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ABSTRACT: Being able to predict molecular properties and |+>—ew-few-ew—

interactions is of utmost interest for academia as well as industry. [+>—em-ew-fen— — et

Exact energy

But the vast complexity of strongly correlated molecular systems limits ~[+>—<> e e oo
the performance of classical algorithms. In contrast, quantum +
computation has the potential to be a game changer in the field of

molecular simulations. Despite the hope in quantum computation, the 10> -@HE—+—@-
capabilities of current quantum computers are still insufficient for ¥> — "
handling molecular systems of interest. In this paper, we propose a =

variational ansatz for today’s noisy quantum computers to calculate the

ground state with the help of imaginary time evolution. Although the imaginary time evolution operator is not unitary, it can be
implemented on a quantum computer by a linear decomposition and subsequent Taylor series expansion. This has the advantage
that only a set of shallow circuits needs to be computed on a quantum computer. The parallel nature of this algorithm can be

Energy (Ha)

N

exploited to speed-up simulations even further, if a privileged access to quantum computers is granted.

Bl INTRODUCTION

When developing novel drugs, a detailed understanding of the
active ingredient and the target is a must. To elucidate the
mechanisms at work an interplay of demanding theoretical and
experimental techniques is key. In spite of all that, brute-force
high-throughput screening (HTS) is still the most prevalent
technique for finding the next hit compounds. Just recently,
computer-aided drug design is employed to increase the
efficiency of HTS.'™" By preselecting promising candidates,
the number of compounds necessary to screen is reduced. But
theoretical simulations are often limited by the exorbitant high
computational costs, in particular when strong electron
correlation and/or multireference systems come into play.
Accordingly, severe approximations are an absolute necessity
even so they might falsify the results.” Nevertheless, the benefit
of computational methods for drug discovery is immense.
Instead of costly experiments, the interaction between novel
compounds and a target protein can be simulated in-silico.**
Here, quantum computation will have a disruptive force.” Fully
error-corrected quantum computers come along with the
promise of an exponential speed-up when simulating large
molecular systems.'® This would be a game-changer in the field
of drug discovery. However, today’s quantum hardware is not
mature enough to directly run ground state calculations as for
instance with the quantum phase estimation algorithm.'’~"*
Not only is a much higher qubit-count needed for these, but also
sophisticated error-correction is necessary when running deep
quantum circuits.'>"*

Therefore, a different approach is needed for the currently
available imperfect quantum hardware. A common way to
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mitigate noise is with hybrid algorithms'® consisting of
parametrized quantum circuits (PQCs). The overlap between
the PQC and the state of interest is assessed by a cost function,
where some (or all) of the terms of the cost function are
calculated on a quantum computer. The rotational angles are
then updated according to a classical optimization routine. The
advantage is that hybrid algorithms are shallow enough to run on
current quantum hardware. A very popular example is the
variational quantum eigensolver (VQE) for computing the
ground state of a Hamiltonian.'™"” But with increasing
complexity of the Hamiltonian/PQC, the classical optimization
of the PQC becomes more and more difficult. In particular the
required number of measurements/optimization iterations to
compensate the (exponentially) vanishing gradients might scale
exponentially with the circuit depth and qubit count.”*!
Imaginary time evolution (ITE) on the other hand is a very
powerful technique when calculating the ground state of large
systems.”””’ It has the advantage that it always converges to the
ground state as excited states are exponentially suppressed with
proceeding time.”* Furthermore, ITE is the key ingredient of
classical Quantum Monte Carlo (QMC) simulations, which
allow economic and memory saving calculations of large
molecules.””® The idea of ITE is to substitute the time ¢ with
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—it in the Schrodinger equation, where t and 7 are real
parameters. With the advent of quantum computing hardware,
many studies investigate how quantum com;)utation can be used
to make QMC calculations more efficient.””*® The fact that the
ITE operator ¢ ™ is not unitary (H is hermitian), and thus
cannot be implemented directly on a quantum computer, is an
obstacle. In literature this is addressed by three different
techniques to realize ITE on quantum hardware: variational ITE
(VITE),** probabilistic ITE (PITE),” and quantum ITE
(QITE).”

VITE is a hybrid algorithm, which is based on the
McLachlan’s variational principle. It benefits from quantum
computers when calculating expectation values. The main
ingredient of this approach is the following expression
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to progress ly(z)) toward the ground state. PITE on the other
hand tries to solve this in a probabilistic manner by applying
Grover's algorithm.”"> An ancilla qubit is used to apply the
imaginary time-evolution operator onto the input state. If the
measurement outcome of the ancilla qubit is 10), the state
collapses to the desired time-evolved state. Lastly, QITE uses the
fact that the Hamiltonian can be decomposed into partial
Hamiltonians h[m] and a new hermitian operator A[m] is
learned that minimizes the following term:

—Ath[m]
‘ | € ly;) T
n

B STATE PREPARATION AND IMAGINARY TIME
EVOLUTION

The approach discussed in this paper is based on similar ideas. In
contrast to PITE and QITE, our algorithm relies on a
parametrized circuit, similar to VQE, VITE, or matrix product
states.'*** VITE uses McLachlan’s variational principle to
compute the updated rotational angles directly without any
classical minimization procedure.”* The algorithm proposed
here utilizes classical optimization to find the next time evolved
state by maximizing the overlap between (y(0,.,,)le”ly(0,))
(for comparison purposes VQE minimizes the following
equation (y(®)Hly(®))'®). This ansatz is a mixture of VQE
and VITE: We compute the ground state by time-evolution, but
we still rely on classical optimization to find the next set of
rotational angles defining the time-evolved state. To make ¢™**
unitary we apply the Taylor approximation and measure the
terms for the classical cost function with the help of the well-
known Hadamard tests. We want to highlight that this algorithm
is very resource-effective. Each term consists of a short PQC
where only one qubit needs to be measured. The PQC for the
ansatz state can be chosen in an efficient way to reduce the
number of necessary Trotter steps to a minimum. First, a trivial
ansatz is used, neglecting any c-not gates required to build
entangled states (see Figure 1a). For this trivial ansatz, the state
vector at time # is built by a set of rotations by ©,;; around the

axis Opoi with P € [1; X Yy Z]:

y(®,) = [T ® e hult) = Ug+)
k

2
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The Hamiltonian describing our molecule (or optimization
problem) is mapped onto the qubit space via the Parity
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Figure 1. (a) Possible ansatz to build the molecular state. (b) Quantum
circuit of a Hadamard test with an optional S-gate for extracting the
imaginary instead of the real part. (c) Circuit which is executed to
measure the real (without S-gate) or imaginary part (with S-gate) for
the Pauli string P; in eq 9.
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Hamiltonian operator is simplified by a linear decomposition.

or Bravyi—
transformation. A key ingredient is that the

In the case of this work, a finite linear combination of Pauli
operators was chosen: H = Y NP, with P, = ®,,0,,, and p;,, €
[1, %, y, z]. Accordingly the time evolution operator becomes

N
e ™ = ¢ 2 %P Here, we want to state again, this operator is

nonunitary. We address this by applying a Taylor series
expansion:

Nrgin=%  ( Sk
N N
6—72[ B _ v [ J e_Tz, “fl’x]
7=0

E or* (4)

k=0
which, when considering the first order Nz, = 1, reduces to
. N
Tl (l[Px] =1—-1 Z aP
=0 i
(5)

In contrast to the nonunitary exponential time-evolution

Nrgyor=1 k
AL (9
k! dfk

k=0

operator, this truncated Taylor expanded version is not only
unitary but also trivial to implement on gate-based quantum
computers.

The path of the time evolution is treated as a maximization
problem. In the case of a first order Taylor polynomial, the
rotational angles ®,,, for the point in time n + 1 are found by
maximizing the following term:

2

@1 - X ar)w©)

(6)

where |©,) is considered as “the correct state” at time point 1. As
a consequence, its rotational angles ®, are not part of the
optimization routine. Only the rotational angles ®,,; are varied
when maximizing term 6. Subsequently, when computing
W(0,.,)), y(©,,,)) will be the next “correct” state. In other
words, this algorithm performs an incremental time evolution,
where the rotational angles of the previous state are kept fixed
while the angles of the successor are computed. The linear
structure of the Taylor expansion allows us to write term 6 as
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Figure 2. (a) First order Taylor expansion imaginary time evolution of LiH for different 7 values. (b) Time evolution of LiH for two different Taylor

expansion orders with 7 = 1 (compare to eq 4).
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B IMPLEMENTATION ON A QUANTUM COMPUTER

In our hybrid setup each term of eq 7 will be calculated
separately by performing Hadamard tests, to extract the real and
imaginary parts of (y(©,)IUw(©,)) = (ay,, + i X by,). ay,
and by, are real numbers. Important for the application on
current noisy quantum hardware, the Hadamard test requires
just one additional ancilla qubit, and only the ancilla qubit needs
to be measured (see also Figure lc). To implement the
Hadamard test, the PQC to create the state must be embedded
into Uby Uy, = UIJXP,-U@), (please keep in mind, the product of
two unitary matrices results in a unitary matrix). When working
with the truncated first order Taylor expansion, the following
real and imaginary values from the Hadamard test are required:
(+IUE)MU®“|+) and (+IUE)MP,U®nI+), for every Pauli operator P,
in H = Y NaP,. Afterward, the entire cost function is pieced
together on a classical computer, demonstrating the parallel
nature of this ansatz (the same argument holds for VQE'):

w@(1-r Y a,-l’,-)h//@n»\z

2
N
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N
-7 Z [ai(al,n,n+l + ibl,n,n-{—l)(al’”n#—l,n + ibl",n-f—l,n)]

i

-7 2 [ai(al,nJrl,n + ibl,n+l,n)(u1’l%,n,n+l + ibP[T,n,n+1)]
i
NN
2 ) . .
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ij
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As (+lU§ _PUg I+) is the complex conjugate of (+l
UTQV,PITU®,M|+> Wlth bP,,n+l,n =
8 can be simplified to

_bP,,n,n+1 and ap,utin = P} nns €9

@1 2 ap o]

2
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2 B .
+7 Z [(li{l)(a}{,n,n+l - lb}’,,n,n+l)(u}’],n+l,n + le/,n+l,n)]

(9)

Now the classical optimizer maximizes the real part of eq 9.
Additionally, it enforces that the linear decomposition of
(0, )I(1 — zXNaP,)ly(0,))* has no imaginary compo-
nent. The advantage of this technique, by choosing a reasonable
small 7, is that the difference between ®, and ©,,, can be

controlled.

B RESULTS AND DISCUSSION

Figure 2a shows the imaginary time evolution for LiH at a
distance of 0.8 A. A highly trivial ansatz circuit has been used
with six x/y/z rotations per qubit. A parity mapper was used for
the Fermion-to-qubit conversion, and the basis set is STO-3G
leading to 10 qubits. The optimization is based on the COBYLA
algorithm with 1000 iterations. Further details are specified in
the Methods section. A smaller 7 directly results in a slower
progression toward the ground state, but fewer optimization
iterations are needed to find the next set of rotational angles
(Figure 2a). We have evaluated the average absolute difference
of the rotational angles for the first 20 time steps. It increases
from 0.009 to 0.019 and reaches 0.023 for t=0.01,7=0.1,and 7
= 1, respectively. So there is a trade-off which can be fine-tuned
depending on the molecule of interest.
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Figure 3. Imaginary time-evolution trajectories (c) are computed for two different PQCs with entanglements (a) and (b). (d) ITE of circuit (b) with N
= 10 for three different 7. Mean-Field corresponds to the PQC shown in Figure 1a with 6 layers. (e) Influence of a higher Taylor order for circuit (b)

with N = 10.

On the other hand, we find that the progression toward the
ground state increases when taking higher orders of the Taylor
expansion into account (see eq 4). The faster convergence can
be seen in Figure 2b. The number of Pauli operators to compute
grows exponentially with the Taylor order, e.g,, for LiH 398793
elements (second order) instead of 632 elements (first order).
The complexity of each quantum circuits stays the same. The
higher number of Pauli gates per quantum circuit (in the case of
second order expansion: P; X P; instead of P;), can be simplified
with the product rule for Pauli operators: c,6; = ;1 +
1D ke €3O

Parameterized Quantum Circuits with Entanglement.
So far we did not consider any gates within the PQC which
would lead to entanglement. To study ITE beyond the mean-
field ansatz,®” additional c-not gates are added. Figure 3ab
shows two possible circuits which have been used to compute
the ground state with the help of ITE. In all three cases the
quality of the solution is improved as the ITE converges toward a
state with lower energy (see Figure 3c), and in the case of the
PQC shown in Figure 3b even fewer time-steps are necessary.
Similar to the computation shown in Figure 2a, a smaller 7 leads
to a slower progression toward the ground state (Figure 3d). We
would expect that computations with smaller 7 are more resilient
with respect to errors. Considering a higher Taylor order, on the
other hand, leads to a faster progression toward the ground state
(Figure 3e).

When directly maximizing the overlap between parametrized
circuit and the ground state (I{w(®)lygs)l?), a fidelity of
0.99973 is reached for the 10-layer circuit shown in Figure 3b.
The corresponding energy of —7.63338 Ha is close to —7.63417

Ha, the energy of the ground state. Without entanglement the
lowest energy state computed is located at —7.61577 Ha with a
fidelity of 0.98162 (six layers of the PQC from Figure 1a). This
shows that the additional gates to create entanglement in the
PQC of Figure 3 improve the quality of the ground state
computation. The price for the improved precision is a more
complex quantum-circuit. By using the Hadamard test to
compute the real and imaginary parts of the cost function, each
c-not gate is implemented as a three-qubit gate (see Figure 1c).

Experimental Results. Finally, we have used the IBM-Q
network to run our algorithm on a real quantum computer.
Because of the limited computational resources we are restricted
to focus on molecular hydrogen at the chemically less favorable
distance of 0.074 A. As for LiH, the Hamiltionian (STO-3G) is
built with the help of IBM’s Qiskit.”® A parity mapper is used for
the Fermion-to-qubit transformation, and the electronic
structure of H, is described with two qubits (see Methods
section for more details). We want to highlight that our PQC to
describe the ground state consists of only one set of %, y, z
rotation for each qubit. As a benchmark we have used the same
ansatz circuit for the variational eigensolver package of IBM’s
Qiskit.*® This allowed us to test the feasibility of our algorithm.

The experimental results are summarized in Figure 4, which
shows the energy as a function of time-evolution/calculation
steps. Interestingly, we note that, in simulation as well as on the
actual hardware, a step decrease of the energy of the time-
evolved hydrogen molecule is observed. Because of the limited
access to quantum hardware, we want to stress that these
experiments might not be representative. Nevertheless, they are
in good agreement with simulations. Therefore, we believe ITE’s

https://doi.org/10.1021/acsomega.3c01060
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Figure 4. Ground state calculation of H, via simulation and on an IBM-
Q quantum computer.

exponential suppression of excited states is of advantage when
calculating ground state energies. But, in contrast to VQE, our
algorithm is based on the Hadamard test and requires controlled
unitary operations: In this case, not only the Hamiltonian but
also of the parametrized ansatz circuit. In return, only one qubit
needs to be measured. But the controlled operations (i.e., c-not
gates) are still difficult to implement on NISQ quantum
computers. In agreement with literature,”” we also notice that
the error rate increases with the total number of c-not operations
per quantum circuit. We have addressed this by using
mapomatic to find the best low noise subgraph on the target
quantum systems for a certain quantum circuit.*” This has
strongly improved the results, as no convergence was detected
without prior circuit mapping,

According to the Qiskit log file, the total computational time
on a quantum computer (mostly IBMQ Mumbai) was roughly
60 h, not counting the classical calculations, which are in
comparison negligible. However, the ground state was reached
already after 6 time-evolution steps, corresponding to 7 h of
measurements on a quantum computer. The computational
time can be reduced further by choosing a lower sample count,
which is with 10000 or even 20000 much too high.

B CONCLUSION

To summarize, we have shown how ITE can be conducted with
the help of a Taylor expansion series and a Hadamard test. For
this hybrid algorithm, the quantum computer is used as a
coprocessor. Time evolution is conducted in an iterative manner
and the decomposition of the Hamiltonian allows us to calculate
each term individually. But the number of terms of the cost
function increases quickly with the size of the molecule. While
the decomposed Hamiltonian of H, consists of S elements, LiH
already has ~600, O, of roughly 15000, and O; more than
30000. When working with the expectation values, it has been
shown that, by grouping the Pauli strings efficiently, the number
of operators can be reduced heavily.*' In the case of LiH from
roughly 600 down to 130. Additionally, there are ideas how to
rate the importance of the Pauli strings with respect to the
gradient of the cost function: Terms with little importance are
either dropped*” or merged.”” In the future, causal cones might
help to reduce the qubit count of our PQC,*** so that only a
fraction of the circuit describing the molecular state needs to be
computed. The remaining qubits can be used to implement error

mitigation techniques, e.g., symmetry verification, to increase
the robustness of this algorithm.46

B METHODS

The calculations are implemented with the help of IBM’s Qiskit
0.21.0.*® Their parity mapper is used for the Fermion-to-qubit
transformation, and the Hamiltonian is expressed as a sum of
Pauli-strings H = Y ~a,P; (again by using Qiskit). The used basis
set is STO-3G"” for LiH as well as H,. For the results presented
in this work, we have computed the real and imaginary parts of
(+/U§,_ PUg |+) to build the cost function as shown in eq 9. For

w1 1

the sake of performance, a state vector ansatz was used for
Figures 2 and 3 to compute the real and imaginary components
of the cost function. Figure 4, on the other hand, was computed
on an actual quantum computer, and only the Hadamard test, as
sketched in Figure Ic, was executed to extract the real and
imaginary values. Here, the quantum-circuit has been optimized
for the actual quantum device by using mapomatic to find the
best low noise subgraph on the target quantum system.*’ The
used quantum-computer was mostly IBMQ Mumbai with 27
qubits in total. The optimization was done by using the
constrained optimization by linear approximation algorithm***’
as implemented in SciPy”” with 1000 (Figure 2), 4000 (Figure
3), and 100 (Figure 4) iterations, respectively. Classically, the
ground state was computed by using Numpy as a benchmark.>!
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