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The quantity and complexity of environmental data show exponential growth in recent years. High-quality big
data analysis is critical for performing a sophisticated characterization of the complex network of environmental
pollution. Machine learning (ML) has been employed as a powerful tool for decoupling the complexities of
environmental big data based on its remarkable fitting ability. Yet, due to the knowledge gap across different
subjects, ML concepts and algorithms have not been well-popularized among researchers in environmental sus-
tainability. In this context, we introduce a new research paradigm—*“ChatGPT + ML + Environment”, providing
an unprecedented chance for environmental researchers to reduce the difficulty of using ML models. For instance,
each step involved in applying ML models to environmental sustainability, including data preparation, model
selection and construction, model training and evaluation, and hyper-parameter optimization, can be easily
performed with guidance from ChatGPT. We also discuss the challenges and limitations of using this research
paradigm in the field of environmental sustainability. Furthermore, we highlight the importance of “secondary

training” for future application of “ChatGPT + ML + Environment”.

1. Introduction

An environmental issue usually involves multiple substances, factors,
and processes, leading to the generation of environmental big data
generally characterized by rich sets of input features, e.g., the data of
real-time monitoring [1,2], human activities [3-6], meteorological pa-
rameters [7-10], emission inventories [11-14], chemical composition
[15,16], environmental transportation [17,18], and pollution exposure
[19,20]. In addition to numbers, the input formats of environmental data
also include texts, graphs, and images [21]. Hence, environmental big
data analysis requires more advanced approaches and powerful tools. In
recent years, machine learning (ML), an emerging data mining tool for
addressing the multi-dimensional/variety data [22], has triggered a
revolutionary development in the field of environmental science [8,21,
23-28]. ML is defined as “developing a model based on a set of example
data, known as ‘training data’, to generate predictions or decisions
without the need for explicit programming” [29]. ML algorithms show an
excellent capacity for handling data with various input features and

formats, outperforming traditional statistical tools that are often limited
to data showing linear relationships with the outcomes [30-32]. It is
worth noting that the dataset to be processed can be directly packaged
and input into an ML model without prior knowledge of relevant fea-
tures, and their patterns or trends can be identified or predicted.

In recent years, several reviews have summarized the current state of
ML applications in environmental research. In 2021, Zhong et al. re-
ported the working principles of ML algorithms and presented their
specific applications in environmental pollution research, including
predicting the pollution trends of atmospheric fine particulate matter
(PM35), predicting the future water availability, data processing from
different water facilities, predicting sludge bulking in wastewater treat-
ment plants, and identifying the Endocrine Disrupting Chemicals (EDCs)
[21]. In 2022, Liu et al. summarized the new gains in using ML algo-
rithms to study environmental issues, and highlighted their applications
in estimating the health outcome of exposure [22]. Furthermore, they
illustrated the importance of balancing the performance and interpret-
ability of ML models in environmental research. Since 2022, the
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environmental scenarios of applying ML algorithms have been further
expanded. For instance, ML algorithms have been widely used for
improving the efficiency of environmental monitoring and policy-making
[27], accounting carbon budget [33,34], decoupling the meteorological
impact on air pollution [9,35], screening the new pollutants from a
tremendous number of chemicals [36], predicting the health benefits
through reducing pollution [37-42], identifying the impactors affecting
the food chain or ecosystem [43,44], etc. Example ML algorithms used in
environmental research include recurrent neural network (RNN) [45],
convolutional neural network (CNN) [46], decision tree [47], support
vector machine (SVM) [48,49], random forest (RF) [8,10], and artifi-
cial/deep neural network [22]. Most of these ML models used in envi-
ronmental research are well-developed, and their concepts, principles,
and example codes are publicly shared. Despite that, environmental re-
searchers with less experience in Al techniques still face challenges in
appropriate applications of ML algorithms, e.g., misuse of
cross-validation to the entire data set [21], or confusion between the
validation set and test set [50]. Hence, they usually seek collaborations
with researchers in the field of computing, ensuring a correct application
of ML algorithms. Yet, some critical parameters for proper ML applica-
tion, e.g., feature description and hyper-parameter tuning, should be
drawn upon domain expertise, rather than only Al techniques [21].

ChatGPT, as a state-of-the-art version of the dialogue-based model, was
launched in November 2022 and will probably simplify ML usage in
environmental research [51]. Specifically, ChatGPT has been trained on a
large corpus of billions of text data, and is embedded with human feedback
reinforcement learning and manually supervised fine-tuning [52-55]. This
enables it to naturally understand and generate the text like a human [56].
Moreover, the human-like text ability makes it an indispensable tool for
handling a variety of language-based tasks, e.g., providing exampled codes
of ML models and connecting up-/down-stream sections in the full-chain
study mentioned above. Thus, for environmental researchers with less
knowledge of ML algorithms, ChatGPT might reduce the threshold of using
ML for environmental big data analysis.
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Here, we present a novel research paradigm—“ChatGPT + ML +
Environment” and highlight its potential in popularizing ML in the field of
environmental science. We also discuss the challenges and limitations
remaining in this technique. Considering the current version of ChatGPT-
3.5 is mainly performed based on a general database, we give our per-
spectives on its performance improvement by “secondary training” with
some professional databases. Furthermore, we also discuss the possibility
of coupling ChatGPT with other Al techniques, e.g., intelligent robots and
console algorithms. This training provides a chance for generating an
integration solution in the full-chain study of environmental sustainability.

2. A new paradigm of “ChatGPT + ML + Environment”

The workflow of ML models used in environmental research can
generally be decomposed into data preparation, model selection and
construction, model training and evaluation, hyper-parameter optimi-
zation, and output [57]. Note: hyper-parameter optimization means
improving the performance and accuracy of the model by adjusting the
hyper-parameters (parameters that cannot be learned by the model itself
and require to be manually set) in the algorithm [57]. As shown in Fig. 1
and Supplementary discussion, the specific concepts, common errors,
features, and example codes of solutions can be obtained by consulting
ChatGPT. Therefore, the paradigm of “ChatGPT + ML + Environment” is
a promising tool that provides an unprecedented chance for inexperi-
enced environmental researchers to address complex data analysis.

2.1. Data preparation

The raw data of environmental analysis and monitoring usually
contain a large amount of “noise” and irrelevant information, as well as
incorrect, missing, or duplicate results. Moreover, some types of envi-
ronmental data cannot be read by the ML model. Although some data can
be directly inputted into the model, their uneven distribution also leads
to unstable model training and slow model convergence. Therefore, to
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Fig. 1. Schematic overview of “ChatGPT + ML + Environment”. The workflow of using ML in environmental research can be roughly decomposed into data
preparation, model design, and model evaluation. The dialog boxes show examples of how ChatGPT makes ML algorithms to be easy used in environmental research.
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ensure the smooth running of ML models in environmental research, the
first step is to perform data preparation of environmental big data by
using some algorithms, e.g., Python's Pandas library and Scikit-Learn li-
brary [57]. Specifically, we can inquire with ChatGPT about the data
preparation methods and their functions, and choose an appropriate one
according to the specific formats and features of raw data (Fig. 1).
Alternatively, we can also enter ChatGPT with our available data storage
formats, and then guide it to provide appropriate data preparation
methods (Fig. 1). Furthermore, ChatGPT can also generate the code ex-
amples for operating data preparation.

To further test the reliability of this method, we performed an
example procedure of data preparation in air quality index (AQI) pre-
diction [58]. Specifically, we inputted “My data is a csv file, the columns
are ‘date, PM, 5, PM;(, SO5, CO, NO,, O3, AQI’, the date column does not
need to be entered into the model, the remaining columns may be
partially missing, how to read the file, perform data cleaning and divide it
into a training set and a validation set?” into the ChatGPT. As shown in
Supplementary discussion, ChatGPT directly provided annotated codes
and their description. However, ChatGPT seemed to ignore that “the date
column does not need to be entered into the model”. Then, a further
instruction, “I don't need the data in the date column” was entered into
the ChatGPT, which provided a complete set of code and explanation.
Hence, ChatGPT can help inexperienced environmental researchers
achieve data preparation of complex environmental data.

2.2. Model selection and construction

As aforementioned, ML models have been widely used for environ-
mental big data analysis, including classification, data fitting, clustering
analysis, association analysis, and anomaly detection [21]. Theoretically,
there are multiple ML models available that can be used to resolve the
same type of task in data analysis. Yet, the model capacity, training
speed, and functional focus of these ML models are different. Thus, a
sophisticated analysis of the fundamentals and functional differences of
the numerous models is essential for model selection. ChatGPT provides
an effective solution for selecting an appropriate ML model. Specifically,
we can learn about the patterns, basics and fundamentals, functional
focuses, advantages, and disadvantages of the intentional-required
models by inquiring with ChatGPT. It is worth noting that using
ChatGPT to select an ML model only requires a few short conversations,
saving considerable time compared with manual research and
investigation.

Considering that different ML models have their own frameworks, the
data to be processed should be optimized to achieve the requirements of
the selected ML's framework. For example, if a convolutional neural
network (CNN) is chosen to perform AQI prediction (Supplementary dis-
cussion), bootstrap instructions can be given to ChatGPT, such as “I want
to achieve AQI prediction through a one-dimensional convolutional neural
network based on the pytorch framework”. Then, ChatGPT would present
guidelines for converting the pending data into a readable format for Data
Loader. Moreover, a complete set of “sample code” for the selected model
construction can also be provided by ChatGPT (Supplementary discus-
sion). After a slight optimization, we can easily build the selected ML
model. Hyper-parameters selection, an important factor for proper model
building, directly affects the capacity, convergence speed, and perfor-
mance of the ML model. Particularly, some hyper-parameters (e.g., the
depth of trees in the RF model) are not fixed options, which should be set
with a comprehensive account of the number of input data features, data
volume, data distribution, and application scenario, etc [21]. Considering
that hyper-parameters selection is a dilemma that involves the knowledge
of Al and environmental science, inexperienced environmental researchers
can seek solutions with the support of ChatGPT. Although ChatGPT might
not provide optimum parameter settings, it can provide the detailed
meaning of each hyper-parameter and advanced methods (e.g., grid
search) for proper selection. Thus, ChatGPT can guide the ML model
building in the field of environmental science.
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To illustrate how to select the most appropriate ML mode, we per-
formed an exampled case of the Shannon index (a critical indicator for
measuring biodiversity) prediction with the parameters of nanoparticles
(e.g., type, shape, size, potential) and relevant environmental factors
(e.g., temperature, pH, soil depth). For instance, we performed an orig-
inal prediction with linear regression based on this ChatGPT-empowered
system. Then, “Can any other model be used to achieve this prediction?
Output the performance of each model and select the best one.” was
inputted into the ChatGPT-empowered system. As shown in Supple-
mentary discussion, the ChatGPT-empowered system provided the codes
of linear regression, random forest, and xgb tree models, and output the
name and RMSE (Root Mean Square Error) of the most suitable model.
Moreover, the ChatGPT-empowered system can provide codes of cross-
validation to evaluate the performance of these models. It can also
search the most suitable parameters on the internet automatically. For
the whole process, we merely provided the output and error message
from the last step for ChatGPT, which then generated the subsequent
codes of correction and implementation automatically.

2.3. Model training, performance, and hyper-parameter optimization

ChatGPT can further guide the training, performance evaluation, and
hyper-parameter optimization of the ML models used in environmental
research. For traditional ML models like RF and SVM, most of their codes
used for model training are with fixed structures [21,22]. The corre-
sponding statements and structures can usually be found by ChatGPT in
the database of code examples. For instance, the training procedure of the
RF model for air quality (AQI) prediction from emissions was smoothly
performed with guidance from ChatGPT (Supplementary discussion).
With regard to deep learning models, to reduce running problems (e.g.,
convergence difficulties and declining model generalization ability), the
parameters, including learning rate, optimizer, and learning rate decay,
are required to be set prior to training [22]. Taking an example of AQI
prediction by using CNN (Supplementary discussion), the parameters
including adam optimizer, learning rate (0.001), and mean squared error
loss were successfully set guided by ChatGPT. Moreover, to further
optimize the training process, the procedures of gradient descent and
backpropagation, and the codes for learning rate decay were also pro-
vided by ChatGPT.

Model performance is critical for ML applications, determining the
reliability of prediction [57]. Although there are many ways to evaluate
an ML model's performance, some evaluation parameters involve com-
puter terminology and are difficult to understand for environmental re-
searchers. ChatGPT can provide formulas, meanings, and examples of
application scenarios of the various evaluation parameters for users to
understand and select appropriate evaluation methods. Specifically, we
can obtain the “mean-squared error”, “root mean-squared error”, “mean
absolute error”, and “R-squared” of the models used in AQI predictions
via inquiring with ChatGPT (Fig. 1, Supplementary discussion). More
importantly, the implementation codes for model evaluation can be
accessed directly from the package provided by ChatGPT. Furthermore,
tuning hyper-parameters is usually required to further improve the model
performance. Similar to hyper-parameters selection (Section 2.2), we can
obtain specific tuning codes of the selected model, and find the optimum
hyper-parameters by ChatGPT.

The aforementioned applications mainly tend to directly use or make
slight modifications to the existing code structures. In these applications,
ChatGPT can provide clear and concise code examples, preventing us
from spending tremendous time studying the user manual of various ML
models. This is of extreme importance for those with less knowledge in
ML programming, as it can greatly reduce the interference and misdi-
rection caused by complex codes. Additionally, ChatGPT can provide
code interpretation and error-checking assistance, enabling us to quickly
grasp the logical framework of a code segment and apply it to environ-
mental studies. To facilitate understanding, the whole process of appli-
cation examples based on the paradigm of “ChatGPT + ML +
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Environment” has been successfully performed, as detailed in Supple-
mentary discussion.

3. Advancement and challenges

In addition to the aforementioned text data processing, the ChatGPT-
empowered system also shows advantages in processing complex data.
For instance, it can be used to predict the toxicology of chemicals based
on their physical-chemical properties dataset (see Supplementary dis-
cussion). The used dataset consists of 210 features, including a series of
specific chemical descriptors (e.g., molecular structure, chemical name,
source, and CAS number), a range of refined molecular properties (e.g.,
polar surface area, adsorption properties, the quantity, state, and size of
atoms and functional groups), and some important physicochemical
properties (e.g., solubility, lipophilicity, and surface area). Considering
that the dataset is a mixture of both useful and irrelevant information,
including numerical and character-based data, we initially used the
ChatGPT-3.5 to generate the code of a random forest model, yielding an
RMSE of 1.39. To address the possible limitations of ChatGPT-3.5 missing
some contextual information in complex datasets, we further performed
this prediction by using the ChatGPT4.0-empowered system. As shown in
Supplementary discussion, the RMSE is 0.67 with an R-squared (Rz) of
0.57, which demonstrates the potential of the ChatGPT-empowered
system in addressing complex ML tasks.

However, ChatGPT, one of the first human-like language models, still
faces challenges and limitations in environmental applications. For
instance, 1) honest use. Most of ChatGPT's output is difficult to distin-
guish from the text written by humans. Recently, ChatGPT was directly
listed as the author of several publications, which has triggered a wide-
spread discussion among the academic community [53-55]. Indeed, the
use of ChatGPT must strictly adhere to academic ethics and standards. To
popularize the applications of public-shared tools (i.e., ML) in the field of
environmental science, the details of ChatGPT usage should be clearly
disclosed in the publications. Furthermore, for better regulation, the
usage record can be documented accurately with the time stamp in
blockchain technique. 2) Model development. The training of ChatGPT is
still based on a large amount of existing data. Therefore, ChatGPT can
provide code examples for the well-developed ML models used in envi-
ronmental research but fails to develop new models. As shown in Sup-
plementary discussion, the ChatGPT-empowered system can perform
almost all ML tasks in environmental science. Yet, it is still a
probability-based Al model [51]. Its responses are the results of analyzing
a large amount of training data, lacking thought of the context and
background information. Therefore, it may not understand why we
perform these analyses, and hence the whole data processing strategy
should be designed by the researchers. Moreover, ChatGPT would be
unaware of the parameter errors existing in its generated codes, which
can only be found when the codes are actually executed. 3) Professional
database. The current ChatGPT database is limited to general data prior
to 2021 [51,53], lacking a professional dataset of environmental sus-
tainability. This may result in suboptimal performance in solving envi-
ronmental problems. Therefore, the ChatGPT-empowered plug-in can be
embedded into the professional system of environmental research to
promptly provide ML applications. Additionally, to obtain high-quality
big data analysis, some environmental data are encouraged to be open
to the public.

4. Discussion

Although ML is a powerful tool for addressing complex environ-
mental problems, it can be a challenging task for environmental scientists
without AI research backgrounds. Integrating ChatGPT can provide
effective solutions, including the concepts, principles and exampled
codes, for ML applications. For environmental researchers with no prior
knowledge, it can help them to perform ML analysis smoothly; for sci-
entists with some Al knowledge, this process will improve their efficiency
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by saving their time to edit the codes. Notably, almost all programming
tools or languages like Python and R can be used to build the ChatGPT-
based process. In addition to environmental science, this process will
extend ML application to other fields, e.g., industrial, biology, and
geochemistry. Furthermore, it is noted that other Generative Pre-trained
Transformer-based tools like Claude and Bard have similar effects as the
ChatGPT [51], reducing the threshold of environmental application of
ML. With the development of generative models and Al technologies, the
application of the “ChatGPT + ML + Environment” research paradigm
will be further expanded. For instance, the processed data will not be
limited to text, and graphic data might be understood and processed as
the ChatGPT evolves [53]. In the future, these techniques, used correctly
in accordance with academic ethics and usage guidelines, would provide
excitement for solving complex environmental problems:

1) Enhancing “secondary training” based on professional datasets. As
shown in Fig. 2, the first step involves choosing a certain type of envi-
ronmental case (e.g., environmental monitoring, source tracing, and
policy making) and introducing a specific professional dataset. Moreover,
a standard description file of the professional dataset, including dataset
format, data types, additional data description, number of data entries,
and dataset content description, should be set for the system of
“ChatGPT + ML + Environment”. This step will help ChatGPT to learn
about the overview of the dataset. Afterward, a “secondary training”
model, including the framework of data processing, the code for data
preparation, model construction, and performance evaluation, would be
built for the professional dataset. The detailed implementation proced-
ures are similar to that mentioned in Section 2. Through further training
or optimization, the “secondary training” model would show a capacity
to provide effective and quick solutions for such environmental prob-
lems, especially for some emergency events.

2) Developing big data processing strategies for full-chain environ-
mental study. An environmental event usually involves the coupling of
multiple substances, factors, and processes across various scales,
requiring a comprehensive research route covering “monitoring—source
tracing—environmental behavior and transformation—exposure and
risk assessment—policy making”. Each of them can generate different
datasets (Fig. 2). These datasets might have become “data islands” due to
a lack of proper data analysis techniques, hampering the proposal of a
systematic solution for real environmental problems [22]. Identifying the
connection factors and developing an intelligent data processing system
is critical for achieving full-chain environmental study. For instance, we
would first establish a dataset composed of connection factors (Fig. 2),
e.g., tracers, transformation reactions, biomarkers, and policy imple-
mentation date. The specific communication instructions for connecting
up-/down-stream sections would be well-trained by ChatGPT with its
human-like text ability [54]. In this way, the ML-based data processing in
a down-stream section can be operated automatically after receiving the
output from the up-stream section. Alternatively, they can provide
feedback of the output to the up-stream section, guiding its optimization.
Thus, the integration of ChatGPT and ML algorithms is a promising tool
for future full-chain environmental research.

3) Expanding the application mode of “ChatGPT +”. The integration
of ChatGPT and ML significantly improves the processing capacity of
environmental big data, promoting the rapid development of environ-
mental science. For instance, the current environmental monitoring
system is capable of continuously collecting real-time environmental
data and outputting brief reports [48,58]. Such operations are tasks
consisting of specific sequences of steps, where the execution of each task
is based on previously normalized instructions. However, these tasks
pose challenges in terms of generating predictions, making decision, and
developing smart feedback to optimize the next step of data collection. In
the future, the “ChatGPT + ML” mode can be further expanded by
combining with other intelligent techniques like intelligent robots and
control algorithms. Specifically, multiple environmental data collection
devices (e.g., intelligent robots, sensors, and analytical instruments) and
their carriers would be connected by the “ChatGPT + ML’ system
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Fig. 2. The conceptual mode of “ChatGPT + ML + Environment” in future environmental research. The left box shows the secondary training by introducing
environmental professional dataset. The middle box mainly shows the potential in connecting the up-/down-stream tasks of data analysis in the full chain study of
environmental sustainability. The right box mainly gives a perspective on coupling data processing with data collection via using an integration of ChatGPT, control

algorithms, ML, and robots, etc.

integrated with computer control algorithms (Fig. 2). This will integrate
static environmental big data processing with dynamic environmental
analysis, providing a novel tool for future environmental research,
especially for some environmental monitoring under extreme conditions.
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