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Abstract

Motivation: Splice variant neoantigens are a potential source of tumor-specific antigen (TSA) that are shared be-
tween patients in a variety of cancers, including acute myeloid leukemia. Current tools for genomic prediction of
splice variant neoantigens demonstrate promise. However, many tools have not been well validated with simulated
and/or wet lab approaches, with no studies published that have presented a targeted immunopeptidome mass spec-
trometry approach designed specifically for identification of predicted splice variant neoantigens.

Results: In this study, we describe NeoSplice, a novel computational method for splice variant neoantigen prediction
based on (i) prediction of tumor-specific k-mers from RNA-seq data, (ii) alignment of differentially expressed k-mers to
the splice graph and (iii) inference of the variant transcript with MHC binding prediction. NeoSplice demonstrates high
sensitivity and precision (>80% on average across all splice variant classes) through in silico simulated RNA-seq data.
Through mass spectrometry analysis of the immunopeptidome of the K562.A2 cell line compared against a synthetic
peptide reference of predicted splice variant neoantigens, we validated 4 of 37 predicted antigens corresponding to 3
of 17 unique splice junctions. Lastly, we provide a comparison of NeoSplice against other splice variant prediction
tools described in the literature. NeoSplice provides a well-validated platform for prediction of TSA vaccine targets for
future cancer antigen vaccine studies to evaluate the clinical efficacy of splice variant neoantigens.

Availability and implementation: https://github.com/Benjamin-Vincent-Lab/NeoSplice

Contact: benjamin_vincent@med.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction therapeutic vaccines that selectively stimulate anti-tumor T cells to

Recent advances in immunotherapy drugs, such as CTLA-4 and PD- expand and kill tumor cells (Ito ez al., 2015; Keskin et al., 2019; Ott

1 blocking antibodies (immune checkpoint inhibitors), have high-
lighted the capacity of induced anti-tumor immune responses to
yield improved survival for cancer patients (Hellmann et al., 2018;
Hodi et al., 2010; Larkin ez al., 2019). In parallel with the develop-
ment of immune checkpoint inhibitors which broadly reverse effect-
or T-cell suppression, there has also been development of

©The Author(s) 2022. Published by Oxford University Press.

et al., 2017; Sahin et al., 2017; Schreiber et al., 2011; Schumacher
and Schreiber, 2015). Tumor-specific peptide epitopes that are gen-
erated from mutated genes and presented on cell surface MHC mol-
ecules, known as neoantigens, are attractive targets for therapeutic
vaccination given the lack of central tolerance and corresponding
presence of endogenous T cells that recognize them (Schumacher
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and Schreiber, 2015). Recent studies have shown that neoantigen
targeted therapy can yield improved anti-tumor immune responses
in patients with advanced and metastatic tumors (Ott et al., 2017;
Sahin et al., 2017).

The vast majority of neoantigens in tumors are patient-specific
rather than shared between patients. It is therefore essential for neo-
antigens to be predicted for each patient in a genome-wide fashion
for use in therapeutic vaccination (Schumacher and Schreiber,
2015). Currently, most available neoantigen prediction methods
focus on predicting neoantigens derived from single-nucleotide vari-
ant (SNV)-derived missense mutations or insertion/deletion (indel)
mutations (Smith ez al., 2019). Typical neoantigen prediction pipe-
lines involve whole-exome sequencing variant calling between
tumor and matched-normal samples, RNA sequencing (RNA-seq)
quantification of highly expressed tumor-specific mutations and pri-
oritizing mutation derived neo-epitopes using (among other meth-
ods) predicted binding affinities to MHC molecules expressed by the
patient (Hundal et al., 2016; Kardos et al., 2016; Kim et al., 2018;
Ott et al., 2017; Rajasagi et al., 2014; Sahin et al., 2017; Smith
etal., 20195 2019; Turajlic et al., 2017; Yarchoan et al., 2017).

While techniques to identify and apply neoantigens for thera-
peutic vaccines have shown promise in several cancer types, their
application may be limited in cancers that contain few somatic
mutations. This has led to the investigation of alternative tumor-
specific antigens (TSAs) for application in targeted therapies, includ-
ing antigens derived from gene fusions, mutational frameshifts, en-
dogenous retroviral and viral genes and splice variant sources (Smith
et al., 2019). An example of a low mutation tumor is acute myeloid
leukemia (AML), where somatic mutation rates are notably lower in
comparison to other cancer types (Cancer Genome Atlas Research
Network, 2013). However, mutations in spliceosomal genes and
genome-wide aberrant splicing events are common in patients with
AML (de Necochea-Campion, 2016; Lee et al., 2016). To extend
therapeutic neoantigen targeting to AML and other low mutation
tumors with significant alternative splicing, it will be critical to iden-
tify splice variant neoantigens. Yet, the prediction of neoantigens
from tumor-specific splice variations presents significant computa-
tional challenges. Recently, two splice variant neoantigen prediction
methods were reported with analysis of the Cancer Genome Atlas
(TCGA) pan-cancer dataset (Jayasinghe et al., 2018; Kahles et al.,
2018). However, these tools were not designed to predict the full
length splice variant transcript, simply the alternative splice junc-
tions themselves. As such, predicted variant junctions are limited in
their capacity to predict transcriptional start sites and translational
reading frames. Other tools for prediction of splice variant junctions
(Brooks et al., 2014; Kahles et al., 2016; Rogers et al., 2012; Shen
et al., 2014; Zhang et al., 2020), splice variant neoantigens (Smart
et al., 2018; Zhang et al., 2020) and somatic mutations that predict
for alternative splicing (Jayasinghe ez al., 2018; Mort et al., 2014)
have also been reported in the literature. However, many tools lack
robust evaluation of performance characteristics using in silico
simulated data (Smart et al., 2018; Zhang et al., 2020). More im-
portantly, few tools provide proteomic validation of predicted splice
variant neoantigens (Smart ef al., 2018; Zhang et al., 2020), with no
tool providing immunopeptidome validation against a synthetic pep-
tide reference of predicted antigens. As such, the true biological per-
formance of these tools cannot be evaluated. Altogether, the paucity
of robust splice variant neoantigen prediction tools has limited the
capacity to study the therapeutic potential of these semi-public
TSAs, with no study to date demonstrating concrete evidence in
favor of anti-tumor immunity generated by splice variant neoanti-
gens. The need for robust TSA prediction tools is underscored by re-
cent studies providing growing evidence supporting the importance
of splice variant neoantigens and other alternative TSA in antitumor
immunity (Ehx ez al., 2021).

We developed NeoSplice to address the challenge of accurate
computational prediction of splice variant neoantigens. Using a
Burrows Wheeler Transform (BWT) based algorithm to identify
tumor-specific k-mers and a splice graph to determine whether such
a k-mer represents a tumor-specific splice junction in a coding region
and its corresponding amino-acid sequence, NeoSplice allows for

specific and comprehensive prediction of splice variant neoanti-
gens using tumor and matched-normal RNA-seq data, without
requiring matched DNA sequencing data. In this report, we de-
scribe the NeoSplice method, validating performance characteris-
tics using in silico simulated RNA-seq data. We then apply
NeoSplice to TCGA LAML dataset, demonstrating significantly
greater sharing of splice variant-derived neoantigens as compared
to SNV-derived neoantigens. Lastly, we biologically validate
NeoSplice’s predictions in the K562.A2 AML cell line, using mass
spectrometry targeted identification of predicted splice variant
neoantigens from the immunopeptidome.

2 Methods
2.1 The NeoSplice method

Multiple steps are needed to identify a novel splice that occurs spe-
cifically in tumor cell transcripts whose translation will result in a
neopeptide that can be targeted by T cells (Fig. 1):

* Step 1: Tumor-specific k-mer generation. Using one RNA-seq
dataset T of tumor cells and one RNA-seq dataset N of normal
cells, tumor-specific k-mer sequences present abundantly in the
transcriptome of the tumor cell, but not/rarely expressed in the
normal cells are identified.

* Step 2: Prediction of splice variant transcripts. The splice graph
G from the tumor cell RNA-seq data is built, and tumor-specific
k-mers from above are mapped to novel splice variant tran-
scripts. Gencode annotations are used to determine whether the
novel splice lies within a protein coding region and infer the
reading frame of the transcript.

* Step 3: Prediction of splice variant neoantigens. Novel splice
junctions contained within each splice variant transcript are
translated in the inferred open reading frame. MHC binding af-
finity prediction is performed on translated peptide sequences to
determine which novel regions may yield a neopeptide.

Further breakdown and details of each step is described in
Supplementary methods.

2.2 Generation of simulated reads and performance

characterization

Protein coding regions of annotated hg38 transcripts were modified
to generate tumor-specific splice junctions resulting in novel tran-
scripts. One tumor-specific splice junction type was selected from
exon skipping splice junction type, partial exon loss splice junction
type or partial intron gain splice junction type for data simulation
(Supplementary Fig. S1). These events cover the majority of splicing
abnormalities observed in AML. For each chromosome, five protein
coding genes with greater than or equal to eight annotated transcript
isoforms were randomly selected. One tumor-specific splice junction
per selected gene was then simulated by randomly choosing a com-
bination of donor splice site and acceptor splice site that does not
match any splice junctions in the annotated protein coding regions
of transcripts for that gene and forms a potential novel splice junc-
tion with specified splice junction type compared with reference
transcripts. The selected novel splice junction was then applied to all
annotated transcripts of that gene. Reference transcripts for com-
parison to tumor transcripts were written to a separate GTF file and
used as normal data. Transcripts that cannot form the specified
splice junction type by applying the novel splice junction and genes
with no possible tumor-specific splice junctions were excluded from
simulated tumor and normal data.

RNA-seq simulator Polyester (v1.9.754) (Frazee et al., 2015)
was used to simulate reads using the generated GTF file as input.
One thousand 100 bp paired-end reads were simulated for each tran-
script in the GTF file. 20 random bootstrap tumor-normal pair
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Fig. 1. Overview of the NeoSplice method. BAM files from tumor and matched-normal samples generated from a splice-aware aligner are input into the NeoSplice algorithm.
Step 1: The multi-string BWT tool based on a variant of the Burrows Wheeler transform (BWT) builds the multi-string BWT data structure for tumor and normal RNA-seq
bam files. Step 2: The splice graphs are constructed from the tumor RNA-seq bam files. A depth-first search process operating in lockstep on the tumor and normal BWT data
structures identifies all tumor-specific k-mers. The tumor-specific k-mers are mapped onto the splice graphs using CIGAR strings. Step 3: Graph traversal infers the tumor-spe-
cific splice junction containing partial transcript isoforms within an open reading frame by taking advantage of using paired-end read information and annotated transcript in-
formation. Sequences spanning tumor-specific splice junctions are translated into amino acid space, filtering against a reference peptidome. Remaining peptide sequences are
run through MHC binding prediction software, with predicted binders representing putative splice variant neoantigens

datasets were simulated in order to obtain more general results.
STAR 2.7.5e (Dobin et al., 2013) was run using simulated reads as
input to generate bam file and splice junction output SJ.out.tab.
Splice junctions identified by STAR in tumor and normal with less
than or equal to 10 uniquely mapping reads spanning the splice
junction were filtered. Then the splice junctions in tumor that do
not present in splice junctions in normal were considered as ground
truth tumor-specific splice junctions. The STAR output bam file was
then run through NeoSplice (T_min=21, N_max=3), comparing
predicted versus simulated splice variants for performance calcula-
tions. ASNEO (Zhang et al., 2020) was run with default parameters
using STAR splice junction output SJ.out.tab as input file.

2.3 Generation, culture and mRNA sequencing of

K562.A2 cell line

The K562 (ATCC® CCL-243™) (Lozzio and Lozzio, 1975) cell line
transduced with a retroviral vector to stably express HLA-A*02:01
(K562.A2) was a kind gift from Dr. Barbara Savoldo (The
University of North Carolina at Chapel Hill). The cells were cul-
tured in RPMI 1640 (Gibco, Thermo Fisher Scientific) supplemented
with 10% fetal bovine serum (Hyclone Laboratories, Inc., GE
Healthcare), 100 U/ml penicillin-streptomycin (Gibco, Thermo
Fisher Scientific) and 2mM r-glutamine (Gibco, Thermo Fisher
Scientific). RNA was isolated from K562.A2 cells using Qiagen’s
RNeasy Plus Mini Kit, with RNA eluted in RNase-free water. The
sequencing library was prepared at the High Throughput

Sequencing Facility (The University of North Carolina at Chapel
Hill), using the KAPA Stranded mRNA-Seq Kit Illumina Platforms
(Roche Sequencing), and paired-end sequencing (150 cycles/end)
was performed on an Illumina HiSeq4000.

2.4 Isolation and mRNA sequencing of CD34+ cells

Four leukapheresis products from GCSF mobilized healthy allogen-
eic stem cell donors that were to be discarded otherwise were
thawed, and PBMCs were isolated using Ficoll-Paque gradient cen-
trifugation. Lineage positive cells were removed using the Lineage
Depletion Kit (Miltenyi), and CD34+ cells were isolated from the
lineage-depleted PBMCs using the CD34 Microbead Kit, Ultrapure
(Miltenyi). Total RNA was purified using the RNeasy Plus Mini Kit
(Qiagen). The sequencing libraries were prepared at the High
Throughput Sequencing Facility (The University of North Carolina
at Chapel Hill) using the TruSeq RNA Sample Prep Kit (Illumina),
and pair-end sequencing (100 cycles/end) was performed on an
Illumina HiSeq2000.

2.5 Splice variant neoantigen prediction for K562.A2

and TCGA LAML

For the K562.A2 cell line, STAR 2.7.5e (Dobin et al., 2013) and
ABRA2 2.19 (Mose et al., 2019) were used for RNA-seq read align-
ment to the GENCODE GRCh38.p13 human reference. STAR two-
pass mode aligned RNA-seq bam files for TCGA tumor and adja-
cent normal pairs were downloaded from GDC (https://portal.gdc.
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cancer.gov) (n=137). CD34+ hematopoietic stem cell RNA-seq
data were used as reference normal data. NeoSplice was run on the
K562.A2 cell line RNA-seq BAM file to predict splice variant neoan-
tigens. In the tumor-specific k-mer searching stage, tumor thresholds
of T_min=21 and N_max=3 were used. Tumor-specific k-mers
length were restricted to be at most 90% of read length. In the splice
graph generation stage, the minimum number of supporting reads
for including SNVs, insertions and deletions in the splice graph were
set to 10 and the P-value threshold for calling SNV edges was set to
0.000005. Tumor-specific k-mer graph paths that contain splice
junctions found by RNA-seq alignment to be supported by at least
20 reads in tumor RNA-seq data but supported by <3 reads in nor-
mal RNA-seq data were considered. Tumor-specific k-mer graph
paths supported by <15 tumor-specific k-mer-including reads were
filtered. Peptides that were also present in GRCh38.p13 reference
peptidome generated by translating reference protein coding tran-
scripts in the Gencode GFF3 file (gencode.v35.annotation.gff3)
were filtered. Mutant peptides were run through netMHCpan4.0
(Jurtz et al., 2017) (peptide length 8-11mer) for HLA binding pre-
diction, using HLA-A*02:01 for K562.A2 and OptiType (Szolek
et al., 2014) calls available from GDC. Predicted neoantigens were
defined as peptides with predicted binding affinity <500 nM
(Rajasagi et al., 2014).

2.6 SNV neoantigen prediction for TCGA LAML
SNV-derived neoantigens for TCGA LAML samples were derived
using GDC MAF files, using methods adopted from Thorsson et al.
(2019). Somatic nonsynonymous coding SNVs were extracted from
the MC3 variant file (mc3.v0.2.8.PUBLIC.maf) with the following fil-
ters: FILTER in ‘PASS’, ‘wga’, ‘native_wga_mix’; NCALLERS > 1;
Variant_Classification = ‘Missense_Mutation’; and Variant_Type =
‘SNP’. For each SNV, the Ensembl protein reference sequence was
obtained, and the minimal peptide encompassing the mutation site
plus 10 amino acids up and downstream of the mutation site was
extracted (21 aa long peptide). If the mutation occurred within 10
amino acids of the N- or C-terminal end of the protein, all available
sequence between the mutation and start/end of the protein was
taken, resulting in a minimal peptide shorter than 21aa. The variant
position within the minimal peptide was recorded, and the mutation
was applied to the minimal peptide, resulting in a mutant minimal
peptide. Mutant peptides were run through netMHCpan4.0 (Jurtz
et al., 2017) (peptide length 8-11mer) for HLA binding prediction,
using OptiType (Szolek ez al., 2014) HLA calls available from GDC.
Predicted neoantigens were defined as peptides with predicted binding
affinity <500 nM.

2.7 HLA peptide isolation

Peptide epitopes presented by HLA-A*02:01 were isolated using a
modified version of the protocol from Park ef al. (2017). Five hun-
dred million K562.A2 cells were washed 3 times in Dulbecco’s phos-
phate buffered saline (DPBS; Gibco, Thermo Fisher Scientific) and
lysed in 50 ml of ice-cold IP-lysis buffer: 1x DPBS, 1% Triton X-100
(Sigma-Aldrich), 5SmM EDTA (Thermo Fisher Scientific), 1x Halt
Protease Inhibitor (Thermo Fisher Scientific), 1mg/ml leupeptin
(R&D Systems) and 1 mM PMSF (phenylmethylsulfonyl fluoride;
Sigma-Aldrich). The lysate was incubated on ice for an hour and
vortexed every 15 min, then cleared by centrifugation for 30 min at
3000xg at 4°C. The protein concentration of the supernatant was
measured using the Coomassie Plus Bradford Protein Assay
(Thermo Fisher Scientific). The cleared lysate was incubated on a ro-
tator overnight at 4°C with 2g of HLA-A*02-specific BB7.2 Ab
(BioLegend) per mg of lysate protein, followed by a 4 hour incuba-
tion with Protein A/G Ultralink Resin (Thermo Fisher Scientific).
After washing 3 times with DPBS, the resin was transferred to a
2mL centrifuge column (Pierce, Thermo Fisher Scientific). HLA-
A*02:01-peptide complexes were eluted by gravity flow using ice-
cold 0.1 N acetic acid (Thermo Fisher Scientific) in 5 fractions, each
equal to a column volume. The fraction containing eluted proteins
was determined using the Bradford Assay, and glacial acetic acid
was added to 10% of the final volume of this fraction to separate

the peptides from HLA-A*02:01. The sample was filtered through a
10 kDa regenerated cellulose filter (Amicon, EMD Millipore) to sep-
arate the peptides from larger proteins and stored at —80°C until
analysis.

2.8 Mass spectrometry analysis of the

immunopeptidome

Electrospray ionization coupled to differential ion mobility
spectrometry-mass spectrometry (ESI-DIMS-MS) was used at a dis-
persion field (ED) of 24 kV/cm and a compensation voltage of 2.0 V.
The mass spectrometer was tuned to optimize transmision of singly
charged species that range from m/z 864 to m/z 1348. The MS/MS
spectra acquired from collision-induced dissociation (CID) of the
singly charged species from the cell sample were compared and
matched with the MS/MS spectra obtained from synthetic peptide
standards (Flashpure Custom Peptide Array, New England Peptide,
Inc.), predicted from NeoSplice analysis of the K562.A2 cell line. A
library of the predicted peptide standards was developed using the
instrument vendor software (Bruker DataAnalysis LibraryEditor).
The software was used to compare MS/MS spectra from real sam-
ples to a spectral library of predicted peptide standards obtained
using the same instrumental conditions. The Fit score (F) indicates
how well masses and intensities of the library spectrum (assumed to
be pure) and acquired spectrum (contains other signals) agree, with
a maximum score of 1000. An acquired MS/MS spectrum identified
with an F score of >700 was selected as a positive match.

2.9 Availability
The NeoSplice software is available on the GitLab page: https://
github.com/Benjamin-Vincent-Lab/NeoSplice. The Docker image
for NeoSplice is available on: https://hub.docker.com/r/benjaminvin
centlab/neosplice.

3 Results

3.1 Performance and resource utilization characteristics
The main computational challenge for prediction of splice variant
neoantigens is inference of tumor-specific splice junctions contained
within transcripts. To assess the performance of NeoSplice, we
simulated 20 RNA-seq datasets using hg38 splice junction annota-
tions to include novel, unannotated protein coding splice junctions
for each splice junction type, including exon skipping splice junc-
tions (~40% of all alternative splicing events in higher eukaryotes),
partial intron gain splice junctions (<5% of all alternative splicing
events in vertebrate and invertebrates), and partial exon loss splice
junctions (~25% of all alternative splice events in higher eukar-
yotes) (Keren et al., 2010). Five protein coding genes were selected
for each chromosome. One tumor-specific splice junction was
selected for each gene if a tumor-specific splice junction was sup-
ported; genes with no possible tumor-specific splice junctions were
excluded. We then used Polyester31 to simulate 100 bp paired-end
reads from the simulated transcript GTF files, with 8000 reads simu-
lated per transcript. The median sensitivity and precision values of
NeoSplice were greater than 0.8 for all types of splice junctions ex-
cept intron gain sensitivity (0.71) (Fig. 2A). The performance of
NeoSplice was also compared with another splice variant neoanti-
gen prediction tool, ASNEO23, showing significantly improved me-
dian sensitivity and precision values (Fig. 2A). ASNEO relies upon
an external reference for normal samples (hg19 reference (Church
etal.,2011) and GTEx (GTEx Consortium, 2017)), highlighting the
benefits and importance for using matched normal data for accurate
prediction of splice variants. Notably, ASNEO relies upon a built-in
reference derived from hg19 while NeoSplice’s reference can be
user-selected. As we were unable to change ASNEO’s reference, per-
formance variation between the two tools may be attributable to
both functional differences between the two algorithms as well as
NeoSplice’s use of hg38.

To determine resource requirements of NeoSplice, we measured
the running time and memory consumption using simulated
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Fig. 2. Performance and resource usage of NeoSplice on simulated data. (A) Sensitivity and precision for simulated splice variant transcripts, including those derived from exon

skipping, exon loss, or intron gain. Values represent the mean performance across 22 chromosomes (up to 5 splice variant junctions per chromosome) for each of 20 total simu-
lated samples. (B) Average runtime (left) and max resident set size (RSS; right), with error bars representing the maximum and minimum times across three simulated samples.
Runtime is defined as the elapsed time and RSS is the amount of memory requested by NeoSplice from the operating system as reported by the ‘sacct’ command, as measured

on an Intel Xeon ES-E5620 2.4 GHz CPU or ES-E5520 2.27 GHz CPU

transcript sets containing 1000, 4000 and 8000 reads per transcript.
Runtime and memory consumption (maximum resident-shared size;
recorded using ‘sacct’ command) increase linearly in proportion to
the number of reads simulated per transcript, as expected for
NeoSplice (Fig. 2B).

3.2 Analysis of splice variant neoantigens in TCGA
LAML

To elucidate the splice variant neoantigen landscape of various cancer
types, we next performed NeoSplice analysis in the TCGA LAML
dataset. To assess the distribution of splice variant neoantigens in dif-
ferent types of cancer, NeoSplice was run on TCGA LAML samples
(n=137) using healthy donor bone marrow-derived CD34+ hemato-
poietic stem cells as a reference normal. Of 19 970 total genes that
showed expression, 316 demonstrated splice variants, representing
1872 unique predicted MHC binding peptides (Supplementary Fig.
S2A and B). Among predicted splice variants, the derivative genes
were often shared between samples, including 34 genes contained
within the predicted splice variants of >5% of samples
(Supplementary Fig. S2C). The most prominent of these genes was
MPO, seen in ~35% (48 of 137) of samples. The number of SNV and
splice variant neoantigens were similar with TCGA LAML (Fig. 3A;

median count per sample: SNV = 14, splice variant = 17; Welch z-test
P=0.18). We did not observe a significant difference in splice variant
neoantigen levels between samples containing spliceosomal mutations
in U2AF1, SRSF2 or SF3B1 genes (median=15; SD 13.0) versus
those without these spliceosomal mutations (median=17; SD 22.9).
While SNV neoantigens are generally patient-specific, we observed
sharing of splice variant neoantigens across TCGA samples, including
seven splice variant neoantigens that were observed in >10% (>13)
of all TCGA LAML samples (Fig. 3B).

3.3 Mass spectrometry validation of NeoSplice

predicted antigens

To biologically validate NeoSplice predicted splice variant neoanti-
gens, a set of N neoantigen peptides predicted in the K562.A2 cell line
(an AML cell line engineered to express HLA-A*02:01) were synthe-
sized. HLA-A*02:01 binding peptides were isolated from K562.A2
cells using anti-HLA-A*02-based immunoprecipitation and column
purification/acid elution of the MHC-bound peptides. Using synthe-
sized peptides as reference for electrospray ionization coupled to
differential ion mobility spectrometry-mass spectrometry (ESI-DIMS-
MS), we searched for the presence of these predicted splice variant
neoantigens in the K562.A2 MHC ligand pool. Comparing MS/MS
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Fig. 4. Mass spectrometric analysis of the K562.A2 cell line HLA-I immunopeptidome versus NeoSplice predicted peptides. MS spectra from K562.A2 anti-HLA-A*02-based
immunoprecipitation and column purification/acid elution of MHC-bound peptides (left) alongside the matching peptide standard from NeoSplice predicted antigens from the
K562-A2 cell line (right). Fit (F) score for each peptide is shown (right).

spectra from K562.A2 to a spectral library of predicted peptide
standards obtained using the same instrumental conditions, we iden-
tified 4/37 (10.8%) of predicted antigens from the immunopepti-
dome of one K562.A2 sample, which corresponded to 3/17 (17.4%)

unique predicted splice junctions identified by MS (Fig. 4).

3.4 Comparison of NeoSplice with other methods for

splice variant neoantigen prediction
Table 1 compares NeoSplice with eight other methods for prediction
of splice variants. While the majority of these tools only predict

novel splice junctions, NeoSplice, ASNEO and the RI neoantigen



Table 1. Comparison of splice variant prediction tools from the literature with NeoSplice

Splice variant Input Predicts Splicing event identified Required packages In silico performance Wet lab validation Wet lab performance

antigen caller neoantigens

ASNEO RNA-seq Yes Filters reads against GTEx and hg19 Python: sj2psi Not reported Mass spectrometry 2/407 peptides confirmed
reference, translating novel iso- R: survival, surv- (external dataset) from 14 patient cohort
forms into proteins for antigen miner, MCPcounter
prediction.

JuncBase RNA-seq No (1) Identifies annotated and novel Python 2.6+ Sens. ~50-80% RT-PCR 16/16 splicing events
splice junctions, (2) quantifies Biopython 1.5+ Prec. ~10-95% confirmed
each junction and (3) calculated ~ Pysam (Compared in Kahles et al.)
for differential expression between R v2.14+
groups. Rpy2

MySQL/sqlite
MiSplice RNA-seq + No Jointly analyzes WGS and RNA-Seq SamTools Sens. 74-97% Splicing reporter min- 10/11 of splicing
WGS data, scanning the transcriptome =~ MaxEntScan Spec. ~77% igene functional alterations

for statistically significant non-ca- assay
nonical sequence junctions sup-
ported by expression evidence.

MutPred DNAseq No Uses human disease alleles for train- None (web interface) FPR =7.0% RT-PCR Amplicon changes from

Splice ing a machine learning model to Sens. 64.7% ATM mutation-contain

predict exonic nucleotide substitu- Spec. 93.0% vs WT cell line con-
tions that disrupt pre-mRNA Acc. 78.8% firmed by RT-PCR
splicing. AUC 83.5%

NeoSplice RNA-seq Yes (1) Identify differentially expressed ~ Python 2.7 Sens. >80% Internal mass spec-  4/37 peptides confirmed,
k-mers, (2) map tumor-specific k- MSBWT Recall >80% trometry validation  corresponding to 3/17
mers to splice graph and (3) ORF  MSBWT-IS against synthetic novel splice junctions
inference, translation, and MHC  NetMHCpan 4.0 peptide reference
binding prediction. NetMHClIIpan 3.2

networkx 1.11

pyahocorasick 1.4.0

bcbio-gff 0.6.4

pyfaidx 0.5.3.1

pysam 0.14.1

biopython 1.70

scipy 1.2.0

RI neoantigen RNA-seq Yes (1) Pseudoaligns RNAseq reads to  Kallisto Not reported Mass spectrometry Confirmed 1-2 per each
pipeline hg19 with exon and intron tran- ~ KMA suite of python (external dataset) of six cell line tested

scripts, (2) quantification, (3) and R packages (Mean total splice vari-
KMA algorithm to identify POLYSOLVER ant neantigen load of
expresed introns and (4) predict ~ NetMHCpan v3.1 1515)
MHC binding.

rMATS RNA-seq No Detection of differentially expressed Python 2.7/3.6 Sens. ~30% RT-PCR 32/34 exon skipping can-
splice variants between two sets of BLAS, LAPACK Prec. >95% didates confirmed
RNA-seq data. GSL 2.5 (Compared in Kahles et al. for exon skipping only)

GCC (5.4.0)
Fortran 77
CMake (3.15.4)

(continued)

ao1/dgoapN
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Wet lab performance

NA
NA

Wet lab validation

None
None

In silico performance

Sens. ~30-80%
Prec. ~20-90%
Sens. ~30-60%
Prec. ~20-90%
(Compared in Kahles et al.)

Required packages
matplotlib 1.1.0+

GATK
STAR
Samtools

Splicing event identified
ment of reads that did not align in pysam 0.5+

mented splicing graph, (3) extrac-
the first step, (3) initial splice

of exons from the ungapped short-
read alignments and (5) insertion

tion of splicing events, (4)
graph using spliced alignments.

tionally and (5) the differential
of the new exons into the splice

analysis between samples.
(1) Alignment of RNA-seq to the ref- PyML 0.7.9+

erence genome, (2) spliced align-
graph construction, (4) assembly

quantifying the events, and op-

(1) Integrating annotation and RNA- LIMIX
Seq data, (2) generating an aug-

Predicts
neoantigens

No
No

Input

RNA-seq
+/-EST

Table 1. (continued)
Splice variant

antigen caller

SplAdder

SpliceGrapher RNA-seq

pipeline further predict the neoantigens derived from these splice
junctions. MutPred Splice and MiSplice are unique in using DNA-
seq data to predict for somatic variants that may disrupt normal
splicing of mRNA, while remaining tools are similar to NeoSplice in
predicting splice variants using RNA-seq data only.

An important difference between these splice variant calling tools
are the methods utilized to validate the predictions. Several tools
(SplAdder, SpliceGrapher) did not report any wet lab validation stud-
ies, while the majority reported RT-PCR based strategies to confirm
splice products. Only three tools included mass spectrometry valid-
ation of the translated protein products from predicted splice variant
neoantigens: ASNEO, the RI neoantigen pipeline, and NeoSplice.
Smart et al. (2018) (RI neoantigen pipeline) utilized mass spectrom-
etry to validate predicted neoepitopes and identified 1-2 of the 5000~
10 000 predicted RI neoepitopes and 0-2 of the 400-10 000 predicted
somatic neoepitopes per cell line tested. Zhang et al. (2020) (ASNEO)
confirmed 2 of 407 predicted MHC-I neoantigens by mass spectrom-
etry. In comparison, our study identified 4 of 37 peptides by mass
spectrometry, including validation of 3 of 17 unique splice junctions.
In contrast to the two above studies, the mass spectrometry method
described in this study used a synthetic peptide reference to compare
the immunopeptidome spectra against, increasing the confidence of
validated peptides. Although the percentage of confirmed antigens
cannot be directly compared between our method versus the two
above studies, the increased sensitivity and accuracy of having a pep-
tide reference allowed for validation of a much higher percentage of
tested splice variant neoantigens.

4 Discussion

In this report, we describe NeoSplice, a bioinformatics tool for
prediction of splice variant neoantigens from RNA-seq data. The
performance comparison results from the simulated data indicates
that predictions made by NeoSplice are highly sensitive and pre-
cise. Moreover, NeoSplice is a time and space efficient algorithm.
Our novel BWT-based tumor-specific k-mer searching algorithm
does not need to examine all possible k-mers in tumor and normal
RNA-seq data, and the BWT method requires less memory com-
pared to hash-table based methods that usually require large mem-
ory to build an index. The splice graph building step requires time
proportional to the number of reads in the data set and the splice
variant peptide prediction step requires time proportional to the
number of edges and nodes in the connected component that con-
tains the tumor-specific splice junction. Moreover, NeoSplice can
be extended to predict neoantigens derived from other types of
mutations such as SNVs, indels, and gene fusions as identification
of tumor-specific k-mers should capture each of these and the
splice graph traversal will identify the transcripts that contain
tumor-specific mutations.

In contrast to SNV-derived neoantigens, many splice variant
neoantigens are found to be shared among different AML tumors in
our analysis, suggesting the feasibility to develop an off-the-shelf
splice variant neoantigen therapeutic. We expect that NeoSplice will
expand the neoantigen therapeutic target space for cancer patients,
possibly providing an avenue for off-the-shelf therapeutics.
Currently, there are over 160 clinical trials of therapeutic neoantigen
vaccines in cancer registered on ClinicalTrials.gov. Multiple compa-
nies have others, along with neoantigen-specific adoptive cellular
therapy approaches, in development. Accurate identification of
splice variant neoantigens will become more important as additional
neoantigen-specific therapeutic platforms enter clinical trials, espe-
cially for those tumors like AML where neoantigens derived from
SNVs and Indels are rare.

NeoSplice provides several improvements upon current splice
variant prediction methods described in the literature. Firstly,
NeoSplice is one of few tools that incorporates alternative splice pre-
diction alongside antigen prediction. This is bolstered by the cap-
acity of NeoSplice to predict the full length splice variant transcript
upstream of novel splice junction and the partial splice variant tran-
script downstream of novel splice junction, with open reading frame
inference to predict for the in-frame peptide. Secondly, NeoSplice
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performed very well with in silico validation, with sensitivity and
precision >80% for the majority of simulated splice variant tran-
scripts, which is significantly higher compared against a recently
published splice variant prediction tool ASNEO. Importantly,
NeoSplice’s superior performance may be attributable to both the
algorithm itself as well as the use of the newer hg38 reference, which
matched the reference used to generate the simulated dataset. This
comparison ideally should be performed using an updated version of
ASNEO containing the hg38 reference; however, ASNEO’s resour-
ces did not contain information on how to exchange the built-in ref-
erence. Notably, hg38 contains more comprehensive annotations for
splice junctions and should ideally be used for best splice variant
prediction performance. This also highlights NeoSplice’s advantage
in being able to adapt newer references as they are developed. In
addition to ASNEO, most other tools did not provide iz silico valid-
ation performance, making it difficult to interpret the robustness of
the tool for downstream antigen selection. Thirdly, we also report
here the runtime and memory requirements for NeoSplice—an im-
portant consideration given the computationally intensive nature of
predicting for alternative splice variants and limited timeframe for
selection of cancer antigen targets for therapeutic vaccine develop-
ment. Similarly, these characteristics are not widely reported in
other tools. NeoSplice’s efficiency allows for large datasets (such as
TCGA cohorts) to be analyzed, with runtimes that are compatible
with timelines for cancer antigen vaccine development. Lastly, our
mass spectrometry validation approach is a unique strength of this
study. Unlike previous studies that also examined mass spectrometry
data, this is the first study to our knowledge that generated internal
mass spectrometry data and used synthetic reference peptides to
compare against immunopeptidome spectra. As such, while a
smaller percentage of total predicted splice variant antigens were
tested, the confidence of the positive mass spectrometry hits was
increased. Additionally, while we tested only 37 peptides, we were
able to validate >10% of antigens comprising >17% of all unique
splice variant transcripts contained in the reference set of peptides.
Given the sensitivity of mass spectrometry is imperfect, we expect
the true positive rate to be further increased from these estimates.
Lastly, we only used mass spectrometry evaluation of a subset of
peptides selected as optimal vaccine candidates. As such, our valid-
ation provides a more direct metric for likelihood of a valid vaccine
candidate, as compared to previous studies which evaluated the en-
tire pool of predicted splice variant neoantigens. We believe the val-
idation provided in this study is the most biologically robust of any
currently described method, with greatest relevance for downstream
antigen-specific therapeutics. Overall, we believe these advantages
make NeoSplice a powerful tool for predicting splice variant neoan-
tigens, providing the computational framework for future studies to
test the efficacy of splice variant targeted vaccine and cellular
therapies.
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