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Abstract

Most empirical studies of linkage disequilibrium (LD) study its magnitude, ignoring its sign. Here, we examine patterns of
signed LD in two population genomic data sets, one from Capsella grandiflora and one from Drosophila melanogaster. We
consider how processes such as drift, admixture, Hill–Robertson interference, and epistasis may contribute to these
patterns. We report that most types of mutations exhibit positive LD, particularly, if they are predicted to be less
deleterious. We show with simulations that this pattern arises easily in a model of admixture or distance-biased mating,
and that genome-wide differences across site types are generally expected due to differences in the strength of purifying
selection even in the absence of epistasis. We further explore how signed LD decays on a finer scale, showing that loss of
function mutations exhibit particularly positive LD across short distances, a pattern consistent with intragenic antag-
onistic epistasis. Controlling for genomic distance, signed LD in C. grandiflora decays faster within genes, compared with
between genes, likely a by-product of frequent recombination in gene promoters known to occur in plant genomes.
Finally, we use information from published biological networks to explore whether there is evidence for negative syn-
ergistic epistasis between interacting radical missense mutations. In D. melanogaster networks, we find a modest but
significant enrichment of negative LD, consistent with the possibility of intranetwork negative synergistic epistasis.
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Introduction
Linkage disequilibrium (LD), the association of different alleles
across the genome, is a general feature of population genomic
data sets, often revealing clues of ongoing evolutionary or
demographic processes (McEvoy et al. 2011). For example,
in finite populations, drift can be a ready source of LD, gen-
erating both positive and negative associations between
alleles (Hill and Robertson 1968). Although unsigned LD has
been extensively studied in population genetics (through sta-
tistics such as r2), signed LD has received relatively less atten-
tion, despite the fact that the sign of allelic associations can
also provide useful information. Here, we refer to positive
associations as those between two common alleles (or equiv-
alently between two rare alleles), and negative associations as
those between common and rare alleles. Demographic pro-
cesses such as admixture and population structure can create
LD, where unlike drift in a single panmictic population, an
overabundance of positive associations is expected between
pairs of migrant alleles (Chakraborty and Weiss 1988;
Stephens et al. 1994; Pfaff et al. 2001). Selective processes
can also be a source of LD; for example, ongoing strong se-
lective sweeps can be characterized by an elevation of

unsigned LD around the sweeping haplotype (McVean
2007). Nonindependent mutational events, for example,
multinucleotide mutations, arise at nonnegligible frequencies
in several species (Schrider et al. 2011), and could also be
an important source of positive LD among de novo muta-
tions (Ragsdale AP, unpublished data, https://www.biorxiv.
org/content/10.1101/2021.03.25.437004v1.full, last accessed
March 30, 2021). Finally, unsigned LD can also be used to
analyze patterns of recombination across the genome, as re-
combination is expected to break down any existing LD
(Auton and McVean 2007).

LD can also build up due to selection against deleterious
mutations in two different ways. First, Hill–Robertson in-
terference (resulting from the interaction of selection and
drift) can cause negative associations to build up among
deleterious mutations, if recombination between them is
limited (Hill and Robertson 1966). In sexually reproducing
organisms such as humans, this process has recently
been suggested to build up negative LD among physically
proximal, missense mutations (Garcia JA, Lohmueller
KE, unpublished data, https://www.biorxiv.org/content/
10.1101/2020.01.15.907097v1.full, last accessed February
15, 2020). Second, negative selection can cause LD among
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deleterious mutations to build up if epistasis is present
(Kondrashov 1995; Sohail et al. 2017). Under the null model
of multiplicative fitness, where each mutation contributes
to a reduction in fitness independently of other mutations,
LD is not expected to accumulate. Synergistic epistasis,
where each additional deleterious mutation reduces fitness
by a greater magnitude, creates negative LD among dele-
terious mutations and vice versa for antagonistic epistasis
(Kimura and Maruyama 1966; Kondrashov 1982).

Synergistic epistasis among deleterious mutations is of par-
ticular interest because such epistasis has several evolutionary
consequences. For example, negative synergistic epistasis
allows for lower mutation loads under mutation–selection
balance, and can influence the evolution of sex and recom-
bination (Kimura and Maruyama 1966; Crow and Kimura
1970; Crow and Kimura 1979; Kondrashov 1982; see also
Barton 1995). Despite considerable interest, empirical data
on epistasis among deleterious mutations is limited with
most data coming from microorganisms assayed in a lab
setting. These studies have found that synergistic and antag-
onistic interactions are both common so that mean epistasis
is close to zero (Elena and Lenski 1997; Agrawal and Whitlock
2010; Lali�c and Elena 2012; Bank et al. 2015; Puchta et al.
2016). A recent study by Sohail et al. (2017) used a different
approach to make inferences about epistasis. They examined
patterns of signed LD among rare loss of function (LOF)
mutations in humans and fruit flies demonstrating that
across several data sets LOF mutations had significantly lower
values of signed LD than their neutral reference (synonymous
sites), a pattern consistent with the action of negative syner-
gistic epistasis.

Here, we examine patterns of LD across several classes of
mutations in a published data set of 182 individuals of
Capsella grandiflora sampled from a population in Greece,
and 191 Drosophila melanogaster flies sampled from an an-
cestral population in Zambia (Lack et al. 2015). We find that
mean signed LD is positive for most types of mutations across
the genome except for LOF mutations. The magnitude of
positive LD scales with the predicted deleteriousness of the
mutations we analyze, with more neutral mutations exhibit-
ing the most positive LD. We use simulations to show that
admixture or distance-biased mating could produce this type
of pattern and provide alternative explanations to epistasis
for differences in LD among neutral versus deleterious muta-
tions. We then explore finer scale patterns of LD and uncover
strong short-scale positive LD among LOF mutations, a po-
tential signal of within gene antagonistic epistasis. Further
analyses show that within gene LD is generally stronger
than between gene LD in C. grandiflora (correcting for dis-
tance between pairs of mutations), for both neutral and del-
eterious mutations. This pattern is broadly consistent with
cross-over hotspots frequently occurring in promoter regions
of plant genomes. Finally, we use gene network information
from KEGG to explore signals of LD and epistasis among
deleterious mutations segregating in functionally related
genes. We report no significant LD in C. grandiflora but sig-
nificantly more negative LD in D. melanogaster KEGG net-
works compared with a null distribution generated from

permuted networks, a pattern that could indicate synergistic
epistasis acting against gene flow.

Results
We analyzed patterns of signed LD among several classes of
mutations (synonymous, missense nonradical, missense rad-
ical, intronic, noncoding, untranslated region [UTR], and
LOF), in a data set of 182 outbred diploid C. grandiflora
individuals, and a data set of 191 D. melanogaster haploid
embryos (population DPGP3). We only considered variants
below a specified threshold for minor allele frequency because
we hoped to maximize the probability that the rare variants
at each site are deleterious, though the degree of that dele-
teriousness is expected to vary among mutational classes (e.g.,
for synonymous sites, rare variants are presumably negligibly
more deleterious than the common variant on average). The
sign of LD was polarized by frequency so positive/negative LD
should indicate that deleterious variants are found more/less
often together than expected.

We first measured mean LD by assessing the over- or
underdispersion of deleterious (or synonymous) variants
among individual genomes (see Materials and Methods;
Sohail et al. 2017). An underdispersion of the deleterious
variants implies negative LD (i.e., deleterious variants are
found together less often than expected by chance). We cal-
culated mean LD per pair of alleles using several different
allelic count cut-offs (i.e., minor allele frequency thresholds).
In both species, point estimates for mean LD were positive for
all classes of mutations, and all allelic count cut-offs examined,
except LOF mutations (fig. 1), where the point estimate for
mean LD was negative using some allelic count cut-offs but
not others. When repeating this analysis in D. melanogaster,
excluding regions which were known to harbor inversions in
the DPGP3 population, we found the same qualitative results
albeit with slightly reduced positive LD for most mutations
classes (supplementary fig. 1, Supplementary Material online).

One pattern apparent in our data is that the least delete-
rious mutational classes exhibited the most positive mean LD
in both flies and plants (i.e., the most positive LD belonged to
classes such as intronic and synonymous). The site frequency
spectra for these different mutational classes add support to
the suspected rank ordering in the deleteriousness of different
mutational classes (supplementary fig. 2, Supplementary
Material online) such that the classes with the greatest excess
of rare variants (presumed to be the most deleterious) had
the least positive LD. In D. melanogaster the order of delete-
riousness inferred from the site frequency spectra (starting
with least deleterious) was as follows: synonymous, noncod-
ing, intronic, UTR, missense nonradical, missense radical, LOF.
Similarly, in C. grandiflora the order was synonymous,
intronic, UTR, noncoding, missense nonradical, missense rad-
ical, LOF (supplementary fig. 2, Supplementary Material
online).

The observation that LD was strongest for neutral/nearly
neutral mutations suggests a nonselective force, such as ad-
mixture, is building LD (Sohail et al. 2017; but see also Good
BH, unpublished data, https://www.biorxiv.org/content/
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10.1101/2020.12.10.420042v1.full,1 last accessed January 10,
2021). We used a series of simulations using SLiM (V3.2.1)
(Haller and Messer 2019) to explore how different cases of
nonequilibrium demography and population structure can
affect LD among neutral and deleterious mutations (see
Materials and Methods for more details). We first tested
how a model of admixture might impact patterns of LD for
rare neutral and deleterious mutations under strictly multi-
plicative selection. We simulated admixture between a focal
population and two previously isolated satellite populations
and polarized LD by variant rarity. We found that admixture
easily caused positive LD to build up among neutral muta-
tions, particularly so if admixture started recently between
populations that had previously been isolated (fig. 2A).
However, this was not the case for deleterious mutations in
these populations, where LD remained much closer to 0 albeit
slightly positive on average if admixture was present. This
result was also apparent if we polarized LD by true ancestral
state in our simulations and imposed a minor allele frequency
cut-off, or if we polarized by frequency as in our real-world
data, but did not implement a minor allele frequency cut-off
(supplementary fig. 3, Supplementary Material online). The
only case where we did not observe positive LD for neutral
mutations was if we polarized LD by true ancestral state and
implemented no allele frequency cut-off (supplementary fig.
3, Supplementary Material online). We then explored isola-
tion by distance due to continuous geography as a potentially
common mechanism that could create positive LD in a sim-
ilar way to admixture. Using SLiM to model populations on a
continuous 2D landscape, we again readily observed positive
LD forming among neutral mutations under several scenarios
of distance-biased mate choice, demonstrating that spatial
considerations alone might be able to explain patterns of
positive LD in our two data sets (fig. 2B).

Our simulation results qualitatively match the earlier sim-
ulation results reported by Sohail et al. (2017) who examined
models specific to human demographic history (i.e., popula-
tion structure and gene flow). They found positive LD does
not build uniformly for deleterious and neutral mutations,
rather, the more deleterious a class of mutations, the less

positive LD built up among them. In summary, all of these
simulations clearly show that spatial structure with gene flow
or admixture creates a difference in LD for selected versus
neutral sites.

Although our patterns overall seem consistent with a rel-
atively simple model of spatial structure with varying
strengths of purifying selection across site types, some of
our point estimates of LD for LOFs were negative, and neg-
ative LD is not expected under such models of gene flow.
Rather negative LD could be indicative of synergistic epistasis
or Hill–Robertson interference. To assess whether these pro-
cesses might be creating negative LD in our data sets, we next
tested whether our estimates of negative LD were significantly
different from zero. We did this by permuting the assignment
of LOFs among all individuals in each data set. This method
preserves the allele frequency at each locus while randomizing
the associations among loci. We focused exclusively on LOF
mutations at an allele count cut off of no more than five
because this cut-off resulted in the most negative point esti-
mates of mean LD in both data sets and such rare mutations
are more likely to be truly deleterious. All our subsequent
analyses utilize this allelic cut-off value for both data sets.
This test suggested that LD among LOF mutations was not
significantly different from 0 in either C. grandiflora or D.
melanogaster when calculating LD SNP-by-SNP (P¼ 0.996
and P¼ 0.386, two-tailed) or among sites in different
100 kb blocks (P¼ 0.680 and P¼ 0.346, two-tailed). When
we applied this permutation approach to synonymous muta-
tions, we found that LD was significantly greater than zero in
both species, when calculating LD SNP-by-SNP (P< 0.002
both species, two-tailed), or using 100 kb blocks (P< 0.002
both species, two-tailed), further verifying positive LD among
more neutral mutations. Again, removing regions with segre-
gating inversions did not qualitatively change the results in D.
melanogaster for LOF mutations (P¼ 0.658, P¼ 0.648, LD
calculated SNP-by-SNP and using 100 kb blocks respectively),
or synonymous mutations (P< 0.002, for both types of LD
estimates).

In the preceding sections, we examined genome-wide av-
erage LD. However, most pairs of sites contributing to this

FIG. 1. Mean pairwise LD among several classes of mutations across different allele count cut-offs. Solid lines indicate mean LD among all SNPs,
dashed lines indicate LD calculated among sites in different 100 kb, nonoverlapping genomic blocks. Left, results for Capsella grandiflora; right,
results for Drosophila melanogaster.
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average are far apart or are found on different chromosomes.
For such sites, meiotic recombination and segregation will
very rapidly destroy any allelic associations formed by pro-
cesses like selection. Significant signed LD however, could still
be present between mutations that are physically proximal.
We therefore next used PLINK (Purcell et al. 2007) to assess
the relationship between inter-mutation distance and LD for
each class of mutations. Consistent with our first analysis, LD
was positive for all mutation classes in most distance bins;
those estimates that were negative were small in magnitude
and were not significantly different from zero (fig. 3). Within a
distance bin, positive LD was stronger for the most weakly
selected mutation classes for most distance bins.

An interesting exception to this pattern in both species
was in the smallest distance bin (0–100 bp). The major outlier
in this distance bin were LOF mutations which had surpris-
ingly positive mean LD estimates in both species. The confi-
dence intervals on these estimates were very large for LOF
mutations in this distance bin due to the small number of
observations for the mutation class. However, the high LD
estimate for LOFs is present in both species, and, in C. gran-
diflora, the 95% confidence intervals suggested LOF muta-
tions had more positive LD than all other mutation types
aside from intronic and synonymous. This pattern is consis-
tent with intragenic antagonistic epistasis, which seems prob-
able for true LOF mutations occurring within the same gene.
Ideally, we would evaluate this hypothesis by comparing LD
between physically close LOFs that occur in the same versus
different genes. However, we had too few intergenic LOFs at
short distances to do so.

Within gene antagonistic epistasis could also create posi-
tive LD among other types of deleterious mutations such as
missense mutations, which are much more abundant. We

compared signed LD decay within and between genes for
both synonymous and nonradical missense mutations (the
two coding classes with ample data) to test for this. In the
case of D. melanogaster, we did not observe any major differ-
ences in LD decay within versus between genes for either
mutational class (fig. 3D and supplementary fig. 5,
Supplementary Material online). In C. grandiflora, however,
we observed significantly higher LD for within gene pairs of
mutations compared with between genes pairs for both non-
radical missense mutations and synonymous mutations (fig.
3C). Higher intragene LD was also evident if we calculated
unsigned (r2) LD for C. grandiflora hinting at potential differ-
ences in recombination leading to faster LD decay between
genes rather than LD created by epistasis (supplementary fig.
6, Supplementary Material online). Given that unsigned LD
decay should mostly be driven by the rate of recombination,
we hypothesize this difference in inter- versus intragenic LD is
due to the strong enrichment of cross-overs in promoter
regions of plant genomes (Choi et al. 2013; Hellsten et al.
2013). Such crossovers should rapidly erode LD between
genes, while leaving within gene LD unaffected. Conversely,
no such pattern is known to occur in flies where transcription
start sites have actually been found to negatively correlate
with cross-over occurrence (Comeron et al. 2012; Smukowski
Heil et al. 2015).

Though our previous analyses found no obvious signature
of pervasive intergenic synergistic epistasis when considering
the entire genome, epistasis may be stronger between func-
tionally related genes. To investigate this possibility, we ex-
amined LD among variants within interacting gene networks,
using either radical missense or synonymous mutations. We
obtained gene lists of metabolic and signaling networks from
KEGG and only considered LD calculated among sites in

BA

FIG. 2. (A) Mean signed LD among simulated neutral and deleterious mutations under different scenarios of admixture. The x axis represents the
generation in which admixture between isolated populations started. All simulations were run of a total of 1.5 million generations. Inset highlights
results for selected (deleterious) mutations. (B) Mean LD among neutral mutations segregating in simulated populations existing on a 2D
geographic landscape. The x axis represents different scenarios of mating bias by distance with increasingly more random mating to the right
of the x axis.
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different 100 kb blocks to minimize any contribution of LD
between nearby mutations and to remove measurements of
LD between mutations within genes. We calculated the mean
LD within each network, then averaged these mean LD values
across networks (weighting by network size) to estimate
“average network LD.” We permuted the assignment of genes
to each KEGG network 1,000� to create a null distribution
for average network LD. The mean LD of radical missense
mutations within each network is shown in figure 4A and
B. Permutation tests indicated that the average network LD
was significantly more negative than expected in D. mela-
nogaster (average network LD¼�5.71E-08, P¼ 0.008) but
not in C. grandiflora (average network LD¼�1.05E-08,
P¼ 0.956). Figure 3A and B give the appearance that LD is
related to network size but this is likely a statistical artifact
that also occurs in permutations. To visualize this, we split
networks into deciles with respect to network size and cal-
culated average network LD for each decile. The permutation
distributions had negative median values that approach zero
for larger network sizes (fig. 3C and D). Overlaying the ob-
served values on these permutation distributions helps visu-
alize that the observed LD in D. melanogaster is more negative
than expected across most network sizes (red points are em-
pirical values and gray points are means from the distribution
of permutation values). Repeating the permutation analysis
with synonymous mutations, we found that average network

LD was again significantly more negative than expected in D.
melanogaster (average network LD¼�1.03E�08, P¼ 0.006)
but not C. grandiflora (average network LD¼ 9.89E�09,
P¼ 0.902, see also supplementary fig. 7 and table 2,
Supplementary Material online). Though the point estimate
of LD is more strongly negative for radical missense than
synonymous mutations in D. melanogaster, the qualitatively
similar pattern complicates the interpretation (see
Discussion).

Discussion
In this study, we analyzed patterns of signed LD in two
species, C. grandiflora and D. melanogaster. When calculat-
ing mean LD among various classes of mutations, we found
that less deleterious mutations tended to have more pos-
itive LD, with only LOF mutations exhibiting negative point
estimates of mean LD under certain allelic-count cut-offs.
Though the reduction in LD for deleterious classes such as
LOF mutations relative to putatively neutral ones (e.g.,
synonymous mutations) could be interpreted as evidence
of negative synergistic epistasis (Sohail et al. 2017) or Hill–
Robertson interference (Garcia JA, Lohmueller KE, unpub-
lished data, https://www.biorxiv.org/content/10.1101/
2020.01.15.907097v1.full, last accessed February 15, 2020),
other processes may provide more parsimonious alterna-
tives. In particular, positive LD could be created by

Distance between mutations (bp)

Distance bin (100 bp intervals)

A B

C D

0- 100-          1000-        10,000- 100,000-
100  1000   10,000  100,000 1,000,000

0- 100-          1000-        10,000- 100,000-
100  1000   10,000  100,000 1,000,000

FIG. 3. (A and B) Distribution of mean signed LD for pairs of mutations across different distance bins for several mutation classes in (A) Capsella
grandiflora and (B) Drosophila melanogaster. Mutations within each bin are sorted by degree of expected deleteriousnes in ascending order. (C and
D) Mean signed LD in 100 bp bins for synonymous mutation pairs within and between genes for (C) C. grandiflora and (D) D. melanogaster.
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processes such as low level admixture in our data sets (Pfaff
et al. 2001), and this effect may be weaker for more dele-
terious variants. For neutral sites, admixture can generate
positive LD if LD is polarized either by rarity (as we have
done) or by ancestral state if a minor allele threshold is
imposed. Simulations across a range of demographic sce-
narios (both our own and those of Sohail et al. 2017) have
shown that positive LD builds up between mutations in a
manner dependent on their selection coefficient; the more
deleterious the mutations, the less positive LD builds up
among them (Sohail et al. 2017), under a multiplicative
model of negative selection. Presumably, the reason that

positive LD occurs for low frequency neutral but less so for
selected SNPs is as follows. Low frequency neutral SNPs
within a given region will tend to be of two types: local
variants of relatively recent origin but also migrant variants
(of older origin), which will have come to the local popu-
lation linked to migrant variants at other genomic sites (i.e.,
in positive LD). Deleterious variants are less likely to be of
older (migrant) origin by virtue of the selection against
them. Good BH (unpublished data, https://www.biorxi-
v.org/content/10.1101/2020.12.10.420042v1.full,1 last
accessed January 10, 2021), showed that even without ad-
mixture, positive LD is expected between rare neutral
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FIG. 4. (A and B) Mean LD among radical missense mutations affecting genes within interacting biological networks plotted against network size
(as defined by numbers of genes within each network). LD was calculated among sites in different 100 kb blocks to minimize the effects of short
intragenic interactions. Left data from Capsella grandiflora, right from Drosophila melanogaster. (C and D) Average network LD among radical
missense mutations for deciles based on network size; LD values were weighted by network size. Box-plots show the null distribution for average
network LD from permuted networks; black bars represent the median, the gray points represents the mean, and whiskers represent quartiles. In
each permutation, networks were split into deciles based on bin size and the average LD of all networks in each decile was calculated. True average
network LD of each decile is overlaid in red. Left data from C. grandiflora, right from D. melanogaster.
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mutations. This positive LD occurs because some variants
that are rare in the present will have been more common
in the past, providing an opportunity for a second variant
to arise on the same haplotype. Positive LD is less likely to
arise in this manner between deleterious variants because a
deleterious variant is less likely to have been at higher fre-
quency in the past. Though positive LD can arise in this
fashion at both neutral and selected sites, admixture (in-
cluding subtle forms of geographic structure) can poten-
tially cause much stronger positive LD (fig. 2).

Part of our signal of genome-wide positive LD could
be explained by the presence of multinucleotide mutations
(Schrider et al. 2011; Ragsdale AP, unpublished data, https://
www.biorxiv.org/content/10.1101/2021.03.25.437004v1.full,
last accessed March 30, 2021). Multinucleotide mutations
create strong positive LD among de novo mutations, and
such coupled mutations should persist much longer if both
variants are neutral, potentially creating our observed pat-
tern of an excess of positive LD for less deleterious muta-
tions. However, previous work in humans has suggested
that the majority of SNPs in multinucleotide mutations
fall within 20 bp of each other, which should create signed
LD on a much smaller scale than what we have observed in
our data (Schrider et al. 2011). Our genome-wide measures
of LD are not driven exclusively by nearby sites; the LD
measures are similarly positive even when we measure LD
among sites in different 100 kb blocks, thereby excluding
the contribution of LD from the vast majority of neighbor-
ing sites (fig. 1).

The fact that differences in LD between selected and neu-
tral sites can arise in several simple models necessitates cau-
tion in interpretating differences in LD among mutation
classes with varying deleteriousness. For example, previous
studies have used LD among synonymous mutations as a
control group for inferring synergistic epistasis (Sohail et al.
2017) or Hill–Robertson interference (Garcia JA, Lohmueller
KE, unpublished data, https://www.biorxiv.org/content/
10.1101/2020.01.15.907097v1.full, last accessed February 15,
2020). However, as outlined above, differences in LD for del-
eterious versus neutral mutations may be expected even un-
der purely multiplicative selection, without invoking selective
interference or epistasis.

Because of its importance in theoretical population genet-
ics (Kimura and Maruyama 1966; Crow and Kimura 1970;
Crow and Kimura 1979; Kondrashov 1982; Barton 1995), we
were particularly interested in looking for evidence of syner-
gistic epistasis in the form of negative LD at selected sites.
Instead of comparing LD at selected and neutral sites, we used
randomization tests to test whether negative LD among LOF
mutations is significantly different from 0; it is not in either
species. This approach is somewhat conservative, because
processes like admixture may oppose the signal of negative
LD created by synergistic epistasis. However, because the ad-
mixture effect should be minimal for the most deleterious
classes of mutations, this may not pose a major limitation in
searching for a signature of negative epistasis. The power of
recombination to destroy associations built by selection is
likely a much more severe limitation on synergistic

epistasis—if it is common—creating a detectable signature
on genome-wide LD.

An additional issue with estimating mean LD across all
genes is that this averaging may hide meaningful variation.
For example, epistasis between functional sites within a gene
may be fundamentally different in strength and/or sign than
intergenic epistasis. Moreover, physically close site pairs,
which will often be intragenic, will be less affected by recom-
bination’s power to destroy associations built by epistatic
selection or Hill–Robertson interference. We visualized the
distribution of LD among several classes of mutations in
both data sets, split across bins of intermutation distance.
We observed nonzero LD most readily for nearby mutations
across all mutation classes, and in all cases it was significantly
positive. Excluding the first distance bin in our analysis (1–100
bp), the magnitude of positive LD present in each mutation
class was predicted well by the expected deleteriousness of
each type of mutation. This is pattern can be explained by the
simple scenarios of positive LD build-up outlined above.

One notable deviation from the pattern of stronger pos-
itive LD for less deleterious mutation classes was that, in first
distance bin, LOF mutations had the most positive point
estimates of mean LD. We hypothesize that this pattern is
due to within-gene antagonistic epistasis, which is to be
expected if a single LOF mutation is indeed sufficient to knock
out the function of a gene. This echoes similar findings from
Puchta et al. (2016) who demonstrated that antagonistic
epistasis within a yeast snoRNA was prevalent among large
effect deleterious mutations occurring within conserved
domains because such mutations effectively acted as LOF
variants and thus did not impact fitness multiplicatively
when combined with other deleterious mutations. Ragsdale
AP (unpublished data, https://www.biorxiv.org/content/
10.1101/2021.03.25.437004v1.full, last accessed March 30,
2021) showed that LD for missense mutations within human
protein functional domains is significantly more positive than
expected, also hinting at a potential signal of within gene
antagonistic epistasis.

Aside from within-gene epistasis, epistatic interactions
may be stronger or more frequent between mutations in
functionally related genes. In particular, given that genes func-
tion as part of larger biological networks, negative epistasis
may arise between deleterious mutations that affect the func-
tion of genes within the same networks (Chiu et al. 2012). To
test this idea, we calculated mean LD among synonymous
and among radical missense mutations present in genes
within interacting biological networks defined by KEGG
(Kanehisa et al. 2016). Permutation tests in D. melanogaster
suggested that the observed intranetwork LD among radical
missense mutations was more negative than expected.
Curiously, significantly negative network LD occurs for syn-
onymous mutations too. This latter result is surprising for two
reasons: 1) LD is (relatively) strongly positive for synonymous
mutations at the genome-wide level (fig. 1) and 2) negative
epistasis should not affect (putatively neutral) synonymous
sites. A possible explanation of these findings emerges from
our suspicion that the overall genome-wide positive LD is due
to processes of admixture and gene flow. The significantly
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negative network LD for both synonymous and radical mis-
sense mutations could be due to synergistic epistasis acting
against introgressed alleles affecting the same network.
Because introgressed haplotypes will include synonymous
and missense mutations that are all in positive LD, selection
on deleterious missense variants will lead to a drop in positive
LD for multiple types of mutations.

Unlike D. melanogaster, network LD was not significantly
negative in C. grandiflora. The lack of a significant result in C.
grandiflora could be biologically meaningful or more mun-
dane. For example, KEGG network delineation could be more
biologically meaningful in D. melanogaster compared with C.
grandiflora where network information has been obtained
from a species in a different genus (Arabidopsis thaliana).
Alternatively, the difference between species could simply
be a statistical artifact (i.e., false-positive in D. melanogaster
or false-negative in C. grandiflora). Similar analyses in other
species will shed light on whether signed LD is related to
network status.

Our examination of LD has revealed variation in the
strength and, in some cases, the direction of signed LD.
This variation is affected by several factors including proximity
of sites, putative deleteriousness of mutations, and the func-
tional relationship among genes. Some, but not all, of the
patterns are consistent across two very different species.
Some of these patterns can be generated by more than one
process and, consequently, it will be challenging to conclu-
sively prove which processes drive such patterns.
Nonetheless, patterns of LD can serve as one line of evidence
for (or against) particular hypotheses that are investigated
using multiple approaches.

Materials and Methods

Population Genomics Data Sets
We retrieved data from whole-genome sequencing of 182 C.
grandiflora individuals from Josephs et al. (2015) and data for
197 haploid D. melanogaster embryos from the Drosophila
population genomics project (DPGP3) (Lack et al. 2015). SNP
calls previously generated by Josephs et al. (2015) for C. gran-
diflora were provided by Tyler Kent (personal communica-
tion). SNP calls for D. melanogaster were downloaded from
the PopFly website (Hervas et al. 2017, http://popfly.uab.cat/,
last accessed October 10, 2020). Both data sets are a result of
thorough sampling from single populations with low popu-
lation structure, making them ideal candidates for detecting
signs of epistasis from patterns of LD. To ensure that recent
migrants did not affect our LD analyses, we used the R pack-
age SNPrelate (Li 2011) to visualize relatedness through PCA
between C. grandiflora samples. This revealed six divergent
genotypes that we eliminated from our downstream analysis
leaving us with a total of 176 individuals. A previous study by
Sohail et al. (2017) had already used the DPGP3 data set to
analyze patterns of LD so we used the 190 individuals they
retained after their filtering in our own analyses. We further
filtered both data sets by only considering biallelic sites where

all individuals had genotype information. Following Sohail et
al. (2017), we removed SNPs segregating within chemo-
sensory and odorant binding genes in the D. melanogaster
data set based on gene lists obtained from FlyBase (Larkin et
al. 2021), though their inclusion has little effect on the results.
One final complication of the D. melanogaster data set is the
segregation of several large-scale inversions in this species. The
initial establishment of an inversion creates some LD.
However, gene exchange between chromosomes of different
inversion karyotypes still occurs within inverted regions via
double cross-over recombination events and gene conver-
sion. Indeed, Houle and M�arquez (2015) found that LD was
only slightly stronger within versus outside LD regions. To the
extent inversions cause a reduction in the effective recombi-
nation rate, inversions should amplify the ability to detect the
existing signal of nonzero LD built by other forces (e.g., selec-
tion, migration). Nonetheless, we repeated the majority of our
analyses excluding regions known to harbor inversions in the
DPGP3 population. We obtained coordinates of such inver-
sions from Corbett-Detig and Hartl (2012) and removed SNPs
segregating in such regions for a subset of our analyses.
However, analyses excluding inverted regions are necessarily
based on much less data and consequently have reduced
power.

SNP Annotation
We used SNPeff (Cingolani et al. 2012) and the genome
annotations of the reference genomes (Slotte et al. [2013]
for Capsella rubella; D. melanogaster release 5.57 from
Thurmond et al. [2019]) to functionally annotate SNPs in
both data sets as either LOF, synonymous, missense (non-
synonymous), intronic (but not splice affecting), UTR (if the
SNP coordinate was either in the 50- or 30-UTR of a gene), or
noncoding (for SNPs not present in coding regions). A small
number of SNPs had annotations in multiple categories (e.g.,
both UTR and intronic), primarily due to multiple gene over-
lap, and were excluded from the analysis. We included stop-
gain and splice-disrupting SNPs in our set of LOF mutations
based on the method of Sohail et al. (2017). We also further
classified missense SNPs as either radical or nonradical.
Missense SNPs were considered radical if they changed
both the volume and polarity of an amino acid based on
previous work suggesting that change in either category
lead result in particularly deleterious mutations in species
such as D. melanogaster (Sainudiin et al. 2005; Weber
and Whelan 2019, see also supplementary table 1,
Supplementary Material online, for the list of amino acid
properties we used).

Calculating LD
We calculated LD values in two ways. First, we used the same
method as Sohail et al. (2017) by calculating a point estimate
of average LD among all mutations. For a genome with K loci,
let Xi be a discrete, random variable representing the number
of derived alleles present at locus i, which can take values 0, 1
for a haploid population or alternatively 0, 1, 2 for a diploid
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population. The variance in the total number of derived
mutations carried by each individual in the population can
be expressed as:

Var
XK

i¼1

Xi

 !
¼
XK

i¼1

Var Xið Þ þ 2
XK

i;j

CovðXj; XiÞ

Because LD is, by definition, a covariance in the
allelic state between two loci, we can use this equation
to estimate the sum of all covariances across all loci by
subtracting first term of the right-hand side from the term
on the left-hand side (and then dividing by 2). The term on
the left-hand side represents the genome-wide variance in
mutation burden; the first term on the right-hand side is
the sum of the variance in mutation burden at each locus.
We can then estimate a mean value of LD per pair of loci by
dividing by the number of possible two-way interactions in
the data set:

MeanLD ¼
Var

PK
i¼1

Xi

� �
�
PK
i¼1

Var Xið Þ
� �

2
K

2

 !

We also modified this approach to calculate LD on a block
by block basis instead of SNP by SNP. This measure of average
LD largely eliminates LD between physically close sites, which
could initially arise via random mutation. We first split the
genome into 100 kb nonoverlapping blocks. For a given ge-
notype, we define Bg as the number of derived variants in
block g. This new variable can take values from 0 to
2�(number of segregating derived alleles in the given geno-
mic block). To calculate total LD among all blocks, we infer
the covariance in mutation burden between all blocks as
follows:

Var
XW

g¼1

Bg

 !
¼
XW

g¼1

Var Bg

� �
þ 2

XW

g;h

CovðBg; BhÞ

where W refers to the total number of 100 kb blocks in the
genome. Consider, for example, the simple case where we
compare two blocks ðBg; BhÞ, each with two segregating sites,
B can be represented as:

Bg ¼ X1 þ X2; Bh ¼ X3 þ X4

The number of covariance terms for these two genomic
blocks is:

Cov Bg; Bh

� �
¼ Cov X1; X3ð Þ þ Cov X1; X4ð Þ þ Cov X2; X3ð Þ
þ Cov X2; X4ð Þ

The within-block LD (e.g., Cov X1; X2ð Þ and Cov X3; X4ð Þ)
from physically neighboring sites contributes to the block-
level variances (e.g., Var Bg

� �
and Var Bhð Þ) but not the

between-block covariances. For an arbitrary number of
blocks, Cov Bg; Bh

� �
can therefore be standardized per pair

of interacting blocks as follows:

MeanLDblocks ¼
Var

PW
g¼1

Bg

 !
�
PW
g¼1

Var Bg

� � !

2
PW
g 6¼h

PW
h

ngnh

 ! ;

where ng and nh represent the number of sites with
segregating derived variants in blocks g and h,
respectively.

We calculated mean LD using the above formula by trans-
forming genotypes in our VCF files into tables of nonreference
allele counts (0, 1, 2 for C. grandiflora and 0, 1 for D. mela-
nogaster) and calculating the relevant statistics in R using the
package matrixStats (https://github.com/HenrikBengtsson/
matrixStats, last accessed November 25, 2020). We assumed
that the nonreference alleles were the derived alleles in the
two data sets. In principle, a reference genome assembled
from a randomly sampled haplotype will contain some de-
rived alleles that we will incorrectly assume are ancestral in
our method. This issue however should be minimal since our
analyses exclusively focus on rare mutations (<5% frequency)
that are unlikely to be included in a reference assembly and
will be filtered out as high frequency variants by our analysis
even if they are included. This is especially true for most
putatively deleterious mutations such as LOF mutations
which are likely maintained at low frequency by mutation–
selection balance.

We also calculated LD using PLINK (Purcell et al. 2007)
for each category of mutation. We calculated LD using de-
fault PLINK parameters which involved subsampling LD
observations as too many possible pairwise comparisons
exist to reasonably compute the entire distribution of LD
values for most classes of mutations. We estimated raw LD
values by first estimating r between every single pair of
mutations in our data set in PLINK (using the –r option)
and then back-calculating a raw value of LD by multiplying r
by the square root of the product of allele frequencies at the
two loci being compared. This approach allows us to ob-
serve the entire distribution of LD values rather than one
summary statistic and back-calculating a raw value of LD
from r allows us to compare values from our two methods
directly. Finally, we binned distance between mutations
pairs into seven categories: 100 bp or less, 101–1,000 bp,
1,001–10,000 bp, 10,001–100,000 bp, 100,001–1,000,000 bp
to visualize how signed LD decayed with distance for each
class of mutations. Further, we compared signed LD decay
within versus between genes for synonymous and nonrad-
ical missense mutations. We did this by noting which gene
our mutations of interest impacted according to SNPeff, and
splitting our LD values into two categories, those where
both contributing mutations occurred in the same gene,
and those where both contributing mutations occurred in
different genes. We then visualized LD as above, however,
we only considered mutations 1–5,000 bp apart, and calcu-
lated mean LD in even 100 bp bins, excluding any bins with
less than 100 pairs of LD values.
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Gene Network Analysis
We used the R package Graphite (Sales et al. 2012) to obtain
lists of genes from biological pathways described in the KEGG
database (Kanehisa et al. 2016). Network information from
KEGG was directly available for D. melanogaster but not for C.
grandiflora where we instead used network information from
A. thaliana. We used information on C. grandiflora—A. thali-
ana orthologs from Josephs et al. (2015) to generate lists of
interacting genes in C. grandiflora. Due to the low number of
LOF mutations in each data set, we used low frequency
(count of less than 5) radical missense mutations (definition
described in SNP Annotation) as our set of candidate delete-
rious mutations. We calculated mean LD using 100 kb blocks
(as described above) for each network defined by KEGG for
our two species, generating separating sets of networks for
synonymous and radical mutations. Smaller networks (de-
fined by the number of genes assigned by KEGG to each
network) have more highly variable estimates of LD, presum-
ably because of the smaller number of genes from which LD is
estimated. Consequently, we calculated “size-adjusted LD”
values for all networks. We did this by correcting mean LD
in 100 kb blocks for each network as follows:

Size-adjusted LD ¼ MeanLDblocks �
No:genes in network

No:total genes across all networks

Simulations
We used SLiM (V3.2.1) (Haller and Messer 2019) to run for-
ward time simulations of population admixture to ask how
signed LD can be affected by various demographic processes.
We simulated three populations of 100,000 individuals each:
one focal population that was sampled at the end of the
simulation and two satellite populations with symmetrical
migration to the focal population (10,000 individuals per gen-
eration). Each diploid individual in our simulation contained
two 1 Mb chromosomes with recombination and mutation
rates both 1E�08 per bp per generation. Mutations were
sampled from two categories: neutral (s¼ 0) with a proba-
bility 1%, or deleterious (s¼�0.001) with a probability of
99%. Fitness was determined by the multiplicative effect of
deleterious load in each individual genome, dominance was
also assumed to be additive. We ran all simulations for 1.5
million generations altering the generation where continuous
admixture was started in several treatment groups: no ad-
mixture, admixture starting at generation 200,000, 600,000,
and 1,300,000. Each treatment group was made of 20 simu-
lated replicates. After 1.5 million generations, we sampled 100
individuals from the focal population in each replicate. Next,
we filtered out recent migrants in our focal population by
performing a PCA on genotype of our samples and eliminat-
ing individuals with PC values greater than 1 SD away from
the mean of PC1 or PC2. This mimics how we treated our
real-world data where we eliminated outlier samples using
PCA. Next, to replicate how we defined ancestral/derived
alleles in the real-world data, we assigned all mutations
with frequencies over 50% in our samples as the ancestral
variant. Finally, we filtered out sites with a “derived” allele

count over five and calculated LD separately for neutral
and deleterious mutations in each replicate. We also sepa-
rately calculated LD for these simulations keeping the true
ancestral state recorded by SLiM and polarizing LD by true
ancestral/derived status both with and without a minor allele
count cut-off, mimicking the way LD may be calculated in a
real-world data set where information on the true ancestral
state may be available.

We ran a second set of simulations consisting of only one
focal population where individuals were placed on a 2D land-
scape to simulate the effects of isolation by distance due to
limited dispersal. We used the “Mate choice with a spatial
kernel” recipe provided in the SLiM manual for this set of
simulations. Briefly, 10,000 individuals were randomly placed
on an (x, y) plane, with coordinate ranges [0,1] for both axes.
To avoid clumping, individual fitness was calculated as a func-
tion of spatial competition with neighboring individuals
exerting the most costs to each other (see SLiM manual for
more details URL: http://benhaller.com/slim/SLiM_Manual.
pdf, last accessed December 10, 2020). Individuals chose
mates a Gaussian-distributed distance away, with mean 0,
SD r, and maximum value s. We ran simulations with three
sets of parameter values for r and s: (0.1,0.02), (0.3,0.06),
(0.5,0.5). This range of values was selected to explore various
levels of bias toward localized mating much like might occur
in plant populations with limited pollen dispersal. Finally,
offspring dispersed a gaussian distance away from their first
parent. Each individual contained two 1 Mb chromosomes
containing only neutral mutations with a recombination and
mutation rate of 1E�08 per bp per generation. The simula-
tions were terminating after 100,000 generations and 100
individuals were sampled per simulation replicate. Each
mate choice condition was replicated ten times. After sam-
pling, LD was calculated as described for the other simulations
with the exception of PCA analysis as no migrant filtering was
necessary due to the absence of cross-population migration.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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