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Abstract

Neuroimaging-driven brain age estimation has become popular in measuring brain

aging and identifying neurodegenerations. However, the single estimated brain age

(gap) compromises regional variations of brain aging, losing spatial specificity across

diseases which is valuable for early screening. In this study, we combined brain age

modeling with Shapley Additive Explanations to measure brain aging as a feature

contribution vector underlying spatial pathological aging mechanism. Specifically, we

regressed age with volumetric brain features using machine learning to construct the

brain age model, and model-agnostic Shapley values were calculated to attribute

regional brain aging for each subject’s age estimation, forming the brain age vector.

Spatial specificity of the brain age vector was evaluated among groups of normal

aging, prodromal Parkinson disease (PD), stable mild cognitive impairment (sMCI), and

progressive mild cognitive impairment (pMCI). Machine learning methods were

adopted to examine the discriminability of the brain age vector in early disease

screening, compared with the other two brain aging metrics (single brain age gap,

regional brain age gaps) and brain volumes. Results showed that the proposed brain

age vector accurately reflected disorder-specific abnormal aging patterns related to

the medial temporal and the striatum for prodromal AD (sMCI vs. pMCI) and PD

(healthy controls [HC] vs. prodromal PD), respectively, and demonstrated outstanding

performance in early disease screening, with area under the curves of 83.39% and

72.28% in detecting pMCI and prodromal PD, respectively. In conclusion, the pro-

posed brain age vector effectively improves spatial specificity of brain aging measure-

ment and enables individual screening of neurodegenerative diseases.
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1 | INTRODUCTION

Brain aging is accompanied by complex and specific morphological

change patterns across the lifespan (Good et al., 2001; Kennedy

et al., 2009; Lemaitre et al., 2012; Long et al., 2012). These age-

related brain changes can also be aggravated by neurodegenerative

diseases. For instance, regional accelerated atrophies demonstrate

strong aging effects in many neurodegenerative disorders, such as

Alzheimer disease (AD) and Parkinson disease (PD; Fioravanti

et al., 2015; McDonald et al., 2009). To measure brain aging, one of

the most popular approaches is to regress age based on neuroimaging

data, using machine learning (Cole et al., 2017; Franke & Gaser, 2019;

Franke et al., 2010), and the deviation between the estimated age and

chronological age, termed “brain age gap”, can simply assess the

degree of abnormal aging (acceleration or deceleration). Previous

studies have demonstrated a positive brain age gap existing in several

neurological diseases, such as AD (Franke et al., 2010; Gaser

et al., 2013), PD (Beheshti et al., 2020), mild cognitive impairment

(MCI; Franke & Gaser, 2012), dementia (Wang et al., 2019), schizo-

phrenia (Kuo et al., 2020), and further suggested that the degree of

accelerated brain aging could considerably determine the likelihood of

diseases (Koutsouleris et al., 2014).

However, the single estimated brain age (gap) losses spatial speci-

ficity across diseases, and shows poor discriminability in identifying

early neurodegenerations with subtle brain changes. Brain aging is not

a linear trajectory, but a complex process that differs among regions.

While the thalamus volumes gradually decrease since adulthood, the

hippocampal volumes are found to slightly increase until age of

40, and decrease rapidly after 60 years (Jernigan et al., 2001; Long

et al., 2012). Likewise, although apparently accelerated atrophies in

the striatum have been reported in early PD, cortical changes are rela-

tively subtle (Lewis et al., 2016). Nevertheless, early AD patients show

extensive cortical changes with the most severe atrophy in the medial

temporal (Johnson et al., 2012). Therefore, it is obvious that a single

metric (estimated brain age) cannot fully characterize these complex

regional variations across diseases. To solve this issue, Kaufmann

et al. (2019) have trained brain age models for each of the brain

regions and demonstrated specific neuroanatomical distribution of

brain age gaps for several brain disorders . However, the fineness of

the neuroanatomical distribution is limited by the number of regional

models. Besides, brain regions with low age correlation may affect the

accuracy of regional models. Therefore, precise approaches to charac-

terizing regional variations of brain aging are needed to improve the

disorder specificity of brain aging measurement.

Model interpretation methods provide a new perspective for

investigating disease mechanism. Generally, these methods establish

dependencies between multiple features and the machine learning

target by quantifying feature contributions to the model (estimations).

Then, neuroimaging features (regions, voxels, etc.) with greater contri-

butions are considered with more disorder specificity for disease dis-

crimination (Bloch & Friedrich, 2021; Li et al., 2020; Oh et al., 2019).

A popular recent addition, Shapley Additive Explanations (SHAP), pro-

vides individual feature attribution based on game theory (Lundberg &

Lee, 2017b; Lundberg et al., 2019). Bloch and Friedrich (2021) have

applied SHAP analysis in AD classification, and indicated the volume

of the left hippocampus as one of the most disorder-specific features

in predicting AD conversion. Besides, consistent results of feature var-

iations in healthy people have also shown across different types of

brain age models, using SHAP (Ball et al., 2021). In age estimation of

patients, SHAP can be used to attribute the estimated brain age gap

to each brain feature, thus brain aging can be specifically refined to

regional feature contributions underlying spatial pathological aging

mechanism.

In this study, we proposed a brain age vector to measure

disorder-specific brain aging for individual early screening of AD and

PD based on model-agnostic SHAP. Specifically, the brain age estima-

tion model was first trained on a multicenter brain MRI (magnetic res-

onance imaging) data set consisting of a large number of healthy

people (N = 4174). Then, SHAP feature attribution was implemented

on age estimations of the external clinical data sets (consisting of nor-

mal aging [N = 171], prodromal PD [N = 174], stable MCI [sMCI;

N = 69], and progressive MCI [pMCI; N = 64] subjects) to construct

the brain age vector for each subject. Furthermore, we compared the

spatial specificity and individual discriminability of the brain age vec-

tor with the other two brain aging metrics (single brain age gap and

regional brain age gaps) and brain volumes. We hypothesized that the

proposed brain age vector could reveal disorder-specific abnormal

aging patterns and enhance individual screening of neurodegenerative

diseases.

2 | MATERIALS AND METHODS

2.1 | Data preparation

Data used in this study were obtained from six independent public

data sets including the IXI database (https://brain-development.org/

ixi-dataset/), Open Access Series of Imaging Studies (OASIS; https://

www.oasis-brains.org/), Southwest University Longitudinal Imaging

Multimodal Brain Data Repository (SLIM; Liu et al., 2017), Interna-

tional Neuroimaging Data sharing (INDI; https://fcon_1000.projects.

nitrc.org/indi/IndiPro.html/), Alzheimer Disease Neuroimaging Initia-

tive (ADNI; www.loni.ucla.edu/ADNI/), and Parkinson Progression

Markers Initiative (PPMI; www.ppmi-info.org). Each site received

approval from an ethical committee on human experimentation before

study's initiation.
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A total of 4652 T1-weighted MRI scans acquired at either 1.5 or

3 T were obtained in this study. Subjects with unclear demographic

information were removed. We included 4174 T1-weighted MRI

scans of healthy subjects (aged 9–96 years) from the IXI, OASIS, SLIM,

INDI, and ADNI in the brain age modeling (training and evaluation)

data set to ensure the generalizability of the brain age estimator. Clini-

cal data sets consisted of AD and PD groups. Subjects in AD groups

included 69 sMCI patients and 64 pMCI (prodromal AD) patients from

ADNI. Specifically, sMCI subjects were diagnosed as MCI at all avail-

able points at least for 3 years, and the baseline T1w MRI scans were

selected. pMCI subjects were diagnosed as MCI, but converted to AD

in subsequent follow-ups without any reversion, and the T1 images

scanned within 2 years (more than 1 year) before diagnosis of AD

were selected. Complete follow-up records for at least 3 successive

years are available for each subject in AD groups, and participants that

did not pass quality control in the 3 years were excluded. Subjects in

PD groups included 174 prodromal PD patients, and 171 HC from

PPMI, for which only the baseline scans were obtained. The diagnostic

criteria of prodromal PD followed the inclusion criteria for prodromal

patients of the PPMI study (https://www.ppmi-info.org/study-

design/research-documents-and-sops). Both AD and PD groups were

matched for age.

For AD groups, the Mini-Mental State Examination (MMSE) and

Clinical Dementia Rating (CDR) were obtained as clinical parameters.

For PD groups, the Movement Disorder Society-Sponsored Revision

of the Unified Parkinson Disease Rating Scale (MDS-UPDRS), part III

(UPDRS III), the REM (Rapid Eye Movement) Sleep Behavior Disorder

Screening Questionnaire (RBDSQ), and the Epworth Sleepiness Score

(ESS) were considered. The demographic details are summarized in

Table 1.

2.2 | Image processing and feature extraction

In this study, all T1 images were processed using the exact same pipe-

line, and a total of 98 volumetric features were extracted. Specifically,

95 volumetric features based on the “Desikan-Killiany-Tourville”
(DKT) atlas were obtained using FastSurfer (Henschel et al., 2020). To

eliminate the between-subject variability in brain tissue volumes

caused by the variation in head size (Mathalon et al., 1993), all parcel

volumes were normalized by the intracranial volume (ICV) calculated

by SPM12, which shows outstanding performance in ICV estimation

(Malone et al., 2015). The volume fraction of gray matter (GM), white

matter (WM), and cerebrospinal fluid (CSF) obtained in the process of

calculating ICV (by SPM12) were also added to features to better fit

the brain age model.

2.3 | Model training and brain age estimation

The brain age estimation model is built upon 98 volumetric features

together with sex info based on the XGBoost algorithm (Chen &

Guestrin, 2016), which has shown outstanding performance in T
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machine learning competitions as well as brain age modeling

(Kaufmann et al., 2019). First, we split the brain age modeling data set

into a training set comprising 3344 samples of HC, and an indepen-

dent test set comprising 830 samples of HC. Ten-fold cross-validation

was carried out on the training set to tune the model parameters.

Finally, the learning rate was set to 0.01, the number of estimators

was set to 6000, the max depth was set to 7, the subsample was set

to 0.8, and other parameters were set to default. After determining

the optimal parameters, the whole training set was used to train the

final model with the optimal parameters. Model accuracy was evalu-

ated on the test set using the MAE (mean absolute error), R2 (coeffi-

cient of determination score), and the r (Pearson correlation

coefficient). The model training process was performed using the

XGBoost (1.2.1) package (Chen et al., 2019) in Python 3.8.3, and the

model evaluation process was performed using scikit-learn (0.23.1)

package (Pedregosa et al., 2011).

The trained brain age model was then applied to estimate brain

age in clinical groups, and the brain age gap (deviation between esti-

mated age and chronological age) was calculated for each subject. Fur-

thermore, we used a general linear model approach, controlling the

covariates of age, sex, and ICV (calculated by SPM12), to compare the

brain age gap between groups (sMCI vs. pMCI and HC vs. prodromal

PD). The threshold for statistical significance was set at p < .05.

Site effects on the estimated brain age gap were also evaluated

both on the test set (830 healthy subjects from 5 public data sets) and

the clinical sets (171 HC, 174 prodromal PD from PPMI, and 69 sMCI,

64 pMCI from ADNI) using a linear mixed model approach. For the

test set, age and sex were controlled as covariates, and for the clinical

sets, the grouping of diseases was also controlled as well. The thresh-

old for statistical significance was set at p < .05.

2.4 | Construction of the brain age vector

We used model-agnostic SHAP (Shapley values) to attribute regional

brain aging for each subject‘s age estimation to construct the brain

age vector.

Model-agnostic Shapley values originated from coalition game

theory to quantify the contribution of each variable to the final result

(Shapley, 2016). When compared with other model interpretation

techniques, SHAP provides both global and local interpretations,

which permits feature attribution for each subject's estimation. Specif-

ically, we employed SHAP on the age estimation of clinical groups to

attribute abnormal aging to each brain feature for each subject as:

f xið Þ�Etr f xð Þ½ � ¼
XN

j¼1

Φij

where f xið Þ represents the estimated brain age of a single sample xi;

Etr f xð Þ½ � represents a fixed baseline, which in this case is the average

chronological age of the training set tr; N is the number of input fea-

tures; and Φij is the Shapley value which represents the contribution

of feature j to the estimated brain age of xi. The technical overview

refers to Lundberg and Lee (2017a) and (2017b). To accelerate the

calculation of Shapley values based on tree model, we used Tree

SHAP (Lundberg et al., 2019) in this study. Therefore, Shapley values

of 99 input features (98 brain volumes and sex) composed a feature

contribution vector. Hypothesizing that the feature contributions

measured the degree of brain aging in the corresponding brain

regions, the brain age vector could characterize regional variations of

brain aging. This process was performed using the shap (0.39.0) pack-

age implemented in Python (3.8.3).

To measure the reliability of the brain age vector, we also col-

lected repeated scans (scanned on the same date but of different

descriptions) of sMCI (N = 68) and pMCI (N = 63) subjects in ADNI.

Again, using SHAP feature attribution based on the brain age estima-

tion model, brain age vectors were constructed for each subject's

repeated scans, and the intraclass correlation coefficient (ICC[2,1];

Shrout & Fleiss, 1979) was calculated comparing the brain age vector

between repeated scans within each group (sMCI and pMCI).

In addition, we also compared the feature contribution calculated

by SHAP with the feature importance of XGBoost, which calculates

feature contributions as the information gain in the model optimiza-

tion process, to confirm the feature attribution results of the brain age

model.

2.5 | Detection of disorder-specific regional
abnormal aging

Group comparisons involved Tukey HSD (honestly significant differ-

ence) test (Abdi & Williams, 2010) were implemented on the features

in the brain age vector between prodromal patients and controls for

AD (sMCI vs. pMCI) and PD (HC vs. prodromal PD) groups, respec-

tively. The threshold for statistical significance was set at a p value of

false discovery rate (FDR) corrected p < .05. Features with FDR-

corrected p < .05 indicated significant abnormal aging in the corre-

sponding brain regions. In contrast, we also implemented the same

group comparisons on the brain volumes used for brain age modeling

to compare the disorder-specific patterns derived from aging metrics

(brain age vector) and structural metrics (brain volumes). This

disorder-specific pattern detecting process only included features

based on the DKT atlas.

To examine the reproducibility of the disorder-specific patterns

revealed by the brain age vector, we also sampled 70% (120 HC,

122 prodromal PD, 48 sMCI, and 45 pMCI) and 50% (86 HC, 87 pro-

dromal PD, 34 sMCI, and 32 pMCI) of the subjects in the clinical sets

to repeat our experiment.

2.6 | Classification experiments of early disease
screening

Aiming to further examine the discriminability of the brain age vector

in early disease screening, we conducted supervised learning
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experiments to classify prodromal patients and controls (sMCI

vs. pMCI and HC vs. prodromal PD). Two classification models

(i.e., XGBoost, logistic regression) were selected to detect pMCI or

prodromal PD patients based on the brain age vector. We first split

each clinical group into a training set (75%) and a test set (25%),

and 5-fold cross-validation was carried out on the training sets to

evaluate the classification performance. Furthermore, we also eval-

uate the generalizability of the classification models (trained on the

whole traing sets) on the external test sets. The performance of

each classification task was quantified in terms of classification

accuracy (ACC), sensitivity (SEN), specificity (SPE), as well as the

area under the curve (AUC) of receiver operating characteristic.

Shapley value of sex was removed from the brain age vector, and

the true age and sex of each subject were added to features for

classification.

In contrast, we also tested the discriminability of the other two

brain aging metrics: the single estimated brain age gap, and the

regional brain age gaps (Kaufmann et al., 2019). Regional brain age

(gaps) was first proposed to improve spatial specificity of brain age,

and has been proved useful to reveal specific spatial patterns among

brain disorders. By training brain age estimators on volumetric fea-

tures of occipital, frontal, temporal, parietal, cingulate, insula, and

cerebellar-subcortical areas, respectively, brain age gaps of each of

these regions were calculated to measure regional abnormal aging for

each subject. In addition, we also compared the classification perfor-

mance of the brain age vector with structural brain metrics (98 brain

volumes used for brain age modeling). The age and sex of each subject

were also added to features in each task to match the classification

task of the brain age vector.

In addition, 10-fold cross-validation was also carried out on the

clinical sets and their subsets of 70% and 50% subjects to verify the

classification performance of the four brain metrics (i.e., single brain

age gap, regional brain age gaps, brain volumes, and brain age vector).

All model training and evaluation were performed using the scikit-

learn package (0.23.1) in Python (3.8.3; Pedregosa et al., 2011). To fit

the XGBoost classifier, we used the xgboost (1.2.1) package in Python

(3.8.3; Chen et al., 2019), and all parameters of XGBoost classifiers

were set to default.

An overview of the brain age vector framework is given in

Figure 1.

F IGURE 1 The brain age vector framework, including (a) data preparation. (b) Feature extraction: 95 volumetric features based on DKT atlas
were extracted using FastSurfer, and the other three volumetric features of GM, WM, and CSF were extracted by SPM12. All brain volumes were
normalized by ICV. (c) Brain age modeling: A total of 98 volume fractions and sex info were used to construct the brain age model based on
XGBoost algorithm. Ten-fold cross-validation was carried out to tune the model parameters, and the whole training set was used to train the final

brain age estimator with the optimal parameters. (d) SHAP feature attribution: We used SHAP to attribute brain aging to each brain region by
calculating feature contributions (Shapley values) for each age estimation in the clinical data sets, and the 99 calculated Shapley values formed the
brain age vector. (e) Enhanced disorder specificity: The brain age vector reflected disorder-specific spatial abnormal aging patterns and was
further used to classify prodromal patients and controls based on machine learning methods. CSF, cerebrospinal fluid; DKT, Desikan-Killiany-
Tourville; GM, gray matter; HC, healthy control; ICV, intracranial volume; PD, Parkinson disease; pMCI, progressive mild cognitive impairment;
SHAP, Shapley Additive Explanations; sMCI, stable mild cognitive impairment; WM, white matter

RAN ET AL. 5021



3 | RESULTS

3.1 | Demographic information

The demographic characteristics of the multicenter subjects in this

study was shown in Table 1. There were no significant age differences

between prodromal patients and controls in both AD (sMCI vs. pMCI,

p = .477) and PD (HC vs. prodromal PD, p = .574) groups. For other

clinical parameters, a significantly lower cognitive level (MMSE) was

observed in pMCI, compared with sMCI (p < .001), but there was no

significant difference in CDR (p = .301). For HC versus prodromal PD,

significant differences were observed in UPDRS III and RBDSQ

(p< .001), but not in ESS (p = .891). All group comparisons of demo-

graphic characteristics were based on Tukey HSD test, and p values

are significant at p < .05.

3.2 | Performance and estimation of the brain age
model

The constructed brain age model yielded satisfactory performance on

the test set, with an MAE = 3.64 years, R2 = 0.93, and r = 0.96, which

is comparable with previous brain age studies in these and other

cohorts (see Table 2; Cole et al., 2017, 2018; J�onsson et al., 2019;

Wang et al., 2019).

Regarding the age estimation of clinical groups, the brain age gap

significantly differed between sMCI and pMCI (p = .016), with the fol-

lowing means of sMCI = �0.45 years and pMCI = 1.48 years. In addi-

tion, there was also a weak significant difference between HC and

prodromal PD (p = .046), with the following means of

HC = �0.87 years and prodromal PD = 0.56 years (see Figure 2).

Such a result indicated significant abnormal aging in prodromal

patients of both AD and PD at the whole brain level, but the specific

areas for each disorder cannot be determined.

Both the test set (p = .139) and clinical sets (p = .384) showed no

significant site effects on the estimated brain age gap, indicating sta-

ble prediction of the brain age model across different sites, laying the

foundation for reliable feature attribution that formed the brain age

vector.

3.3 | Feature attribution and the brain age vector

At the global level, the feature contribution calculated by SHAP and

the feature importance of XGBoost showed consistent feature attri-

bution results (Figure S1). Both SHAP and XGBoost regarded the GM,

WM-hypointensities, and CSF as the three most important features of

the brain age model. For the top 10 important features, 7 features

overlapped in the results of the 2 feature attribution methods; for the

top 20 important features, 14 features overlapped.

However, since the feature importance of XGBoost is based on

model optimization process, it can only get the impact of features on

the model, but cannot estimate the relationship between features and

individual estimations. One of the most prominent advantages of

SHAP is that it provides local interpretation for each sample. Figure 3

shows a feature attribution result of a prodromal PD patient using

SHAP, which formed a brain age vector attributing regional brain

aging.

Another advantage of SHAP is the consistency of feature attribu-

tion (Lundberg & Lee, 2017a, 2017b). Not surprisingly, the brain age

vector demonstrated high test–retest reliability between repeated

scans with ICCs of 0.990 (±0.024) and 0.993 (±0.012) for sMCI and

pMCI groups, respectively (Figure S2).

TABLE 2 Performance comparison between our brain age model
and published brain age modeling

Method MAE (years) R2 r

Cole et al. (2017) 4.16 - 0.96

Cole et al. (2018) 5.02 0.88 0.94

J�onsson et al. (2019) 3.39 0.87 -

Wang et al. (2019) 4.45 - 0.85

Ours 3.64 0.93 0.96

Abbreviations: MAE, mean absolute error; R2, coefficient of determination

score; r, Pearson correlation coefficient.

F IGURE 2 Estimated brain age gap for each clinical group. Significant differences in the estimated brain age gap were observed between
prodromal patients and controls, with p = .016 for sMCI versus pMCI, and p = .046 for HC versus prodromal PD. HC, healthy control; PD,
Parkinson disease; pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment
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3.4 | Disorder-specific brain aging patterns

The brain age vector showed specific regional variations of brain aging

for each clinical group, which cannot be characterized by a single met-

ric (estimated brain age; Figure 4), and significant regional abnormal

aging was located for prodromal AD (sMCI vs. pMCI) and PD (HC vs.

prodromal PD), respectively (see Figure 5). For sMCI versus pMCI,

15 feature regions of significant abnormal aging (FDR-corrected

p < .05) were detected, consisting of 7 cortical structures in the tem-

poral lobe, especially most of the structures in the medial temporal

(bilateral entorhinal and parahippocampal), 1 cortical structure in the

frontal lobe, 1 cortical structure in the parietal lobe, 2 structures in

the insula, and 4 subcortical structures including the hippocampus and

amygdala. Similar pattern was also detected by brain volumes, with

F IGURE 3 A brain age vector of a prodromal PD patient (aged 62) derived from SHAP feature attribution. The base value (59.52 years)
shows the mean chronological age in the training set. Each value (Shapley value) in the brain age vector represents the feature contribution to the
estimated brain age (68.03 years). The red features with positive Shapley values contribute to the increase of the brain age estimation from the

base value, whereas the blue features with negative Shapley values contribute to the decrease. The arrow lengths indicate the absolute Shapley
values, and the corresponding input feature values are explained below the arrows. The sum of the base value and all Shapley values in the brain
age vector equals the estimated brain age (68.03 years)

F IGURE 4 Visualizations of the brain age vector based on the DKT atlas for HC, prodromal PD, sMCI, and pMCI. The color bar indicates the
feature value (Shapley value) in the brain age vector for each brain region, measuring the degree of regional brain aging. Region values in the
visualization map have been set at �0.3 minimum threshold and capped at 0.3 maximum to better show regional variations. HC, healthy
control; L, left hemisphere; PD, Parkinson disease; pMCI, progressive mild cognitive impairment; R, right hemisphere; sMCI, stable mild cognitive
impairment
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the temporal lobe suffering the most. However, pMCI patients also

showed more extensive structural changes in the frontal and parietal

lobes compared with sMCI (Table S1). For HC versus prodromal PD,

five feature regions of significant abnormal aging (FDR-corrected

p < .05) were detected, including the bilateral pallidum and right cau-

date in the striatum, the left rostral anterior cingulate, and CSF; while

no brain regions with significant atrophy were found based on brain

volumes. All feature regions for prodromal AD and PD detected by

the brain age vector are listed in Table 3, respectively. Consistent spa-

tial patterns related to the medial temporal for sMCI versus pMCI, and

the striatum for HC versus prodromal PD through the brain age vector

were also reproduced on the subsets (see Tables S2 and S3).

3.5 | Early screening performance

To evaluate the discriminability of the brain age vector in detecting

prodromal patients, classification performance based on machine

learning was compared among three different brain aging metrics

(i.e., single brain age gap, regional brain age gaps, and brain age vector)

and brain volumes.

As demonstrated in Figures 6, 7, and Table 4, the brain age vector

showed the best classification performance in both AD (sMCI

vs. pMCI) and PD (HC vs. prodromal PD) groups, compared with the

other two brain aging metrics. In 5-fold cross-validation, the brain age

vector achieved AUCs of 83.39% (LR) and 72.28% (XGB) in detecting

pMCI and prodromal PD, respectively, while the best AUCs of other

aging metrics were only 71.27% (regional brain age gaps, XGB) and

66.44% (single brain age gap, XGB), respectively. In addition, the brain

age vector also outperformed the other metrics in accuracy and sensi-

tivity, suggesting that our approach of brain age vector effectively

improved individual screening performance of brain aging measure-

ment. Moreover, the brain age vector demonstrated at least compara-

ble discriminability with brain volumes (AUC = 80.81% for sMCI

vs. pMCI; AUC = 66.66% for HC vs. prodromal PD), showing competi-

tiveness with structural brain metrics. On the external test set, the

brain age vector also yielded excellent generalizability compared with

other brain metrics, with AUCs of 83.33% (XGB) and 68.02% (XGB) in

F IGURE 5 Disorder-specific abnormal aging patterns for prodromal AD and PD derived from the brain age vector. Upper part: sMCI versus
pMCI. (a) Abnormal aging distribution (FDR-corrected p < .05) for prodromal AD. (b) Feature regions with significant abnormal aging (FDR-
corrected p < .05) for prodromal AD. The color bar indicates the statistic value (of Tukey HSD test) of each region in the brain age vector
between sMCI and pMCI. Lower part: HC versus prodromal PD. (c) Abnormal aging distribution (FDR-corrected p < .05) for prodromal
PD. (d) Feature regions with significant abnormal aging (FDR-corrected p < .05) for prodromal PD. The color bar indicates the statistic value
(of Tukey HSD test) of each region in the brain age vector between HC and prodromal PD. FDR, false discovery rate; HC, healthy control; HSD,
honestly significant difference; L, left hemisphere; PD, Parkinson disease; pMCI, progressive mild cognitive impairment; R, right hemisphere;
sMCI, stable mild cognitive impairment
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F IGURE 6 ROC curves of individual classification in early disease screening based on three different brain aging metrics and brain volumes.
(a) sMCI versus pMCI using logistic regression classifier under 5-fold cross-validation. (b) sMCI versus pMCI using XGBoost classifier under 5-fold
cross-validation. (c) HC versus prodromal PD using logistic regression classifier under 5-fold cross-validation. (d) HC versus prodromal PD using
XGBoost classifier under 5-fold cross-validation. (e) sMCI versus pMCI using logistic regression classifier on the test set. (f) sMCI versus pMCI
using XGBoost classifier on the test set. (g) HC versus prodromal PD using logistic regression classifier on the test set. (h) HC versus prodromal
PD using XGBoost classifier on the test set. HC, healthy control; PD, Parkinson disease; pMCI, progressive mild cognitive impairment; ROC,
receiver operating characteristic; sMCI, stable mild cognitive impairment
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early screening of AD and PD, respectively. Similar classification

results were also verified on the subsets (see Tables S4 and S5), show-

ing good reproducibility.

4 | DISCUSSION

Brain age modeling has recently become a popular approach to identi-

fying individual differences in brain aging and investigating neurologi-

cal disorders (Cole & Franke, 2017; Cole et al., 2017, 2018; Franke &

Gaser, 2012; J�onsson et al., 2019; Kaufmann et al., 2019). In this

study, we introduced model-agnostic SHAP to construct a brain age

vector measuring disorder-specific brain aging. While the single esti-

mated brain age gap only showed significant differences between pro-

dromal patients and controls at the whole brain level, specific regional

abnormal aging was located for prodromal AD and PD, respectively

(e.g., hippocampus [lh] for sMCI vs. pMCI; caudate [rh] for HC

vs. prodromal PD) through the brain age vector. In addition, the brain

age vector reflected disorder-specific abnormal aging patterns related

to the medial temporal and the striatum for prodromal AD and PD,

respectively. Furthermore, compared with other brain aging metrics

(single brain age gap and regional brain age gaps), the brain age vector

demonstrated enhanced discriminability in early screening of AD

(AUC = 83.39%) and PD (AUC = 72.28%), which was also competitive

with structural brain metrics (brain volumes).

We observed that the single brain age gap lacked spatial specific-

ity across diseases and showed poor discriminability in classifying pro-

dromal patients and controls (AUC: 63.97% [LR], 69.37% [XGB] for

sMCI vs. pMCI; AUC: 61.04% [LR], 66.44% [XGB] for HC

vs. prodromal PD), in line with previous brain age studies (Kaufmann

et al., 2019; Koutsouleris et al., 2014). Based on machine learning,

brain age is a “black-box” indicator with unclear mechanism for its

F IGURE 7 Classification performance of early disease screening measured by accuracy, sensitivity, specificity, and area under ROC curve:
(a) under 5-fold cross-validation, and (b) on the test set. ACC, accuracy; HC, healthy control; LR, logistic regression; AUC, area under receiver

operating characteristic (ROC) curve; PD, Parkinson disease; pMCI, progressive mild cognitive impairment; SEN, sensitivity; sMCI, stable mild
cognitive impairment; SPE, specificity; XGB, XGBoost
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variation (increase or decrease), which is crucial for understanding of

the complex brain aging process. Using model-agnostic SHAP, we

built up dependencies between multiple brain features (regions) and

the estimated brain age. As most brain age studies using model inter-

pretation methods focus on the important features that drive age esti-

mation based on model training of healthy people (Ball et al., 2021;

Koutsouleris et al., 2014; Wang et al., 2019), they failed to establish

the relationship between brain aging and neurodegeneration mecha-

nism. We performed feature attribution of brain age estimation on the

patients with neurodegenerative diseases, taking advantage of the

local interpretation of SHAP. Assigning the estimated brain age gap to

each brain regions, structures resulting in abnormal aging were specifi-

cally attributed. This enhanced characterization of spatial pathological

mechanism of brain aging promotes disorder specificity for individual

screening.

For prodromal AD (sMCI vs. pMCI), we found the temporal lobe,

especially the medial temporal (the hippocampus, the entorhinal, and

the parahippocampal) related to memory and cognitive functions, was

the most disorder-specific area with the most serious abnormal aging

being detected through the brain age vector. This is consistent with

postmortem and imaging studies where pathological changes in the

medial temporal have been widely reported in the disease progres-

sion, and has been recognized as a critical diagnostic marker of AD

(Barkhof et al., 2007; Duara et al., 2008; Jack et al., 1998; Rusinek

et al., 2004; Teipel et al., 2006). Moreover, studies have demonstrated

that the brain atrophy caused by AD starts from the medial temporal

and then extends to the neocortex of the temporal lobe (Johnson

et al., 2012). Significant abnormal aging was also found in subcortical

structures including the hippocampus and the amygdala, where atro-

phy is more prevalent, even years before clinical symptoms appear

(Aylward et al., 1999; Wachinger et al., 2016). Additionally, the insula

was also detected with severe abnormal aging. As an integrating hub,

insula interacts with multiple brain networks involved in executive

and cognitive processes, and has been reported as a gatekeeper of

executive control (Kurth et al., 2010; Molnar-Szakacs & Uddin, 2022).

It indicates that abnormal aging in the insula could be associated with

the decline of cognition and execution in AD patients.

Prodromal PD (HC vs. prodromal PD) showed slighter abnormal

aging (5 feature regions) compared with prodromal AD (15 feature

regions), and the spatial pattern is significantly different. The striatum

was found to be the most serious abnormal aging area for prodromal

PD, which contributes to dopaminergic hypofunction, causing motor

deficits in PD patients (Hornykiewicz, 1998, 2006; Hustad &

Aasly, 2020; Kaasinen & Vahlberg, 2017), and has been widely sug-

gested to be a biomarker of the progression of PD (Brooks

et al., 2003; Hopes et al., 2016; Khan et al., 2019; Wang et al., 2013).

In addition, significant abnormal aging was also observed in the ante-

rior cingulate cortex, in line with previous studies that have indicated

it to be involved with cognitive impairment, even in the earliest pro-

dromal form of PD (Hong et al., 2012; Vogt, 2019).

Regarding structural brain metrics (brain volumes), similar

disorder-specific pattern related to the temporal lobe in sMCI versus

TABLE 4 Classification performance of early disease screening

HC vs. prodromal PD sMCI vs. pMCI

Brain metrics
Single brain
age gap

Regional
brain
age gaps

Brain
volumes

Brain age
vector

Single brain
age gap

Regional
brain
age gaps

Brain
volumes

Brain age
vector

Logistic regression

(5-fold cross-

validation)

ACC 0.5654 0.5693 0.6315 0.6164 0.5879 0.6274 0.7374 0.7579

SEN 0.5308 0.5231 0.6231 0.6077 0.4444 0.5711 0.7089 0.7533

SPE 0.6006 0.6160 0.6409 0.6262 0.7291 0.6855 0.7618 0.7636

AUC 0.6104 0.6326 0.6666 0.6902 0.6397 0.6974 0.8081 0.8339

XGBoost (5-fold cross-

validation)

ACC 0.5968 0.6005 0.6240 0.6740 0.6463 0.6574 0.7474 0.7579

SEN 0.6000 0.6231 0.6462 0.6769 0.6200 0.6333 0.7089 0.7689

SPE 0.5948 0.5778 0.6000 0.6711 0.6673 0.6891 0.7855 0.7491

AUC 0.6644 0.6479 0.6629 0.7228 0.6937 0.7127 0.8002 0.8156

Logistic regression

(test)

ACC 0.5862 0.5632 0.6437 0.6667 0.5588 0.6176 0.7353 0.7941

SEN 0.5909 0.6364 0.7500 0.7727 0.5000 0.5625 0.7500 0.8125

SPE 0.5814 0.4884 0.5349 0.5581 0.6111 0.6667 0.7222 0.7778

AUC 0.5920 0.5745 0.6538 0.6707 0.5764 0.6528 0.8160 0.8229

XGBoost (test) ACC 0.5862 0.5517 0.5977 0.6552 0.6471 0.5294 0.6471 0.7647

SEN 0.7273 0.5682 0.5455 0.7500 0.6250 0.4375 0.7500 0.8750

SPE 0.4419 0.5349 0.6512 0.5581 0.6667 0.6111 0.5556 0.6667

AUC 0.5515 0.5740 0.6490 0.6802 0.6997 0.6007 0.8021 0.8333

Note: The best results for each classification task are shown in bold. Abbreviations: ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the

curve (AUC) of receiver operating characteristic.
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pMCI were confirmed, but more feature regions detected in the fron-

tal and parietal lobes indicates that structural brain changes are more

extensive than abnormal aging in AD. However, consistent with other

imaging studies, structural brain changes are insignificant in PD in

terms of brain volumes, but accelerated brain aging has developed in

the striatum in the prodromal stage according to the brain age vector.

These findings suggest that the brain age vector is not fully dictated

by brain structures (volumes), but reasoning with aging. Abnormal

brain aging is a key factor in neurodegenerations. When compared

with other traditional T1w MRI metrics, our method of brain age vec-

tor transfers the knowledge of brain aging evaluation to neurodegen-

erative disease screening, which not only shows competitiveness with

traditional structural metrics (brain age vector: AUC = 83.39% for

sMCI vs. pMCI, AUC = 72.28% for HC vs. prodromal PD; brain vol-

umes: AUC = 80.81% for sMCI vs. pMCI, AUC = 66.66% for HC

vs. prodromal PD), but also emphasizes the important role of brain

aging in the process of neurodegenerations.

Furthermore, the brain age vector also outperformed the other

two aging metrics in detecting prodromal patients from controls (sin-

gle brain age gap: AUC = 69.37% for sMCI vs. pMCI, AUC = 66.44%

for HC vs. prodromal PD; regional brain age gaps: AUC = 71.27%

for sMCI vs. pMCI, AUC = 64.79% for HC vs. prodromal PD), and

demonstrated excellent generalizability on the test set

(AUC = 83.33% for sMCI vs. pMCI, AUC = 68.02% for HC

vs. prodromal PD). Overall, attributing abnormal aging to each brain

region from age estimation, the brain age vector demonstrated con-

sistent findings of disorder-specific spatial patterns with previous

studies, and finally improved the discriminability in early screening

of neurodegenerative diseases.

This study was not without limitations. First, the brain age model

seemed to be less sensitive in detecting brain age changes between

sMCI and pMCI compared with previous study (Gaser et al., 2013).

This may be due to the use of simple volumetric features for brain age

modeling, which compromised complex age-related brain changes.

More comprehensive brain features (e.g., brain surface, thickness, and

areas) underlying brain aging evolution are needed to improve the

sensitivity of the brain age model to neurodegenerative brain changes.

Second, the feature attribution of SHAP is based on a fixed baseline

of the mean age of training data, making the calculated Shapley values

depend on the chronological age of subjects. We matched age across

groups to make it comparable between prodromal patients and con-

trols, but individual variation caused by age still remained. Future

studies may consider adaptive age-matched baseline for SHAP algo-

rithm, thus allowing more accurate individual feature attribution for

age estimation.

In conclusion, we proposed a new brain aging measure which

refined regional variations of brain aging underlying neurodegenera-

tion mechanism. The proposed brain age vector accurately revealed

disorder-specific spatial abnormal aging patterns for prodromal AD

(sMCI vs. pMCI) and PD (HC vs. prodromal PD), respectively, and

demonstrated excellent performance in detecting prodromal patients.

Through feature attribution of patients' age estimation, our method of

brain age vector represents both the temporal (aging) and the spatial

characteristics of the diseased brain, which not only

enhances disorder specificity of brain aging measurement in terms of

spatial specificity and individual early screening, but also highlights

the significance of aging in neurodegenerations.
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