2.521) 0.977 (0.031)

ℓ1/2 + ℓ2 0.841 (0.133) 0.882 (0.010) 13.351 (2.757) 0.965 (0.028)

CHR-GS 0.923 (0.032) 0.903 (0.011) 12.560 (1.711) 0.978 (0.024)

CHR-DE 0.946 (0.061) 0.924 (0.008) 12.452 (1.188) 0.978 (0.023)

0.9 Lasso 0.409 (0.005) 0.995 (0.013) 34.439 (2.113) 0.878 (0.027)

ℓ1/2 0.091 (0.003) 0.998 (0.001) 29.565 (1.798) 0.935 (0.025)

DE 0.697 (0.046) 0.990 (0.012) 15.151 (2.757) 0.967 (0.028)

CMA-ES 0.435 (0.011) 0.986 (0.018) 15.513 (2.077) 0.965 (0.025)

Elastic net 0.727 (0.153) 0.824 (0.016) 23.764 (2.463) 0.941 (0.034)

ℓ1/2 + ℓ2 0.795 (0.126) 0.831 (0.012) 15.478 (2.826) 0.967 (0.030)

CHR-GS 0.864 (0.082) 0.844 (0.009) 14.113 (1.523) 0.976 (0.026)

CHR-DE 0.909 (0.063) 0.873 (0.006) 13.351 (1.182) 0.977 (0.024)

https://doi.org/10.1371/journal.pone.0210786.t001
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mutation, copy number amplification, or homozygous deletion) in one cancer. The drugs that

target genes are display with hexagons, and orange indicates FDA-approved.

4.2.1 Breast cancer. GSE22210 contains 167 breast tumor samples with 1,452 genes

obtained using GEO Platform GPL9183 [33]. Table 3 shows that the CHR-DE performs best

in predicting the patients’ survival time with selecting smaller number of genes than the Elastic

net and CHR-GS.

As see from the Table 4, CHR-DE penalty selects some unique genes, such as HIC1 LIF

which play an important role in the development of primary breast cancer [36, 37]. The XIST

is selected by these 8 different methods and lack an X chromosome decorated by XIST RNA

causes the basal-like subtype of invasive breast carcinoma [38]. Moreover, some relevant genes

are selected by other regularization models such as IL1B, NFKB1, IGF1R and SERPINB2

which are also found by the CHR-DE. Especially, the IL1B, NFKB1 and IGF1R in a small

group of network by CHR-DE method as shown in Fig 3, and they are also targeted by several

Table 2. The real datasets.

Dataset # genes # samples (training / test)

GSE22210 1,452 167 (117 / 50)

GSE10141 6,144 80 (56 / 24)

GSE103479 110,961 155 (109 / 46)

https://doi.org/10.1371/journal.pone.0210786.t002

Fig 3. The network views of IL1B, NFKB1, IGF1R, LAT and RASA1 in the breast cancer rendered with cBioPortal

[35]. The selected genes by CHR-DE are outlined with a thick border, and all other genes are automatically identified

as altered in one cancer. Darker red indicates increased frequency of alteration (defined by mutation, copy number

amplification, or homozygous deletion) in one cancer. The drugs that target genes are display with hexagons, and

orange indicates FDA-approved.

https://doi.org/10.1371/journal.pone.0210786.g003
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Fig 5. The network view of CDC42, SLC10A2, TNRC6B and MOV10 in the colorectal cancer rendered with

cBioPortal [35]. The selected genes by CHR-DE are outlined with a thick border, and all other genes are automatically

identified as altered in colorectal cancer. Darker red indicates increased frequency of alteration (defined by mutation,

copy number amplification, or homozygous deletion) in one cancer.

https://doi.org/10.1371/journal.pone.0210786.g005

Fig 4. The network view of ADRB3 and MAPK3 in the hepatocellular carcinoma rendered with cBioPortal [35]. The selected genes by CHR-DE are outlined with a

thick border, and all other genes are automatically identified as altered in one cancer. Darker red indicates increased frequency of alteration (defined by mutation, copy

number amplification, or homozygous deletion) in one cancer. The drugs that target genes are display with hexagons, and orange indicates FDA-approved.

https://doi.org/10.1371/journal.pone.0210786.g004
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cancer drugs. The IL1B leads to enhanced production of proinflammatory cytokines triggered

by the treatment, with subsequent effects on persistent fatigue in the aftermath of breast cancer

[39]. Wood et al [40] identified NFKB1 mutation in breast tumorigenesis. As one of related

receptors in insulin-like growth factor (IGF) system, type I IGF receptor (IGF1R) can influ-

ence the activity of estrogen receptor-α (ER) that can be used in promoting breast tumor

regression [41]. The the plasminogen activator inhibitor type 2 (PAI2, SERPINB2), is signifi-

cantly associated with increased survival in patients with breast cancer [42, 43].

4.2.2 Hepatocellular carcinoma. GSE10141 contains 6,144 genes for 80 hepatocellular

carcinoma (HCC) patients. Table 5 also shows that the CHR-DE performed best in predicting

Table 4. The top 10 selected genes in the GSE22210.

Lasso ℓ1/2 DE CMA-ES Elastic net ℓ1/2 + ℓ2 CHR-GS CHR-DE

1 XIST IL1B IGSF4C ASB4 SERPINB2 XIST XIST SERPINB2

2 LAT XIST AFF3 KIAA1804 XIST IL1B IL1B IMPACT

3 IL1B HLA-DQA2 BMP4 CASP10 IMPACT LAT LAT XIST

4 DNASE1L1 TGFA IGF2AS CDKN2A IL1B ESR2 NFKB1 HIC1

5 NFKB1 CDKN1A XIST TERT LAT KCNK4 TGFA IGF1R

6 HDAC9 GNMT CD9 BCAP31 CCND1 IGF1R CDKN1A LAT

7 BCL2L2 LAT CDC25B GLI2 NFKB1 CD1A RASA1 LIF

8 ESR2 BCL2L2 MMP1 XIST TGFA PTPRF HDAC9 IL1B

9 AFP HDAC9 NFKB2 ABCG2 HLA-DQA2 HLA-DQA2 LAMC1 NFKB1

10 LAMC1 CD44 HFE CCKBR RASGRF1 TGFA RASGRF1 RASA1

https://doi.org/10.1371/journal.pone.0210786.t004

Table 5. The results with standard errors in parentheses for GSE10141.

Penalty # selected genes MSE CI

Lasso 29 31.228 (3.165) 0.764 (0.030)

ℓ1/2 10 32.756 (2.203) 0.772 (0.031)

DE 44 31.975 (2.701) 0.756 (0.029)

CMA-ES 34.75 32.037 (2.982) 0.736 (0.027)

Elastic net 60 28.721 (3.672) 0.753 (0.022)

ℓ1/2 + ℓ2 36 30.333 (2.406) 0.732 (0.026)

CHR-GS 41.667 27.460 (2.181) 0.771 (0.023)

CHR-DE 41 27.161 (2.026) 0.781 (0.018)

https://doi.org/10.1371/journal.pone.0210786.t005

Table 3. The results with standard errors in parentheses for GSE22210.

Penalty # selected genes MSE CI

Lasso 46 21.023 (2.680) 0.776 (0.017)

ℓ1/2 23 25.271 (2.432) 0.783 (0.019)

DE 44 21.421 (2.381) 0.735 (0.024)

CMA-ES 38.5 28.835 (2.619) 0.695 (0.016)

Elastic net 159 33.331 (2.125) 0.809 (0.025)

ℓ1/2 + ℓ2 104.333 31.975 (1.992) 0.805 (0.022)

CHR-GS 122.667 18.790 (1.987) 0.813 (0.014)

CHR-DE 117.667 17.371 (1.871) 0.815 (0.015)

https://doi.org/10.1371/journal.pone.0210786.t003
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the patients’ survival time with selecting smaller number of genes than the Elastic net and

CHR-GS.

As see from the Table 6, CHR-DE penalty selects some unique genes, such as KRT14,

NOLC1. Liver cytokeratin14 (KRT14), a marker of liver stem cells, is only positive in G0 phase

of hepatocellular carcinoma cell line Huh7 [44]. NOLC1 is regulated by CREB-NOLC1 path-

way that plays an important role in hepatocellular carcinoma progression by modulating

tumor growth, angiogenesis and apoptosis [45, 46]. Furthermore, the ADRB3, MAPK3,

MGAT1, TGFBI and DAD1 are selected by CHR-DE penalty and other methods such as

Lasso, ℓ1/2, DE, CMA-ES and CHR-GS meanwhile. Especially, the ADRB3 and MAPK3 in a

small group of network by CHR-DE method as shown in Fig 4, and they are also targeted by

several cancer drugs. Zhao et al [47] identified two pathways, “calcium signaling pathway” and

“neuroactive ligand-receptor interaction” containing ADRB3, which correlated with middle

and late stages of HCC development. Okabe et al [48] suggested that activation of the MAPK

pathway containing MAPK3, MAPK9 is a common feature of HCC. Guo et al [49] reported

alterations of glycogene and N-glycan such as MGAT1 in human hepatocarcinoma cells corre-

late with tumor invasion, tumorigenicity and sensitivity to chemotherapeutic drug. As a tumor

suppressor, arginylglycylaspartic acid (RGD) peptides released from βig-H3, also known as

transforming growth factor-beta-induced protein (TGFBI) peptides mediate apoptosis of

Hep3B hepatoma cells [50]. While, βig-H3 can promote the progression of hepatocellular car-

cinoma as well [51, 52]. Tanaka et al [53] has demonstrated that high expression of DAD1 in

HCC cells can activate oligosaccharyltransferase (OST) and block apoptosis, thereby enhanc-

ing tumor cell survival.

4.2.3 Colorectal cancer. GSE103479 contains 110,961 genes for 155 colorectal cancer

(CRC) patients. Table 7 also shows that the CHR-DE performed best in predicting the

Table 6. The top 10 selected genes in the GSE10141.

Lasso ℓ1/2 DE CMA-ES Elastic net ℓ1/2 + ℓ2 CHR-GS CHR-DE

1 PSG6 CYP24A1 KLRC3 SLC29A2 PSG6 PSG6 CYP24A1 CYP24A1

2 CYP24A1 ADRB3 IFI6 HMGB2 CYP2A7 CYP24A1 ADRB3 KRT14

3 ADRB3 OLFM4 IL32 TTC35 CYP24A1 CYP2A7 ATP6AP2 ADRB3

4 PPP2CA EFNA5 NCBP2 BTG3 LBX1 GPR3 MGAT1 ATP6AP2

5 MGAT1 MGAT1 ITGA5 ICAM2 SYT5 MPL SPTBN1 MGAT1

6 CCR9 AADAC LSR NFKBIB SLC10A2 VIP AUH TGFBI

7 DAD1 SULT1E1 SPTBN2 MAPK3 KRT81 PRKCQ IGFBP3 NOLC1

8 ATP6AP2 TGFBI ASPA TAP1 MPL SSTR3 SULT1E1 DAD1

9 CAPZA1 LSR MAPK9 OSTF1 EPYC SYT5 GRM5 MAPK3

10 OLFM4 HIST1H2BH RSC1A1 EIF2B1 HTR6 KRT81 ACTB GM2A

https://doi.org/10.1371/journal.pone.0210786.t006

Table 7. The results with standard errors in parentheses for GSE103479.

Penalty # selected genes MSE CI

Lasso 39 63.909 (3.588) 0.691 (0.033)

ℓ1/2 18 62.245 (2.624) 0.725 (0.049)

DE 44 62.374 (3.115) 0.707 (0.034)

CMA-ES 39.5 63.975 (4.415) 0.682 (0.031)

Elastic net 66 61.201 (4.290) 0.713 (0.036)

ℓ1/2 + ℓ2 43 59.832 (3.278) 0.727 (0.028)

CHR-GS 56.333 56.202 (3.107) 0.735 (0.036)

CHR-DE 51.333 53.999 (3.043) 0.748 (0.035)

https://doi.org/10.1371/journal.pone.0210786.t007
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patients’ survival time with selecting smaller number of genes than the Elastic net and

CHR-GS.

As see from the Table 8, the CDC42 is selected by CHR-DE penalty and other methods. It

is one of the best characterized members of the Rho GTPase family, which was found to be up-

regulated in several types of human tumors including CRC. Targeting CDC42 would poten-

tially decrease CRC metastasis formation [54, 55, 56]. Furthermore, there are four selected

genes CDC42, SLC10A2, TNRC6B and MOV10 in a small group of network by CHR-DE

method as shown in Fig 5. This ileal sodium dependent bile acid transporter (ISBT; gene code:

SLC10A2) has been associated with the risk for development of sporadic colorectal adenoma,

a precursor lesion for CRC [57]. ATN1 may be promising biomarkers for the distinction

between serrated and conventional CRC [58]. These two above genes SLC10A2 and ATN1 are

selected by CHR-DE penalty and Lasso. The RPS11 is selected by these 6 different penalties at

the same time. Kasai et al [59] demonstrated that RPS11 is highly expressed in CRC (especially

in immature mucosal cells located in the crypt base) but can be detected hardly in the normal

colorectal mucosa.

5 Conclusion

In this paper, we have proposed a penalized accelerated failure time model CHR-DE to recog-

nize the biomarkers that are both biologically meaningful and clinically. This model is designed

based on wrapper-embedded memetic framework that combines a non-convex regularization

(local search) with differential evolution (global search). First, this new method inherits the

robust power of regularization methods that integrate feature selection and learning procedure

into a single process. Furthermore, our proposed method utilizes differential evolution (DE) to

globally optimize the CHR’s hyperparameters, which make CHR-DE achieve strong capability

of selecting groups of genes in high-dimensional biological data. We also developed an efficient

path seeking algorithm to optimize this penalized model. The results in both synthetic and real

datasets have indicated that the CHR-DE method is highly competitive against some existing

feature selection approaches to select biomarkers in groups. Additionally, this CHR-DE

scheme can be easily implemented in other high-dimensional and low-sample datasets.

Supporting information

S1 Appendix. The results with different values of MSE and CI weights. We display the

results with different weightings in synthetic datasets and breast cancer data (GSE22210).

(PDF)

Table 8. The top 10 selected genes in the GSE103479.

Lasso ℓ1/2 DE CMA-ES Elastic net ℓ1/2 + ℓ2 CHR-GS CHR-DE

1 RPS11 RPS11 TMTC1 CLDND2 RPS11 RPS11 RPS11 RPS11

2 TNRC6B IK GALT ABCD3 FCGR3A IK LINC01315 LINC01315

3 LINC01315 RP11-50B3.4 CDC42 KLRK1 FAM24A RPL27A FCGR3A TNRC6B

4 CDC42 RHOA RMND5B CDC42 IK CDC42 IK SLC10A2

5 SLC10A2 PIAS1 SPACA1 MYH4 RPL27A TNRC6B RPL27A CDC42

6 ATN1 SERPINB12 LILRB1 ITGA7 XKRX SERPINC1 FAM24A ATN1

7 SERPINB12 DLST OR8B2 AVEN NNMT GABPA SERPINB12 MOV10

8 LCE1B CDC42 OPTC TBC1D32 DEFB108B SLC10A2 CDC42 BPIFA3

9 RNF215 RPL27A GLTSCR2 OR5P3 SERPINB12 XKRX XKRX SERPINB12

10 WDR73 ZDHHC20 SYTL1 A4GNT TREM1 ZDHHC20 TNRC6B GABPA

https://doi.org/10.1371/journal.pone.0210786.t008
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