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Abstract: Ammonia is a well-known example of a two-state system and must be described in
quantum-mechanical terms. In this article, we will explain the tunneling phenomenon that occurs
in ammonia molecules from the perspective of trajectory-based quantum dynamics, rather than the
usual quantum probability perspective. The tunneling of the nitrogen atom through the potential
barrier in ammonia is not merely a probability problem; there are underlying reasons and mechanisms
explaining why and how the tunneling in ammonia can happen. Under the framework of quantum
Hamilton mechanics, the tunneling motion of the nitrogen atom in ammonia can be described
deterministically in terms of the quantum trajectories of the nitrogen atom and the quantum forces
applied. The vibrations of the nitrogen atom about its two equilibrium positions are analyzed
in terms of its quantum trajectories, which are solved from the Hamilton equations of motion.
The vibration periods are then computed by the quantum trajectories and compared with the
experimental measurements.

Keywords: ammonia; quantum molecular dynamics; quantum Hamilton mechanics; tunneling
dynamics; quantum trajectory

1. Introduction

Tunneling, one of the most fascinating and mysterious phenomenon in the microscopic
world, has benefitted our daily life for decades. Even though quantum mechanics has
provided some useful information about tunneling, we still barely know how it works. As
new technology equips quantum devices with more potential advanced usages and appli-
cations [1–4], the current knowledge has reached its limitation. More studies have begun
to extend this limitation to the edge of the microscopic world [5–8]. To seek the underlying
physics and mechanism of tunneling, various approaches have been studied [9–20]. One of
these approaches is the trajectory interpretation of quantum mechanics, which regards the
wave function as an ensemble of trajectories [21–28].

The trajectory interpretation of quantum mechanics provides an ontological per-
spective to view the microscopic world. By means of an ensemble of trajectories, particle
properties and wave properties in quantum theory can be connected [29,30]. In recent years,
the discussion of the quantum trajectory has been extended to the complex space [31–36].
Higher dimensions provide leverage in tackling unsolved quantum issues and explaining
more quantum phenomena [37–46]. Underlying the framework of complex trajectory
interpretation, tunneling dynamics have been provided and studied. Levkov [47] closely
inspected tunneling trajectory in a chaotic model in the complex domain. Yang [48] pre-
sented tunneling dynamics in the complex space, revealing a smooth trajectory which
continuously connects the classical trajectory and tunneling trajectory. John [49] evaluated
the reflection probability in terms of the reflected and incident complex trajectories.

A series of experiments verify the reality of quantum trajectories, and some even
show the importance and necessity of the consideration of the complex domain in the
quantum system [50–56]. Following the proposal of a weak value [57], the measurement
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and observation of the quantum system can be carried out to reveal the reality of the
quantum realm. Under the minimum degree of interference in the quantum system,
this weak measurement endows the complex eigenvalues with the physical meanings.
Various researches have extensively studied the fundamental mechanisms of the weak
value, pointing out that the imaginary part of the weak value is significantly important
to quantum observations [58–62]. In the latest research, this complex number is reported
as an essential element in inspecting quantum systems [63,64]. With support from both
theoretical and experimental evidences, the complex trajectory interpretation is gradually
becoming one of the most conceivable interpretations of quantum mechanics. In the present
research, we will apply the complex trajectory interpretation to a practical quantum system
involving ammonia and its inversion state in order to analyze the tunneling dynamics
between them.

Ammonia is formed in the shape of a pyramid, with three hydrogen atoms situated on
an equilateral triangle plane with the nitrogen atom on the apex. The pyramid inverts as
the nitrogen atom changes position from one equilibrium point to another via the tunneling
effect. This inversion flip-flops repeatedly with the tunneling rate 2.4× 1012 Hz, which is
calculated by solving the Schrödinger equation in the double-well potential with the WKB
method [65], having an experimental value of 2.3786× 1010 Hz.

From the viewpoint of quantum mechanics, it is probably that at a given time the
nitrogen atom is situated on either side of the equilateral triangle plane formed by the
three hydrogen atoms. In other words, it is partly on both sides at the same time in a
quantum mechanical sense. However, the frequency of the nitrogen atom flips back and
forth has been experimentally observed [66]. Does this imply that the nitrogen atom is
wholly on one side or on the other at any given instant? In this paper, we will analyze
the tunneling dynamics in ammonia by means of the complex trajectory interpretation of
quantum mechanics. It seems that the tunneling trajectory might provide some convincing
answers to the above question.

This paper is organized as follows. Section 2 introduces the complex trajectory inter-
pretation of quantum mechanics in terms of quantum Hamilton mechanics. In order to
analyze the tunneling trajectory in the ammonia molecule, we first obtain its vibrational
wave functions in Section 3. We then use quantum Hamilton mechanics together with the
obtained vibrational wave functions in Sections 4 and 5 to discuss the tunneling dynamics
of the nitrogen atom under the action of the single-well potential and the double-well
potential in the ammonia molecule. Section 6 presents the tunneling dynamics of the nitro-
gen atom vibrating between the ammonia state and the ammonia inversion state, and the
computed tunneling frequency and tunneling range are compared with the measurement
data in good agreement.

2. Quantum Hamilton Mechanics

We begin this section with a brief introduction to quantum Hamilton mechanics [32].
Consider a quantum particle in the 3-dimensional complex space, whose position is de-
scribed by the complex coordinate q = (q1, q2, q3) with q = qR + iqI ∈ C3. The Schrödinger
equation with the complex coordinate q

i}∂Ψ(t, q)
∂t

= − }2

2m
∇2Ψ(t, q) + VΨ(t, q) (1)

can be recast into the quantum Hamilton–Jacobi equation

∂S(t, q)
∂t

+

[
1

2m
p·p + V(t, q) +

1
2mi
∇·p

]
p=∇S

=
∂S(t, q)

∂t
+ H(t, q, p)|p=∇S = 0 (2)

via the relation
Ψ(t, q) = eiS(t,q)/} (3)
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where S(t, q) is the action function and Ψ(t, q) is the wave function. The quantum Hamil-
tonian H(t, q, p) is the sum of the particle’s kinetic energy p2/2m, the external potential
V(t, q), and the quantum potential Q(t, q).

H(t, q, p) =
1

2m
p·p + V(t, q) + Q(t, q) (4)

The quantum potential Q in (4) is defined by the following expressions:

Q(t, q) =
}

2mi
∇·p

∣∣∣∣
p=∇S

=
}

2mi
∇2S(t, q) = − }2

2m
∇2 ln Ψ(t, q) (5)

The quantum potential is state-dependent and can be determined immediately if the
wave function Ψ(t, q) is known. Without the quantum potential Q(t, q), the Hamiltonian (4)
reduces to the classical Hamiltonian. Hence, it is safe to say that quantum potential plays
the key role in the quantum world, rendering everything different from our familiar
classical world.

The Hamilton equations of motion in the complex space are derived from the quantum
Hamiltonian (4) as:

.
qj =

∂H
∂pj

=
pj

m
, qj(t0) = q0

j ∈ C, j = 1, 2, 3 (6)

.
pj = −

∂H
∂qj

= − ∂

∂qj
(V + Q), pj(t0) = p0

j ∈ C, j = 1, 2, 3 (7)

The particle’s momentum p = ∇S can be expressed in terms of the wave function
through the relation (3):

pj =
∂S(t, q)

∂qj
=

}
i

1
Ψ(t, q)

∂Ψ(t, q)
∂qj

(8)

With (8), the particle’s equations of motion (6) can be represented as a function of
Ψ(t, q),

.
qj =

pj

m
=

}
im

1
Ψ(t, q)

∂Ψ(t, q)
∂qj

, j = 1, 2, 3 (9)

By solving (9), the particle’s trajectory in the complex space can then be obtained. In
the formalism of quantum Hamilton mechanics, the wave function Ψ(t, q) with q ∈ C3 can
provide detailed dynamic information of the particle in addition to the probability density
|Ψ(t, q)|2.

The combination of (8) and (9) gives the quantum Newton’s law in the complex space,

m
..
qj = −

∂

∂qj
(V + Q) = − ∂

∂qj
VTotal (10)

where VTotal is the total potential containing the external potential V and the quantum
potential Q:

VTotal = V + Q = V(t, q)− }2

2m
∇2 ln Ψ(t, q) (11)

If Ψ(t, q) is an eigenstate with eigen energy, E, it can be expressed by Ψ(t, q) =
ψ(q)e−i(E/})t and the accompanying action function becomes S(t, q) = −i} ln ψ(q)− Et.
Substituting S(t, q) into the quantum Hamilton–Jacobi Equation (2) yields H(t, q, p) =
p2/2m + V + Q = −∂S/∂t = E = constant, and

VTotal = V + Q = E− p2

2m
= E +

}2

2m
(∇ ln ψ)2 (12)
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The use of the above VTotal in (10) leads to the quantum Newton’s law

m
..
qj = −

∂VTotal
∂qj

= − }2

2m
∂

∂qj
(∇ ln ψ)2, qj ∈ C, j = 1, 2, 3 (13)

In quantum mechanics, the squared magnitude of ψ(q) determines the probability of
finding a particle in specific regions. In quantum Hamilton mechanics, the wave function
ψ(q) provides the total potential VTotal to yield the equation of motion (13). The interrela-
tionship of the total potential VTotal and probability density function |ψ|2 can be established
from (12) as follows:

|VTotal − E| =
∣∣∣∣ }2

2m
(∇ ln ψ)2

∣∣∣∣ = }2

2m
|∇ψ|2

|ψ|2
(14)

which shows that the height of the total potential, VTotal − E, is inversely proportional to
|ψ|2. This reflects the very truth that a greater probability of finding a particle corresponds
to a lower total potential. In Sections 4 and 5, we will inspect this interrelationship closely
by demonstrating the quantum dynamics of ammonia in different eigenstates.

3. Vibrational Eigenfunctions of Ammonia

The nitrogen atom in ammonia vibrates in a double-well potential, which can be
expressed by the following function [67]:

V(x) =
{

Btan h(x/d− k)− Csec h2(x/d− k) = V+(x), x ≥ 0
−Btan h(x/d + k)− Csec h2(x/d + k) = V−(x), x ≤ 0

(15)

where B, C, d, and k are parameters determined by the experimental data. The coordinate
x is the distance of the nitrogen atom to the plane formed by the three hydrogen atoms, as
displayed in Figure 1. The double-well potential is composed of two single-well potentials.
In this study, the Rosen–Morse potential is applied to the single-well potential model,

Vs(x) = Btan h(x/d)− Csec h2(x/d) (16)
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Figure 1. The two equilibrium states of the ammonia molecule and their related positions in the double-well potential.
The ammonia molecule has the shape of a pyramid, where the three hydrogen atoms form the equilateral triangle and
the nitrogen atom is positioned at the apex. The distance of the nitrogen atom to the equilateral triangle plane is denoted
by x, and the double-well potential is symmetric to x = 0. The positions x = ±a are the two equilibrium points of the
potential, recognized as the ammonia state and the ammonia inversion state, respectively. The positions x = ±(a− A) are
the classical turning points, where the nitrogen atom’s kinetic energy is equal to the potential barrier.

By shifting the above single-well potential with a distance k to the left-hand side and right-
hand side of the x = 0 axis, we obtain the double-well potentials, V+(x) = Vs(x/d− k) and
V−(x) = Vs(−x/d− k), as expressed by (15). This double-well potential is symmetric to the
x = 0 axis and is continuous at x = 0 by noting V(0−) = V(0+) = −Btan h(k)−Csec h2(k).
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An additional condition, tan h(k) = B/2C, should be satisfied as having the continuity of
the first derivative of V(x) at x = 0.

The Schrödinger equation describing the motion of the nitrogen atom in the double-
well potential V(x) reads

− }2

2M
d2Ψ(x)

dx2 + (V(x)−W)Ψ(x) = 0 (17)

whose solution Ψ(x) can be approximately given by the linear combination of the wave
function ψ(x), which is the solution of the Schrödinger equation with the single-well
potential Vs(x):

− }2

2M
d2ψ(x)

dx2 + (Vs(x)− E)ψ(x) = 0 (18)

The mass M in (17) and (18) is the effective mass of the nitrogen atom N in the
ammonia molecule NH3, defined as M = 3mHmN/(3mH + mN) where mH and mN denote
the mass of the hydrogen atom and nitrogen atom, respectively. By defining the following
dimensionless variables:

z = x/d, ε = −E/g, β = B/g, γ = C/g, g = }2/2Md2 (19)

one can express the Schrödinger Equation (18) in the dimensionless form:

d2ψ(z)
dz2 +

(
−ε− βtan hz + γsec h2z

)
ψ(z) = 0 (20)

The solution to (20) can be expressed analytically as [67]

ψ(z) = eaz(cosh z)−bF(z) (21)

where

F(u) = hypergeom
([

b + 1/2−
√

γ + 1/4, b + 1/2 +
√

γ + 1/4
]
, [a + b + 1], u

)
(22)

and

u =
1
2
(1 + tan hz), a = −1

2

(√
ε + β−

√
ε− β

)
, b =

1
2

(√
ε + β−

√
ε− β

)
(23)

The hypergeometric function F(u) approaches infinity when u approaches unity, unless

b + 1/2−
√

γ + 1/4 = −n, n = 0, 1, 2, · · · (24)

(24) gives the boundedness condition for F(u) and quantizes the constant a and b as

bn =
√

γ + 1/4− n− 1/2, n = 0, 1, 2, · · · (25)

an = −β/2bn = −β/
(√

4γ + 1− 2n− 1
)

, n = 0, 1, 2, · · · (26)

and the corresponding eigenfunction ψ_n is given by (21). The quantization of a and b
result in the energy quantization:

− En = gεn = g
(

a2
n + b2

n

)
= g

[
1
4

(√
4γ + 1− 2n− 1

)2
+ β2

(√
4γ + 1− 2n− 1

)−2
]

(27)

The energy has an upper bound, beyond which the ammonia molecule will be dissoci-
ated. We can find the allowable range of n according to the condition an + bn =

√
εn − β ≥ 0,

which leads to
n ≤

√
γ + 1/4−

√
β/2− 1/2 (28)
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For each single-well solution ψn to (18), there are two double-well solutions Ψ+
n (z)

and Ψ−n (z) to (17), as given by

Ψ+
n (z) =

1√
2
[ψn(z− k) + ψn(−z− k)] (29)

Ψ−n (z) =
1√
2
[ψn(z− k) + ψn(−z− k)] (30)

It can be seen from Figure 2 that Ψ+
n (z) has even symmetry and Ψ−n (z) has odd sym-

metry. The associated energy levels of Ψ+
n (z) and Ψ−n (z) are W±n , which in dimensionless

form are given by

W±n
g

= εn +
∫ ∞

0
ψ2

n(z + k)V(z)dz±
∫ ∞

0
ψn(z− k)V(z)ψn(−z− k)dz (31)

Int. J. Mol. Sci. 2021, 22, 8282 7 of 23 
 

 

 
Figure 2. The two ground-state wave functions of the nitrogen atom in the double-well potential. (a) ߖ଴ା(ݖ) = ߖୣ ୴ୣ୬(ݖ) 
has even symmetry. (b) ߖ଴ି (ݖ) =  .has odd symmetry (ݖ)୭ୢୢߖ

4. Nitrogen Dynamics in Single-Well Potential 
The wave function stores a lot of information of a quantum state, including infor-

mation that cannot be provided by the quantum probability, such as the tunneling trajec-
tory, tunneling time, quantum potential, and so on. In this section we will consider nitro-
gen dynamics in the single-well potential in order to find its trajectory in the complex 
plane. The ground-state wave function ߰଴(ݖ) = ݁௔బ௭(cosh ௕బି(ݖ  for the single-well poten-
tial yields a pair of the ground-state wave functions for the double-well potential accord-
ing to (29) and (30): ߖ଴ା(ݖ) = 1√2 ൣ݁௔బ(௭ି௞)(cosh(ݖ − ݇))ି௕బ + ݁௔బ(ି௭ି௞)(cosh( ݖ + ݇))ି௕బ൧ (37)

଴ିߖ (ݖ) = 1√2 ൣ݁௔బ(௭ି௞)(cosh(ݖ − ݇))ି௕బ − ݁௔బ(ି௭ି௞)(cosh( ݖ + ݇))ି௕బ൧ (38) 

For the purposes of simplification, all functions are considered in dimensionless forms. 
The ground-state equation of motion for the nitrogen atom in the single-well poten-

tial is given by (9): ݀߬݀ݖ = 1݅ ݀ln߰଴(ݖ)݀ݖ = −݅(ܽ଴ − ܾ଴tanhݖ),       ߬ = ℏ݀ܯଶ (39) ݐ

which has an equilibrium point ୣݖ୯ = tanhିଵ(ܽ଴ ܾ଴⁄ ) by letting ݀ݖ/݀߬ = 0. Let us express 
the equilibrium point in terms of variables ߚ and ߛ with the help of (25) and (26): 

୯ୣݖ = −tanhିଵ ൥ ߛ൫ඥ4ߚ2 + 1 − 1൯ଶ൩.     (40)

The single-well potential, ௦ܸ(ݖ) = (ݖ)tanhߚ − ଴ݖ has a minimum located at ,(ݖ)sechଶߛ = −tanhିଵ(ߚ ⁄ߛ2 ) with the minimum value ௦ܸ(ݖ଴) = − ଶߚ + ଶߛ4 ⁄ߛ4 . It is clear to see 
that there is a deviation between the equilibrium point ୣݖ୯ and the minimum point ݖ଴, 
as Figure 3a shows. The quantum potential is the origin of this deviation since the equi-
librium point ୣݖ୯ represents the minimum point of the total potential ୘ܸ୭୲ୟ୪(ݖ) = ௦ܸ(ݖ) (ݖ)ܳ ,From (5) we have the quantum potential for the ground state .(ݖ)ܳ+ = − ݀ଶln߰଴(ݖ)݀ݖଶ = −ܾ଴sechଶ(41) ݖ

and the complete expression of the total potential for the ground state then reads, 

Figure 2. The two ground-state wave functions of the nitrogen atom in the double-well potential. (a) Ψ+
0 (z) = Ψeven(z) has

even symmetry. (b) Ψ−0 (z) = Ψodd(z) has odd symmetry.

Under the framework of quantum Hamilton mechanics, we see exactly how the nitro-
gen atom moves in the double-well potential, and how it transits from one side to the other
side via its trajectory solved from (9) with wave functions given by (29) and (30). To have
the computation close to the actual situation as much as possible, all parameters are ob-
tained from the experimental data, including the energy gap between the ground state and
the first excited state, E1 − E0 = 950 cm−1 and the inter-pair separation in the ground state
and the first excited state, ∆W0 = W+

0 −W−0 = 0.8118 cm−1, ∆W1 = W+
1 −W−1 = 33 cm−1,

where cm−1 is an energy unit defined by 1 cm−1 = hc joule = 1.988× 10−23 joule. The
parameters B, C, d, and k can be determined from the above three experimental data via
the following three relations:

E1 − E0

g
= 2

√
γ + 1/4− 2− β2

4

√
4γ + 1− 2(

γ + 1−
√

4γ + 1
)2 (32)

∆W0

g
=

W+
0 −W−0

g
= 2

∫ ∞

0
ψ0(z− k) V(z)ψ0(−z− k)dz (33)

∆W1

g
=

W+
1 −W−1

g
= 2

∫ ∞

0
ψ1(z− k) V(z)ψ1(−z− k)dz (34)
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where ψ0 and ψ1 are wave functions of the ground state and the first excited state given
by (21):

ψ0(z) = ea0z(cosh z)−b0 (35)

ψ1(z) = ea1z(cosh z)−b1

[
1−
√

4γ + 1− 1
a1 + b1 + 1

(1 + tan hz)/2
]

(36)

Due to the limited available data, the three relations (32)–(34) are not enough to
determine the four parameters B, C, d, and k uniquely, but only their ranges can be
identified: 0 ≤ B ≤ 1000 cm−1, 2200 cm−1 ≤ C ≤ 3000 cm−1, 16 pm ≤ d ≤ 18.5 pm, and
2.20 ≤ k ≤ 2.24. Numerical values picked up from the above ranges will be employed in
the following calculation of quantum trajectories.

4. Nitrogen Dynamics in Single-Well Potential

The wave function stores a lot of information of a quantum state, including information
that cannot be provided by the quantum probability, such as the tunneling trajectory,
tunneling time, quantum potential, and so on. In this section we will consider nitrogen
dynamics in the single-well potential in order to find its trajectory in the complex plane.
The ground-state wave function ψ0(z) = ea0z(cosh z)−b0 for the single-well potential yields
a pair of the ground-state wave functions for the double-well potential according to (29)
and (30):

Ψ+
0 (z) =

1√
2

[
ea0(z−k)(cosh(z− k))−b0 + ea0(−z−k)(cosh(z + k))−b0

]
(37)

Ψ−0 (z) =
1√
2

[
ea0(z−k)(cosh(z− k))−b0 − ea0(−z−k)(cosh(z + k))−b0

]
(38)

For the purposes of simplification, all functions are considered in dimensionless forms.
The ground-state equation of motion for the nitrogen atom in the single-well potential

is given by (9):

dz
dτ

=
1
i

d ln ψ0(z)
dz

= −i(a0 − b0tan hz), τ =
}

Md2 t (39)

which has an equilibrium point zeq = tan h−1(a0/b0) by letting dz/dτ = 0. Let us express
the equilibrium point in terms of variables β and γ with the help of (25) and (26):

zeq = −tan h−1

[
2β(√

4γ + 1− 1
)2

]
. (40)

The single-well potential, Vs(z) = βtan h(z)− γsec h2(z), has a minimum located at
z0 = −tan h−1(β/2γ) with the minimum value Vs(z0) = −β2 + 4γ2/4γ. It is clear to see
that there is a deviation between the equilibrium point zeq and the minimum point z0, as
Figure 3a shows. The quantum potential is the origin of this deviation since the equilibrium
point zeq represents the minimum point of the total potential VTotal(z) = Vs(z) + Q(z).
From (5) we have the quantum potential for the ground state,

Q(z) = −d2 ln ψ0(z)
dz2 = −b0sec h2z (41)

and the complete expression of the total potential for the ground state then reads,

VTotal(z) = βtan hz + (b0 − γ) sec h2z (42)
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The minimum of the total potential can be found by letting dVTotal(z)/dz = 0:

βsec h2z(1− b0tan hz/a0) = 0 (43)

from which the minimum point zmin is found to be identical to the equilibrium point zeq as
shown in (40). One notes that if γ� 1, then (40) gives zeq = −tan h−1(β/2γ) that equals
the minimum point z0 of the potential Vs(z).

As shown in Figure 3, the maximum probability density |ψ0(z)|2max locates at the
position dψ0/dz = 0, which is just the equilibrium position zeq and the minimum point
zmin of the total potential VTotal(z), but not the minimum point z0 of the potential Vs(z).
Probability is the main character throughout quantum mechanics and is the main measure-
ment outcome of the quantum world. Here, we can see that the role of the probability can
be replaced by the quantum potential, which is one of the compositions of the quantum
Hamiltonian as appeared in (4). Accordingly, the quantum world may not be purely proba-
bilistic, but rather classical with causal essence hidden within quantum mechanics. We are
able to discover some causal characteristics of the quantum world by manifesting various
classical counterpart features underlying the formulation of quantum Hamilton mechanics.

Let us calculate the vibration period of the Nitrogen atom in ammonia in a classical
manner. By using the Newton’s second law (10) in a complex domain, the force acting on
the nitrogen atom by the total potential is

d2z
dτ2 = −dVTotal(z)

dz
(44)

We can further obtain the force constant evaluated at zmin:

K =
d2VTotal(z)

dz2

∣∣∣∣
z=zmin

=
2
b2

0

(
b2

0 − a2
0

)2
, K =

}2

2Md2 K (45)
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where we have used the relation a0b0 = −β/2, and the bar denotes the dimensionless
symbol. According to the classical formula of a vibration period, T = 2π

√
M/K, we have

the dimensionless vibration period T,

T =
}

Md4 T =
2πb0

b2
0 − a2

0
(46)

In the macroscopic world we can visually observe any kinds of vibration propagating
with media. In the formulation of quantum Hamilton mechanics, we can visualize the vi-
bration pattern too in terms of the nitrogen atom’s trajectories in a complex plane. Figure 3b
illustrates some trajectories solved from (39) in the complex z−plane with different initial
positions. The parameters are chosen as: B = 500 cm−1, C = 2500 cm−1, d = 17 pm, and
k = 2.22. One initial position z(0) corresponds to one trajectory in the complex z−plane.
Two types of trajectory can be found in Figure 3b: closed trajectories and open trajectories.
When the initial position is close to the equilibrium point, the nitrogen atom will oscillate
around the center, zeq = −0.1365, in the lower part of the potential well and forms a closed
trajectory. The total energy of the nitrogen atom is given by the quantum Hamiltonian (4):

H = Ek(z) + Vs(z) + Q(z)
= −(a0 − b0tan hz)2 − 2a0b0tan hz− b2

0sech2z
= −

(
a2

0 + b2
0
)
= −ε0 = constant.

(47)

This energy value can be confirmed by inserting n = 0 into (27). From (47), we can
see that the total energy cannot be a constant if the quantum potential is not considered in
the Hamiltonian.

5. Tunneling Dynamic in Stationary States
5.1. Tunneling Trajectory in the Ground State

The double-well potential (15) with the same parameters assigned in Section 4,
i.e., B = 500 cm−1, C = 2500 cm−1, d = 17 pm, and k = 2.22, can be expressed by

V(z) =
{

2.1332tan h(z− k)− 10.666sec h2(z− k) = V+(z), z ≥ 0
−2.1332tan h(z + k)− 10.666sec h2(z + k) = V−(z), z ≤ 0

. (48)

Ψ+
0 (z) =

1√
2

(
e−0.3804(z−k)(cosh(z− k))−2.8039 + e−0.3804(−z−k)(cosh(z + k))−2.8039

)
(49)

Ψ−0 (z) =
1√
2

(
e−0.3804(z−k)(cosh(z− k))−2.8039 − e−0.3804(−z−k)(cosh(z + k))−2.8039

)
(50)

(37) and (38) is a pair of ground-state wave functions.
The fact that the probability density function is inversely proportional to the total

potential as introduced in (14) now can be visualized in Figure 4a,b which shows the
ground-state probability density

∣∣Ψ±0 (z)∣∣2 (black line) and total potential V±Total(z) (blue
line). The total potential V±Total(z) have the form of

V±Total(z) = V(z)−
d2 ln Ψ±0 (z)

dz2 (51)

where V(z) is given by (48) and the second term is the quantum potential Q(z) correspond-
ing to the ground-state wave function given by (5). Detailed information about the total
potential can be obtained by finding the equilibrium point from the equation of motion (9),

dz
dτ

=
1
i

d ln Ψ±0 (z)
dz

(52)
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which yields equilibrium points z+eq = 0, ±2.08331 and z−eq = 0, ±2.08367. As shown in

Figure 4, these equilibrium points are the positions where the two maxima of
∣∣Ψ±0 (z)∣∣2 and

the two minima of V±Total(z) locate, respectively. The largest difference between V−Total(z)
and V+

Total(z) is that at the origin z = 0, where the total potential V−Total(z) approaches
infinity, while the total potential V+

Total(z) reaches its local minimum. In other words, it is
impossible to observe the tunneling effect via the total potential V−Total(z) at z = 0. When

interpreted by probability, this means
∣∣Ψ−0 (z)∣∣2 = 0 at z = 0. In contrast, the probability∣∣Ψ+

0 (z)
∣∣2 evaluated at z = 0 is

∣∣Ψ+
0 (0)

∣∣2 = 0.001938, which is near zero but not equal to
zero. Consequently, the potential V+

Total(z) is not infinite at z = 0, as shown in Figure 4a,
allowing the tunneling motion to happen within V+

Total(z).
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Figure 4. The spatial distributions of the probability density
∣∣Ψ±0 (z)

∣∣2, the double-well potential V(z), and the total potential

V±Total(z) in the ground state. (a) The maximum point of the probability density
∣∣Ψ+

0 (z)
∣∣2 at Re(z) = ±2.08331 coincides

with the minimum point of the total potential V+
Total(z), but is different from the minimum point of the double-well potential

V(z) at Re(z) = ±2.11966. The probability
∣∣Ψ+

0 (z)
∣∣2 at the origin is

∣∣Ψ+
0 (0)

∣∣2 = 0.001938 6= 0 which corresponds to the

central minimum point of the total potential V+
Total(z). (b) The probability

∣∣Ψ−0 (z)
∣∣2 at the origin is zero, corresponding to

the infinite total potential V−Total(z) at z = 0.

Why is the nonzero probability at Re(z) = 0 so important? The reason is that the
position Re(z) = 0 is where the equilateral triangle plane (symmetric plane) located. When
the nitrogen atom passes through this symmetric plane and reaches the other side, the
tunneling effect appears. For more than ten decades, physicists have regarded the tunneling
effect as a typical quantum phenomenon which cannot be explained in a classical manner.
The only way to realize this mysterious phenomenon relies on the probability interpretation
provided by quantum mechanics. As the probability

∣∣Ψ+
0 (z)

∣∣2 is not zero on the symmetric
plane, it is possible for the nitrogen atom to pass repeatedly through the symmetric plane
and reach the left apex and right apex to form the pyramid (ammonia) and the inverted
pyramid (ammonia inversion) through the tunneling effect.

Under the framework of quantum Hamilton mechanics, the wave function Ψ+
0 (z) not

only provides the tunneling probability, but also the tunneling trajectory and the potential
barriers experienced by the nitrogen atom in the tunneling process. Figure 5 displays the
spatial distributions of the total potential V+

Total(z) (red line), the double-well potential
V(z) (brown line), and the nitrogen atom’s kinetic energy Ek (blue line). As shown in
Figure 5, the range of movement of the nitrogen atom can be divided into three regions:
(1) the classical forbidden region, (2) the total-potential attraction regions, and (3) out of
the total-potential attraction regions. The boundary of the classical forbidden region is
determined by the classical turning points where the nitrogen atom’s kinetic energy Ek
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equals the double-well potential V(z). By letting Ek = V(z), the classical turning points
are found to be Re(z) = ±0.468.
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Figure 5. Three categories of regions in the total potential V+
Total(z), the double-well potential V(z),

and the nitrogen atom’s kinetic energy Ek(z). The classical forbidden region is defined by the classical
turning points located at Re(z) = ±0.468, where the double-well potential V(z) is equal to the
nitrogen atom’s kinetic energy Ek(z). The two total-potential attraction regions are centered at the
left and right minimum points of the total potential. Outside of the attraction regions, the attraction
is too weak to pull the nitrogen atom back to the center of attraction.

The quantum trajectories in the three regions are determined by solving (52) with
initial positions located in different regions, as shown in Figure 6. The trajectories in
the classical forbidden region are closed paths encircling the points with Re(z) = 0. If
we inspect the quantum motion in this region along the real z−axis, we can see that
the nitrogen atom oscillates across the symmetric plane formed by Re(z) = 0 forming
tunneling trajectories in the classical forbidden region. Other closed trajectories in Figure 6
appear on both sides of the symmetric plane and encircle their respective equilibrium
points at Re(z) = ±2.08331. This type of trajectory belongs to the total-potential attraction
regions, where the motion of the nitrogen atom is under the attraction of the total potential
V+

Total(z) so that the center of the motion Re(z) = ±2.08331 happens to be at the lowest
point of the total potential V+

Total(z). The trajectories out of the total-potential attraction
regions are open since the attraction of the total potential in this region is too weak to
maintain the rotation of the nitrogen atom around the equilibrium point.

Figure 7 displays the complex trajectories (red curves) of the nitrogen atom over the
surface of the total potential V+

Total(z) and V−Total(z). The occurrence of tunneling through the
barrier V+

Total(z) at z = 0 can be explained by the spatial distribution of the total potential
V+

Total(z), which has a local minimum at z = 0, as Figures 6 and 7a illustrate. On the other
hand, Figure 7b shows that the total potential V−Total(z) is infinite around the origin z = 0,
which forbids the nitrogen atom from passing through from one side of the symmetric
plane to the other, and so no tunneling effect can be observed.
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5.2. Tunneling Trajectory in the Excited States

Let us consider the first excited state in the same parameter setting. The parameters a1
and b1 are given by (25) and (26):

a1 = −β/
(√

4γ + 1− 3
)
= −0.5913, b1 =

√
γ + 1/4− 3/2 = 1.8039 (53)

According to (29), the wave function Ψ+
1 (z) of the first excited state is

Ψ+
1 (z) = −e−0.5913(z−2.22)(cosh(z− 2.22))−1.8039[0.2672 + 1.2672tan h(z− 2.22)]
−e0.5913(z+2.22)(cosh(z + 2.22))−1.8039[0.2672− 1.2672tan h(z + 2.22)]

(54)

The accompanying wave functions Ψ−n (z) all possess the property of Ψ−n (0) = 0,
which means there is zero probability of the tunneling motion occurring and thus it will
not be considered in this section.

The equation of motion in the first excited state then is obtained by substituting Ψ+
1 (z)

into (9):
dz
dτ

=
1
i

d ln Ψ+
1 (z)

dz
(55)

There are five equilibrium points: z+eq = 0, ±1.179, and ±2.663, which coincide with
the maxima and minima of the total potential

V+
Total(z) = V(z) + Q(z) = V(z)−

d2 ln Ψ+
1 (z)

dz2 (56)

with V(z) given by (48). The quantum trajectories solved from (55) are shown in Figure 8a
and the spatial distributions of V+

Total(z) and V(z) are shown in Figure 8b.
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Total(z).

Compared with the ground-state tunneling trajectory, the nitrogen atom moves around
Re(z) = 0 with a much larger closed loop in the first excited state. This observation can be
explained by the spatial distribution of the total potential V+

Total(z) = V(z) + Q(z), which
is quite flat around Re(z) = 0. The total potential V+

Total(z) has infinite hills at Re(z) = ±2,

which corresponds to the zero probability
∣∣Ψ+

1 (±2)
∣∣2 = 0, as predicted by the inverse

proportionality (14). Without the participation of the quantum potential Q(z), the double-
well potential V(z) alone cannot correctly explain the spatial distribution of

∣∣Ψ+
1 (z)

∣∣2 as
shown in Figure 8b.
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Although the tunneling ability of the nitrogen atom is more significant in the first
excited state than that in the ground state, the tunneling range does not envelop the
equilibrium points on the both sides of the symmetric plane. This means that the complex
trajectories shown in Figure 8a still do not exhibit the tunneling trajectory which oscillates
between the two apexes of the pyramid. To search for such tunneling trajectory, we proceed
to inspect the higher excited states.

The parameters we choose in the double-well potential, B = 500 cm−1 and
C = 2500 cm−1, give us the number of bound states n ≤ 1.77, according to (28). Thus, only
the ground state (n = 0) and the first excited state (n = 1) are bounded in this potential.
We have to change the values of B and C in order to find bound states with the quantum
number n > 1. Two new sets of B and C are examined and the results are tabulated in
Table 1. Calculated from (28), the potential with B = 200 cm−1 and C = 2500 cm−1 has
three bound states, while the potential with B = 5 cm−1 and C = 3000 cm−1 has four
bound states. As listed in Table 1, every bound state has different equilibrium points, and
exhibits different tunneling range and frequency. The trajectories in the four bound states
corresponding to the case of B = 5 cm−1 and C = 3000 cm−1 are illustrated in Figure 9. It
can be seen that for n ≤ 2, the central tunneling trajectory across Re(z) = 0 is separated
from the right and left closed trajectories. A notable phenomenon appears in the n = 3 state,
where there are central tunneling trajectories covering five equilibrium points as shown
in Figure 9d. This is the tunneling motion that oscillates between two apexes. However,
the calculated period of oscillation is in the order of 1012 Hz, however the experimental
value is of 1010 Hz. This discrepancy mainly arises from the neglect of the influence of
the accompanying wave function Ψ−n (z) on the tunneling process, and partially from the
improper values of B and C used in the calculations, or from a modeling error incurred by
using the double-well potential (15) to represent the potential experienced by the nitrogen
atom in the ammonia molecule.

Table 1. The computation results of the ammonia vibration in several eigenstates.

B = 500, C = 2500 B = 500, C = 2500 B = 5, C = 3000

n = 0
Equilibrium Positions 0,±2.0830 0, ±2.166 0, ±2.219

Tunneling Range −0.468~0.468 −0.334~0.334 −0.287~0.287
Tunneling Frequency 7.638× 1013 Hz 9.224× 1013 Hz 1.277× 1014 Hz

n = 1
Equilibrium Positions 0,±1.179,±2.663 0,±1.406,±2.806 0,±1.573,±2.861

Tunneling Range −0.602~0.602 −0.530~0.530 −0.416~0.4160
Tunneling Frequency 1.446× 1013 Hz 2.792× 1013 Hz 5.415× 1013 Hz

n = 2
Equilibrium Positions - 0,±2.020,±3.167 0,±0.870,±2.223,±3.440

Tunneling Range - −1.956~1.956 −0.532~0.532
Tunneling Frequency - 5.584× 1012 Hz 1.629× 1013 Hz

n = 3

Equilibrium Positions - - 0,±1.710,±2.635,±4.602

Tunneling Range - - −3.298~−3.145, 3.145~3.298
−1.509~1.509

Tunneling Frequency - - 6.856× 1012 Hz
8.285× 1012 Hz

Oscillating trajectories form closed contours in the complex plane and their oscillation
periods can be determined solely by the equilibrium points enclosed by the contours and
are independent of their actual shape, according to the residue theorem [32]. Accordingly,
oscillating trajectories enclosing different equilibrium points yields different oscillation
periods. For example, we consider the three trajectory sets in Figure 9b in the n = 1 state.
The trajectory sets Ω1 and Ω′

1 comprise the trajectories enclosing one equilibrium point at
zeq = 1.573 and zeq = 2.861, respectively. The trajectory set Ω2 comprises the trajectories
enclosing two equilibrium points. Trajectories belonging to the same set have the same
period of oscillation. The oscillation period of the trajectories in Ω2 is equal to the sum of
the periods in Ω1 and Ω′

1. Obviously, a trajectory enclosing more equilibrium points has a
larger range of oscillation and a longer period.
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Figure 9. The complex trajectories of the nitrogen atom in the states n = 0, 1, 2, 3 (a–d) with parameters B = 5 and
C = 3000. The tunneling trajectory Ω5, which encloses both left and right equilibrium points, appears in the n = 3 state.

In Figure 9c, the trajectory in the set Ω3 encloses three equilibrium points and travels a
large range between Re(z) = 0.76 to 3.78. However, it does not pass through the symmetric
plane Re(z) = 0 from one side to the other. The tunneling trajectory, which encloses the
equilibrium points on both sides of the symmetric plane, is found in the n = 3 state. The
trajectory set Ω5 in Figure 9d displays this kind of tunneling trajectory, which encircles five
equilibrium points at zeq = 0,±1.71 and ±2.635. The nitrogen atom in this state repeatedly
travels between Re(z) = −3.298 (x = −0.56Å) and Re(z) = 3.145 (x = 0.534Å) with the
frequency ν = 6.856× 1012 Hz.

There exist discrepancies of the tunneling range and tunneling frequency between
our computation results and the experimental data, which are 0.38Å and 2.3786× 1010 Hz,
respectively. These discrepancies are as expected, because the tunneling motion we con-
sidered so far occurs in the stationary state Ψ+

n (z), but the actual tunneling motion in
ammonia occurs in a transition state between Ψ+

n (z) and Ψ−n (z). In the next section, we will
consider tunneling motion in the transition state in order to reveal a trajectory description
of ammonia’s tunneling dynamics that is closer to the experimental results.

6. Tunneling Dynamics in Two-Level Transition States

The oscillation of the nitrogen atom between two sides of the symmetric plane
is called the two-level energy state transition, or tunneling in general. The ammonia
inversion state has an energy level of W−0 = −1876.2959 cm−1 which is higher than
that of the ammonia state W+

0 = −1877.1078 cm−1 with an energy difference equal to
∆W0 = 0.8119 cm−1 = 1.0075× 10−4 eV. To analyze the nitrogen atom in the two-level
energy state, we consider the following time-dependent wave function [68],
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Φ(z, τ) =
1√
2

eiE0τ

[(
cos
(

Aτ

2

)
+ sin

(
Aτ

2

))
Ψ+

0 (z)−
(

cos
(

Aτ

2

)
− sin

(
Aτ

2

))
Ψ−0 (z)

]
(57)

where Ψ+
0 (z) represents the ammonia state and Ψ−0 (z) represents the ammonia inversion

state. The two parameters E0 and A in (57) are defined as E0 =
(
W−0 + W+

0
)
/2 and

A =
(
W−0 −W+

0
)
/2 so that the split energy levels in the ground state can be expressed as

W+
0 = E0 − A and W−0 = E0 + A. According to (9), the equation of motion for the nitrogen

atom in the transition state reads

dz
dτ

=
1
i

d ln Φ(z, τ)

dz
(58)

By solving (58), we can find the nitrogen atom’s tunneling trajectory. The initial value
of the time-dependent wave function Φ(z, τ) is

Φ(z, 0) =
1√
2

(
Ψ+

0 (z)−Ψ−0 (z)
)
=

1√
2
(2ψ0(−z− k)) (59)

where we note Ψ±0 (z) = 1√
2
[ψ0(z− k)± ψ0(−z− k)] from (29) and (30). As Ψ+

0 (z) has
even symmetry, (59) can be expressed as

Φ(z, 0) =
1√
2
[ψ0(z− k) + ψ0(−z− k)] = Ψ+

0 (z) (60)

Since the initial state is the ammonia state Ψ+
0 (z), the solution solved from (58) will show

the tunneling process from the ammonia state Ψ+
0 (z) to the ammonia inversion state Ψ−0 (z).

In the two-level transition state, the total potential VTotal(z, τ) is not stationary but
varies with time due to the time-dependent quantum potential Q(z, τ):

VTotal(z, τ) = Vs(z) + Q(z, τ) = Vs(z)−
d2 ln Φ(z, τ)

dz2 (61)

Figure 10a,b illustrates how the total potential and quantum potential alter their
shapes with time. As time proceeds, we can observe that the potential hill at Re(z) = 0
becomes the well around τ = 3000. The nitrogen atom can pass through the region where
the potential hill becomes the well. In other words, the quantum potential produces some
channels in a specific time, allowing the nitrogen atom to transit from one side of the
symmetric plane to the other side as shown in Figure 10b.

Figure 11 displays the time response of the nitrogen atom’s position Re(z). The figure
shows six trajectories starting from different initial positions, which are represented by
six different colors. These different trajectories eventually coincide together, showing the
same amplitude and the same period of oscillation. It can be observed that the nitrogen
atom oscillates between Re(z) = −1.775

(
0.30175Å

)
and Re(z) = 1.73

(
0.294Å

)
with a

fixed period of oscillation. According to the computation data, the time interval between
each apex transition is ∆τ = 1814 and a complete period is T = 2∆τ = 3628. When
converted to an actual time unit, the tunneling period is found to be 4.106× 10−11 s and the
corresponding tunneling frequency is 24.35 GHz, which is close to the measured frequency
23.8 GHz, as compared in Table 2. The theoretical frequency listed in Table 2 is calculated
from the formula ∆W0 = W−0 −W+

0 = hν, which yields ν = 24.35 GHz, the same as that
computed from the tunneling dynamics.

The measured tunneling range is 0.38 Å, however our computation shows that the
tunneling ranges on both sides of the symmetrical plane are not equal. As shown in
Figure 11, the tunneling range in the ammonia state is Re(z) = −1.775

(
x = −0.30175 Å

)
,

while that in the ammonia inversion state is Re(z) = 1.73
(

x = 0.294 Å
)

. This result is
consistent with the fact that the energy level of the ammonia inversion state is slightly
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higher than that of the ammonia state. This energy-level difference causes the total potential
VTotal(z) on the right side of the symmetric plane to be higher than that of the left-hand
side. Therefore, the nitrogen atom encounters a higher potential barrier on the right side of
the total potential so that its tunneling length is reduced slightly.
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Figure 11. The tunneling trajectories launched from different initial positions. The apex of the am-
monia state and the ammonia inversion state are, respectively, at Re(ݖ) = −1.775 and Re(ݖ) =1.73. The time interval between each apex transition is ∆߬ = 1814, corresponding to the actual time 
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Figure 10. (a) The time evolution of the total potential VTotal shows that around τ = 3000 and τ = 6000 the gap created by
the reduction of the potential barrier (marked by the red arrows) forms a tunneling channel, allowing the nitrogen atom
to pass through the potential barrier to the other side. (b) The change of the quantum potential Q over time controls the
formation of tunneling channels.
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Figure 11. The tunneling trajectories launched from different initial positions. The apex of the ammonia state and the
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transition is ∆τ = 1814, corresponding to the actual time interval ∆t = 2.0529× 10−11 s. A complete tunneling period is
∆τ = 3628, and the tunneling frequency is 24.35 GHz.
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Observing the six trajectories in Figure 11, we can see that the black trajectory enters
the tunneling process first, and the pink trajectory last. In other words, when the nitrogen
atom starts from a different initial position, the time at which it can cross the symmetry
plane of the ammonia molecule is also different, that is, the time at which the tunneling
mechanism is triggered is different. The trigger point of the tunneling mechanism is
determined by the time when the tunneling channel appears in the total potential. It can
be seen from Figure 10 that the time when the tunneling channel first appeared in the
total potential is about τ = 3000. Therefore, the nitrogen atom must wait on one side of
the symmetric plane until the tunneling channel appears at time τ = 3000 before passing
through the plane to the other side. However, the shape of the total potential in Figure 10
is only applicable to the nitrogen atom starting from a certain point. If starting from a
different point, the nitrogen atom will face different shapes of total potential, thus the time
at which the tunneling channel will appear also changes.

Table 2. Comparisons of the experimental data with the theoretical and computation results of the
two-level energy state.

Comparison Tunneling Range Energy Splitting Tunneling Frequency

Experimental data 0.38 Å 9.8× 10−5 eV 23.8 GHz

Theoretical results - 10.0725× 10−5 eV 24.35 GHz

Computation results 0.3017 Å 10.0725× 10−5 eV 24.35 GHz

The actual tunneling motion occurs in the complex plane, however the physical
measurement can only achieve its projection on the real axis. Figure 12 shows two tunneling
trajectories in the complex plane, which are obtained by solving (58) with two initial
positions z(0) = 2 + 0i and z(0) = 2− i. It is noteworthy that the nitrogen atoms have
different trajectories even there real part of the initial positions are the same. An interesting
phenomenon occurs when the initial position is closer to the real axis, as the area where
the tunneling trajectory occurs will be farther away from the real axis, as illustrated in
Figure 12a. Although tunneling trajectories in the complex plane undergo various irregular
changes due to their uncertain initial positions, once they are projected onto the real axis,
they all overlap onto the same trajectory (as shown in Figures 11 and 12b). This result
explains why our measurements of ammonia molecules always achieve consistency.

From the above analysis, we realize that the tunneling motion of the nitrogen atom
in ammonia is carried out through the tunneling channel of the total potential. In order
to know the changes in the tunneling channel during the entire tunneling process, we
illustrate the distribution of the total potential on the complex plane at several different
moments in a series of subgraphs in Figure 13. In this figure, the height of the total potential
is indicated by color so that the potential from high to low is sequentially marked by red,
green, and blue, as labelled by the attached color wheel. In each subgraph, there are three
vertical lines connected by many green and blue spots. The position of these three lines
represents the place where the total potential is lower, and it is also the place where the
nitrogen atom is more likely to appear. The vertical lines on the left and right sides are
fixed and represent the equilibrium positions of the nitrogen atom on the two sides of the
symmetry plane. The vertical line in the middle moves with time, which is what we call
the tunneling channel. The blue spots on the tunneling channel are the places where the
total potential is the lowest. The nitrogen atom rides on these blue spots and moves along
with the tunneling channel.
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Figure 12. The tunneling motion in the complex plane with initial positions z(0) = 2 + 0i (solid
red line) and z(0) = 2− i (dash blue line). (a) The trajectory with the initial position z(0) = 2 + 0i
starts to tunnel around Im(z) = 24, while the trajectory with the initial position z(0) = 2− i has
a tunneling trajectory that is more close to the real z−axis. (b) As viewed along the real axis, both
trajectories start the tunneling process at the same time and have the same tunneling period.

As can be seen from Figure 13, the central tunneling channel is stationary in the time
interval 0 ≤ τ ≤ 4000. This is the waiting time required to trigger the tunneling mechanism,
as mentioned in Figure 11. After τ = 4000, the channel starts to move to the left-hand
side, and reach the left equilibrium point Re

(
zeq
)
= −1.775 at τ = 4535. After that, the

central tunneling channel moves back to the right-hand side of the symmetric plane and
meets the right equilibrium point Re(z) = 1.73 in the ammonia inversion state at τ = 6349.
Accordingly, the central tunneling channel moves periodically between the two sides of the
equilibrium points, which means that the nitrogen atom oscillates between the two sides of
the apexes, tunneling from ammonia to ammonia inversion.
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Figure 13. Snapshots of the total potential over the complex plane at several moments. The height of the total potential is 
labelled by different colors as indicated by the color wheel. The central tunneling channel is stationary in the time interval 0 ≤ ߬ ≤ 4000 (as (a,b) show). After ߬ = 4000, the channel starts to move to the left-hand side (the black arrows in (c,d) 
show the moving direction), and reaches the pyramid apex (the ammonia state) at ߬ = 4535 as (e) shows. Then the central 
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half cycle of the ammonia and ammonia inversion transition. After ߬ = 6349, the tunneling channel moves to the left-
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0 ≤ τ ≤ 4000 (as (a,b) show). After τ = 4000, the channel starts to move to the left-hand side (the black arrows in (c,d) show
the moving direction), and reaches the pyramid apex (the ammonia state) at τ = 4535 as (e) shows. Then the central
tunneling channel changes direction (see the red arrows in (e)) and moves back to the right-hand side of the symmetric
plane (refers to (f,g)), meeting the inverted pyramid apex (the ammonia inversion state) at τ = 6349 as shown in (h). Then it
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same process as shown in (f,g). The tunneling channel varies periodically between the two states with associated tunneling
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channel and moves along with it.

7. Conclusions

Quantum Hamilton mechanics provides a remarkable deterministic way to explore
tunneling dynamics in ammonia. The magic phenomenon that a nitrogen atom with
insufficient kinetic energy can pass through the potential barrier in ammonia now becomes
understandable by tracing the trajectory of the nitrogen atom. We found that the quantum
potential plays the most important role in tunneling dynamics by creating a tunneling
channel in the complex plane for the nitrogen atom to pass through. The tunneling
phenomenon as traditionally described in the language of probability can now be described
in more detail through the motion of the nitrogen atom in a complex plane.

Complex tunneling trajectories in both the stationary states and the two-level tran-
sition state in the double-well potential have been studied here. Tunneling dynamics
in stationary states have an analytical expression and help us to describe the tunneling
phenomenon concisely. However, the computed tunneling frequency and tunneling range
in the stationary states have a significant deviation from the experimental data. Compared
to the stationary states, the two-level transition state provides a more accurate description
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of the tunneling process, if the double-well potential is used. In the two-level state, we find
that a tunneling channel that moves with time in the complex plane appears in the total
potential. It is through this moving channel that the nitrogen atom travels back and forth
between the ammonia state and the ammonia inversion state. The tunneling frequency,
24.35 GHz, computed from the complex trajectory of the nitrogen atom, is close to the
measured frequency of 23.8 GHz.

As to the tunneling range, the measured value is 0.38 Å, however our analysis shows
that the tunneling ranges on the two states should be different. The reason is that the
potential barrier in the ammonia inversion state is slightly higher than that in the ammonia
state and thus it is harder for the nitrogen atom to penetrate. Accordingly, the tunneling
range in the ammonia inversion state is found to be 0.294 Å, which is slightly shorter than
that in the ammonia state, which is found to be 0.30175 Å. This asymmetric apex arises
from the experimental observed energy split of the ammonia state and its inversion state.
In this study, we analyze the transition between the two states in detail and propose a
theoretical result of the different tunneling ranges in the two states. Hopefully, this study
can provide some useful information for related experiments.
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