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Abstract

Systemic magnesium homeostasis in mammals is primarily governed by the activities of the TRPM6 and TRPM7 cation
channels, which mediate both uptake by the intestinal epithelial cells and reabsorption by the distal convoluted tubule cells
in the kidney. In the nematode, C. elegans, intestinal magnesium uptake is dependent on the activities of the TRPM channel
proteins, GON-2 and GTL-1. In this paper we provide evidence that another member of the TRPM protein family, GTL-2, acts
within the C. elegans excretory cell to mediate the excretion of excess magnesium. Thus, the activity of GTL-2 balances the
activities of the paralogous TRPM channel proteins, GON-2 and GTL-1.
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Introduction

In humans, the bulk of systemic magnesium uptake occurs via

the small intestine and is mediated by the action of the TRPM6

(and probably TRPM7) cation channels (reviewed in [1,2]).

Mutations in the human TRPM6 gene result in hereditary

hypomagnesemia [3,4,5]. A paracellular magnesium uptake

mechanism is also thought to exist within the mammalian

intestine, but it has not been well characterized [6,7,8]. In the

nematode C. elegans, intestinal Mg2+ uptake requires the redundant

activities of the paralogous GON-2 and GTL-1 TRPM channel

proteins [9]; however, no paracellular pathway has been

described.

In mammals, circulating levels of magnesium are maintained

within a fairly narrow range [10], and this is dependent on the

activity of TRPM6 (and probably TRPM7) within the distal

convoluted tubule of the kidney [3,4,5]. In this context, these

channels function by mediating reabsorption of magnesium from

the filtrate. In C. elegans, the mechanisms that govern magnesium

excretion have not been characterized. However, we previously

reported that the gtl-2 gene (paralogous to gon-2 and gtl-1) is

expressed within the excretory cell [9], which is thought to

perform physiological functions comparable to those of the

mammalian kidney. In this paper we show that the action of

GTL-2 within the excretory cell is necessary for normal Mg2+

excretion. GTL-2 localizes to the basal membrane of the excretory

cell, suggesting that it mediates uptake of Mg2+ from the

pseudocoelomic fluid.

Results

Identification of Mutations in gtl-2
As detailed in the materials and methods section, we selected for

suppressors of the sterile phenotype of the temperature-sensitive

allele, gon-2(q388), using procedures similar to those reported

previously [11,12]. Three of the mutations that we identified in

this screen appeared to be alleles of the same gene, since they all

mapped to the gene cluster on chromosome IV, failed to

complement each other and exhibited a similar combination of

phenotypes, i.e., suppression of gon-2(q388) (Figure 1A), slow

growth (Gro), and egg-laying-defective (Egl). We recognized the

latter two phenotypes as similar to those of a deletion/candidate

null allele of the gtl-2 locus (tm1463), which also maps to the

chromosome IV gene cluster. Consistent with the possibility that

our suppressor mutations are alleles of gtl-2, each of them failed to

complement tm1463. Furthermore, we found that gtl-2(tm1463) is

also able to suppresses gon-2(q388) (Figure 1A). To further verify

allelism, we sequenced the gtl-2 exonic regions for each of the

suppressor mutations. In each case, we found an alteration that

has the potential to impair GTL-2 function (Figure 1B).

Expression and Localization of GTL-2
We previously found that a gtl-2 transcriptional reporter was

expressed in the excretory cell [9]. In order to determine the

subcellular localization of GTL-2 protein, we generated a GTL-

2::GFP translation fusion construct and expressed this in C. elegans

under the control of the gtl-2 promoter. The GTL-2::GFP fusion

protein is predominantly localized to the outer/basal surface of the
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excretory cell (Figure 2, Figure S1). The punctate expression of

GTL-2::GFP is similar to that observed for TRPM6 and TRPM7

in cultured cells [13]. The subcellular localization of GTL-2 is

clearly different from proteins such as EXC-4, which are present

on the apical surface of the excretory cell [14]. The basal

membrane is likely to be the normal site of action for GTL-2,

because this fusion protein fully rescues the gtl-2(tm1463) mutant

phenotype (see below). However, we cannot rule out the possibility

that a small fraction of GTL-2 is also expressed on the apical

surface of the excretory cell.

To further confirm that the functional site of gtl-2 is the

excretory cell, we used the sulp-4 promoter to drive expression of

the gtl-2::gfp fusion gene. sulp-4 encodes one of eight members of

the sulfate permease family of anion transporters, and its promoter

drives GFP expression specifically in the excretory cell [15]. This

fusion gene behaved essentially the same as the one driven by the

gtl-2 promoter (data not shown).

Electrophysiological Phenotype of gtl-2 Mutants
If GTL-2 forms a channel with properties similar to those of

other TRPM family members, then the excretory cell should

exhibit characteristic outward rectification [16]. In wild type

excretory cells, we observed a small outwardly-rectifying current

using the whole-cell configuration (its reversal potential

[Erev] = 26.9+/21.8 mV in Figure 3A and C); this current appears

to be voltage-modulated, which is also observed with TRPM4b

and TRPM5 as well as with GON-2 [17] (see Materials and

Methods for details). In gtl-2 mutant cells, we found that the

outwardly-rectifying current was eliminated (Figure 3B and C).

When the GTL-2 cDNA was expressed in the excretory cell of the

gtl-2 mutants, the outwardly-rectifying current was restored,

suggesting that GTL-2 expression is responsible for current

generation (Figure 3B and C).

Since TRPM channel activities are known to be inhibited by

La3+ [18], we tested whether the outwardly-rectifying current of

the excretory cell can be inhibited by La3+. The current was

indeed suppressed nearly completely by 100 mM LaCl3 in the bath

solution; IC50 values of La3+ were 1.7+/20.5 mM in the wild type

and 1.0+/20.5 mM in the rescued strain (Figure 3D).

Since obtaining recordings from the excretory cell was

technically difficult, we were not able to determine the relative

permeability of GTL-2 to different cations; however, given the

high degree of similarity between GTL-2 and GTL-1/GON-2,

which are known to be permeable to both Ca2+ and Mg2+

[9,19,20,21], it is likely that GTL-2 is also permeable to these

cations.

Effects of Mg2+ Supplementation on gon-2 and gtl-2
Mutants

We previously reported that supplementation of the culture

medium with Mg2+, but not Ca2+, can suppress the growth defect

of the gon-2; gtl-1 double mutant [9]. In this study, we found that

Mg2+ supplementation can also partially suppress the gonadogen-

esis defect of gon-2 mutants to a degree that approaches that

observed for the gtl-2 mutations; supplementation of the medium

with 50 mM Mg2+ increased the frequency of non-vulvaless gon-

2(q388) animals raised at 23.5u from 12% (n = 763) to 64%

(n = 968).

In stark contrast to the results obtained with gon-2 and gtl-1,

supplementation with Mg2+, but not other cations (Ca2+, Na+, and

K+), greatly enhances the gtl-2 mutant phenotype, and at higher

Figure 1. Suppression of gon-2(q388) by gtl-2 mutations. A.
Efficiency of suppression. Animals were raised at the restrictive
temperature for gon-2(q388) and scored as adults for the presence of
the vulva, which provides an accurate readout of the successful
initiation of gonadogenesis. B. Nature and locations of gtl-2 alleles.
Boxes and lines indicate exons and introns, respectively. dx124 and
dx126 are splice-site mutations, and dx125 converts glycine to arginine
at the 581st amino acid. The gtl-2(tm1463) mutation was independently
isolated by the C. elegans genome knockout project in Japan. gtl-
2(tm1463) corresponds to a deletion of 463 base pairs, from the fifth
through seventh exons of gtl-2. 59 end of gtl-2 is at left.
doi:10.1371/journal.pone.0009589.g001

Figure 2. Subcellular localization of GTL-2. A. DIC image, with
dashed line indicating position of basal membrane of excretory cell as
determined by imaging in GFP channel. B. GFP fluorescence image. The
imaged animal was of genotype gtl-2(tm1463);tgEx133[Pgtl-2::gtl-
2cDNA::gfp;Pgtl-2::mCherry]. mCherry fluorescence completely fills the
space between the canal lumen and the basal membrane (see Figure
S1). C. Schematic of excretory system of C. elegans. The excretory
system comprises three cell types (excluding the gland cells): a single
large excretory cell, a duct cell, and a pore cell. The pore cell connects
the duct to the main body hypodermis, and a binucleate gland cell, the
fourth cell, bridges between the excretory cell and the duct cell [37].
The excretory cell is H-shaped and it extends two arms along the lateral
lines on each side of the animal body. The excretory cell is polarized
with basal and apical faces. The apical face is adjacent to a lumen,
which is connected to the outside of the body through the excretory
pore. The basal side faces the pseudocoelomic space. It is believed that
the excretory cell absorbs excess electrolytes from the pseudocoelomic
fluid, then transfers them to the lumen, followed by their excretion to
the outer environment through the excretory pore.
doi:10.1371/journal.pone.0009589.g002
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concentrations results in larval arrest and lethality (Figures 4 and

5). Together with the expression data, these results suggest that

mutations in gtl-2 impair uptake of Mg2+ by the excretory cell, and

that suppression of gon-2(q388) results from a buildup of Mg2+

within the pseudocoelomic fluid.

Suppression of gtl-2(lf) by Mutations in gtl-1
If mutations in gtl-2 cause impairment of growth due to a defect

in the excretion of Mg2+, it should be possible to remedy this

growth defect by reducing the amount of Mg2+ absorbed by the

gut. A simple way to test this idea would be to determine whether

impairment of intestinal Mg2+ uptake by mutation of gtl-1 can

suppress the Gro phenotype of gtl-2. However, the proximity of the

gtl-1 and gtl-2 loci (13 kbp) makes it very difficult to obtain the

double mutant by standard strain construction methods. There-

fore, as an alternative approach, we performed a random

mutagenesis and directly selected for mutations that could suppress

the lethality of gtl-2(tm1463) on 50 mM Mg2+. We characterized

six independently-isolated suppressors obtained from this selection.

The suppression phenotype for three of these is shown in

Figure 6A. Each of the six suppressors failed to segregate Gtl-2

progeny after backcrossing, suggesting tight linkage to tm1463, and

thus consistent with the possibility that a mutation had occurred in

gtl-1. We sequenced the gtl-1 coding sequence for all six

suppressors and found a single alteration in each case

(Figure 6B). Two of these are splice site mutations and two are

premature stop codons, strongly suggesting that these are severe

loss-of-function mutations.

As a further test, we performed RNAi knock-down of gtl-1 in a

gtl-2(tm1463) mutant background. In these experiments, we found

that gtl-1 RNAi treatment produced a phenotype extremely similar

to that of the suppressor mutations described above (Figure S2).

Assessment of Magnesium Levels by ICP-MS
We used ICP-MS to compare the total Mg2+ content in wild

type animals and animals of genotype gtl-2(tm1463) in one

experiment, and wild type animals and gtl-1(dx153,dx170,dx171)

gtl-2(tm1463) in a separate experiment. In the first experiment, we

found that gtl-2(tm1463) animals contain approximately 1.5 times

as much Mg2+ per unit mass as wild type animals (Table 1). In the

second experiment, we found that gtl-1;gtl-2 double mutants

contain approximately 0.7 times as much Mg2+ as wild type

animals (Table 2). Notably, these animals are not as severely

affected as gtl-1 single mutants, which contain only approximately

0.4 times as much Mg2+ as wild type [9]. This suggests that

mutations in gtl-1 and gtl-2 exert mutual suppression.

Although potassium levels were not affected by mutation of gtl-2,

Ca2+ levels were significantly reduced, about 0.7 times wild type

levels. This may be due to inhibition of GON-2, since this channel is

Figure 3. GTL-2 is responsible for the outwardly-rectifying
current of the excretory cell. (A) A cultured excretory cell. The bar at
the bottom right is 5 microns. The main body of the excretory cell and a
straight, unbranched canal process are indicated. ‘‘int.’’ is an intestinal
cell. (B) Representative whole-cell current at 2100 mV and +100 mV
pulses of the excretory cells isolated from the wild-type (WT), gtl-
2(tm1463) mutant (KO), and a rescued transgenic line (rescued) of gtl-
2(tm1463):tgEx135[Psupl-4::gtl-2cDNA::gfp;Psulp-4::mCherry]. C) Steady-
state I-V relationship for leak-subtracted whole-cell currents (n = 426
each, the bars indicate SEM.). (D) Dose-dependent inhibition of the
whole-cell current by La3+ (n = 4 each point, the bars indicate SEM).
doi:10.1371/journal.pone.0009589.g003

Figure 4. Growth inhibitory effects of Mg2+ on gtl-2 mutants
isolated as suppressors of gon-2(q388). Assays were performed as
described in Methods. The means of two independent results are
plotted. The X-axis is time (hours) after hatching and the Y-axis is the
percentage of the adult animals over total animals. All gtl-2 mutants
showed slower growth than wild type, which was more pronounced in
the presence of ions (right panel), compared to the electrolyte-free
condition (left panel). Ion concentrations are in mM.
doi:10.1371/journal.pone.0009589.g004

Figure 5. Effects of different cations on growth rate of the
putative null mutant, gtl-2(tm1463). Magnesium specifically inhibits
the growth of gtl-2(tm1463) mutant animals. Assays were performed as
described in Methods. The means of two independent results are
plotted. As indicated, 5 mM NaCl, 5 mM KCl, 5 mM MgCl2, and 5 mM
CaCl2 were included.
doi:10.1371/journal.pone.0009589.g005
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highly sensitive to Mg2+ levels and also known to be important for

Ca2+uptake by the intestinal cells [9,20]. This idea is consistent with

the observation that increasing levels of Mg2+in the medium tends to

cause a decrease in total Ca2+ concentration in both wild type

animals and animals of genotype gtl-1(lf) gtl-2(tm1463) (Table S1).

Discussion

In this paper, we demonstrate that inactivation of the gtl-2 gene of

C. elegans results in suppression of the gon-2 mutant phenotype and

also causes hypermagnesemia. Furthermore, we find that inactiva-

tion of gtl-1 suppresses the hypermagnesemic phenotype of gtl-2

mutants. In combination with findings from previous studies, we

suggest the following model to explain these results (Figure 7). Mg2+

within the gut lumen is taken up by the intestinal cells through

apically-localized channels composed of GTL-1 and/or GON-2

subunits [9]. These channels are equivalent to IORCa, as described

by Strange and colleagues [20,21,22]. Mg2+ is transported out of the

intestinal cells and into the pseuodocoelomic fluid through an

unknown mechanism (possibly via a Na+/Mg2+ antiporter). Mg2+

within the pseuodocoelomic fluid bathes all of the exposed tissues

within the body cavity, including the gonadal precursor cells (not

shown). The gonadal precursors take up Mg2+ via two pathways,

one mediated by GON-2 and the other dependent on the

monocarboxylate transporter family protein, GEM-1 [12]. The

excretory cell expresses GTL-2 on its basal membrane, and this

permits uptake of Mg2+ into the cytoplasm. Mg2+ is then

transported into the canal lumen via an unknown mechanism.

Our model explicitly requires that Mg2+ uptake via the intestinal

cells is mediated by TRPM channels. However, Jin et al. [23] have

recently argued that TRPM channels in mammals are not capable of

conducting Mg2+ at a rate sufficiently high to provide a viable Mg2+

uptake system under physiological conditions. This argument is based

largely on their finding that knocking out TRPM7 in lymphocytes

does not prevent these cells from taking up Mg2+ or from

Table 1. Trace elements in wild type and gtl-2(tm1463)
mutant animals.

Genotype Mg (p = 0.001) K (p = 0.18) Ca (p = 0.0082) n

wild type 2022+/210 15854+/2802 2976+/2119 3

gtl-2(tm1463) 3035+/2202 14277+/21462 1991+/2329 3

Levels of each trace element are in mg/g, 6 standard deviation. ICPMS analysis
was performed as described in materials and methods. p values were
determined using a two-tailed unpaired t-test.
doi:10.1371/journal.pone.0009589.t001

Table 2. Trace elements measured in wild type and gtl-1 gtl-2
double mutants.

Genotype Mg K n

wild type 2141+/29 15652+/2809 2

gtl-1(dx153) gtl-2(tm1463) 1584+/292
P = 0.013

15494+/2245
P = 0.8163

2

gtl-1(dx170) gtl-2(tm1463) 1564+/214
P = 0.0004

15182+/214
P = 0.4977

2

gtl-1(dx171) gtl-2(tm1463) 1499+/2215
P = 0.0507

14819+/2880
P = 0.4283

2

In each case, values represent the average mg/g for animals grown on 0 mM
and 1 mM supplemental Mg2+. Values for Ca2+ are reported in Table S1,
because they were strongly affected by Mg2+ supplementation. P values were
calculated as in Table 1.
doi:10.1371/journal.pone.0009589.t002

Figure 7. Schematic of proposed roles for C. elegans TRPM
channels in Mg2+ uptake and excretion. Details discussed in text.
pc, pseudocoelom.
doi:10.1371/journal.pone.0009589.g007

Figure 6. Characterization of gtl-1 alleles isolated as suppres-
sors of gtl-2(tm1463). A. Effects of Mg2+ on growth rate of gtl-1 and
gtl-2 single and double mutants.Assays were performed as described in
Methods, using either 0 mM or 5 mM Mg2+ supplementation. The
means of two independent results are plotted. The gtl-1(tg113)-single
mutant shows growth defects on 0 mM Mg2+ plates as previously
reported [9]. B. Locations of mutant alleles within the gtl-1 locus. The
gtl-1 gene and sites of the gtl-2 suppressor mutations. Boxes and lines
indicate exons and introns, respectively. The tg113 allele deletes
nucleotides 886-1213. 59 end of gtl-1 is at left.
doi:10.1371/journal.pone.0009589.g006
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proliferating. However, it is known that mammalian cells possess

alternative systems for Mg2+ uptake (e.g., the SLC41 transporters

[24,25,26,27]), so this result is not entirely unexpected. Jin et al. also

used electrophysiological and imaging methods to examine TRPM7

mutant cells for defects in acute Mg2+ influx, found no apparent

defects, and concluded that Mg2+ uptake was unaffected. Their

conclusion is similar to that of Xing et al. (2008), who suggested that

since GON-2 and GTL-1 are approximately an order of magnitude

more permeable to Ca2+ than Mg2+, they are not likely to mediate

significant levels of Mg2+ uptake in vivo.

In the case of C. elegans two questions need to be answered in

order to address these concerns:

1) How much Mg2+ does a worm need to absorb per hour?

An adult hermaphrodite produces approximately 4 eggs

per hour, each with a volume of approximately 3610211 liters

and an est imated tota l Mg2 + concentrat ion of

,261022 moles/liter (Table 1, assuming that Mg2+ concen-

tration in eggs is the same as overall and that C. elegans dry

weight is 20% wet weight). This would require the absorption

of a minimum of 2.4610212 moles/hr. The amount of Mg2+

excreted by a hermaphrodite per hour is unknown; however, a

generous estimate would be that it is roughly equivalent to the

amount that is provided to eggs, which leads to an estimated

total required absorption rate of 4.8610212 moles/hr/her-

maphrodite.

2) Can GON-2/GTL-1 realistically mediate this rate of

absorption?

The number of channels required to mediate this rate of

uptake depends on their individual efficiency of ion conduc-

tion, which has the potential to vary over many orders of

magnitude, ranging from 6610214 moles/hr (for an efficient

channel) to 6610219 moles/hr (for an ion pump) [28].

Therefore, even if the C. elegans TRPM channels operate on

the average at only 0.1% of the efficiency of a ‘‘respectable’’

ion channel, only 80,000 channels would be required along the

length of the entire intestinal lumen. The dimensions of the gut

lumen are approximately 56104 mm2, and the brush border

adds another 10-fold increase in surface area (WormAtlas),

resulting in an estimate of 56105 mm2 per intestine. Conse-

quently, even for an extremely inefficient ion channel, the

density would only have to be 1 per 6.25 mm2 in order to

support physiological levels of Mg2+ uptake, which is far below

the likely channel density.

An alternative way of approaching question number two is to

compare the relative permeabilities of GON-2/GTL-1 to Ca2+

and Mg2+. If the channel is only 1/10 as permeable to Mg2+ as

Ca2+, then it is essentially operating at 10% efficiency. Further-

more, due to the periodicity of the defecation cycle, the channel is

only open approximately 5% of the time [21,22,29]. Even so, this

still results in a channel that operates with an overall efficiency of

0.5% optimal, which would be more than sufficient to mediate

physiological levels of Mg2+ uptake.

Another factor that is likely to be very important is the physical

structure of the gut lining. The space between microvilli is

sufficiently restricted that it will represent a barrier to free diffusion

within the lumenal space. This has been demonstrated to be an

important factor in intestinal absorption rates within the

mammalian intestine (for villi, rather than microvilli) [30]. Thus,

during the defecation cycle of C. elegans, the effective Ca2+

concentration within the intervillar space is likely to decrease

rapidly after channel opening, and this will permit a progressive

increase in Mg2+ influx.

The increase in Mg2+ in gtl-2 mutants relative to wild type

(,1.4-fold) appears comparatively modest; however, we expect

that the majority of the excess Mg2+ will be present within the

pseudocoelomic fluid, which constitutes a relatively small com-

partment. If the volume of the pseudocoelom is estimated as 10%

of the total animal, then a 1.4-fold overall increase in Mg2+ would

be equivalent to a 5-fold increase in concentration within the

pseudocoelom. Since Mg2+ is known to be an effective blocker of

certain Ca2+ channels [31,32], this could have a generally

deleterious effect on neurotransmission. gtl-2 mutants do not lay

eggs in response to exogenous serotonin (data not shown),

consistent with the idea that the egg-laying muscles have

diminished sensitivity to neurotransmitter.

Materials and Methods

C. elegans Strains
In this study, the following C. elegans strains and mutations were

used: Bristol N2 wild type, gon-2(q388), gtl-1(tg113), gtl-2(dx125),

and gtl-2(dx126), gtl-2(tm1463), gon-2(q388);gtl-2(dx125), gon-

2(q388);gtl-2(dx126), and gon-2(q388);gtl-2(tm1463), gtl-1(dx153);gtl-

2(tm1463), gtl-1(dx170);gtl-2(tm1463), gtl-1(dx171);gtl-2(tm1463), gtl-

1(dx172);gtl-2(tm1463), gtl-1(dx173);gtl-2(tm1463), and gtl-1(dx174);

gtl-2(tm1463). Mutant strains were typically outcrossed to wild-type

males at least three times to reduce background mutations. Since

gtl-2-single and gon-2;gtl-2-double mutant strains exhibit growth

defects on conventional NGM (nematode growth medium) -lite

agar plates [2.6% (w/v) Bact-Agar (BD), 0.25% (w/v) Bacto-

Pepton (BD), 5 mg/L cholesterol (Sigma), 50 mM NaCl, 1 mM

MgSO4 and 1 mM CaCl2, 25 mM KPO4 buffer, pH 6.0], we

developed new electrolyte-free agar plates [2.6% (w/v) Bact-Agar

(BD), 0.25% (w/v) Bacto-Pepton (BD), 5 mg/L cholesterol

(Sigma), 100 mM Sucrose (Sigma), and 25 mM Hepes (Sigma),

pH 6.0] for improvement of growth and fertility of the mutant

strains. Other strains were kept on conventional NGM-lite agar

plates at 20uC. Cultured OP50 E.coli was used as a food source for

the animals, except for strains grown on NGM-lite, which were

propagated on AMA1004.

Isolation of gon-2(q388) Suppressors
Adult hermaphrodites of genotype gon-2(q388) unc-29(e1072)

were mutagenized for 4 hrs with 50 mM EMS at 20uC, then

washed and plated onto 120 mm plates at a density of ,20

hermaphrodites per plate at 15uC (permissive temperature for gon-

2(q388)). Approximately 1000 F1s reached adult on each plate and

each produced approximately 20 F2 progeny before food was

depleted on the plate. Half of the animals on each plate were

transferred to a large (60 mm) NGM-lite plate enriched with 6X

tryptone, and with food source. Then, they were incubated at

25uC (fully restrictive temperature for gon-2(q388)) for 10 days.

Since food was still present on all plates after 10 days, they were

transferred to 19.5uC for suppressor candidates to produce

progeny. Individual fertile animals were then cloned from each

plate and tested for suppression at 23.5uC (a slightly less restrictive

temperature for gon-2(q388)). These suppressor candidates were

outcrossed to gon-2(q388) I; him-9(e1489) IV males to assess linkage

to unc-29 and him-8. Three independent, non-complementing

suppressor mutations were identified in this screen, dx124, dx125

and dx126. Each is recessive, linked to him-8, and exhibits Egl and

Gro secondary phenotypes. The isolation frequency was somewhat

lower than expected for mutations in a typical gene (3/240,000

mutagenized genomes, compared to 1/2000 for a typical gene).

However, the slow growth of the homozygous mutants probably

C. elegans Magnesium Excretion
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reduces the efficiency with which they are recovered in suppressor

screens.

Suppression of gon-2(q388) by gtl-2 mutations was assessed by

scoring for the presence/absence of the vulva via dissecting

microscope. The vulva is induced by signals from the gonadal

anchor, which is generated after only three cell divisions in the L1

stage. Therefore, the presence of the vulva provides an accurate

readout of the completion of initial gonadal cell divisions, which

require GON-2 activity. These experiments were done on

standard NGM-lite medium.

Isolation of gtl-2(tm1463) Suppressors
gtl-2(tm1463) hermaphrodites were mutagenized with 50 mM

EMS for 4 hours, then plated in groups on NGM-lite plates at

20uC. F2s and subsequent generations were serially plated on

5 mM MgCl2 plates to select for potential suppressors of the gtl-

2(tm1463) Mg2+ toxicity phenotype. Six independently isolated

suppressor mutations were chosen for characterization and

sequencing.

Molecular Biology
C. elegans genomic DNA was prepared according to Inada et al.

[33]. RNA isolation and reverse transcription were performed

using RNeasy Mini Kit (Qiagen) and Superscript II reverse

transcriptase (Invitrogen). For amplification of genomic DNA and

cDNA, LA Taq DNA polymerase (Takara Bio) was used.

Amplified DNA fragments were subcloned into pPD95.79 and

pBluescript II vectors. DNA sequencing was carried out by the

Northwestern University Genomic Core Facility and the Dart-

mouth Molecular Biology Core Facility.

Construction of Expression Vectors
The gtl-2 promoter region used was 2795 bp upstream region

from the start codon of the F54D1.5, and the sulp-4 promoter was

4477 bp upstream from the start codon of the K12G11.1. These

promoter fragments were PCR-amplified and subcloned into

pPD95.79-mCherry (the original GFP coding region of the

pPD95.79 was replaced with mCherry). The final constructs were

named Pgtl-2::mCherry and Psulp-4::mCherry, respectively.

The same promoter regions were used for making the

translational GFP-fusion constructs: Pgtl-2::gtl-2cDNA::gfp and

Psulp-4::gtl-2cDNA::gfp. To prepare the translational reporter

constructs, full length gtl-2 cDNA (4217 bp, without stop codon)

was constructed by assembling PCR-amplified cDNA fragments

and yk405b5 cDNA (a gift from Y. Kohara) into pPD95.79 vector

containing either Pgtl-2 or Psupl-4. After subcloning, the entire

cDNAs and junctional regions were sequenced. To construct the

ectopic expression vectors, Pgtl-2::gon-2cDNA, Pgtl-2::gtl-1cDNA,

and Pgtl-2::gtl-2cDNA, full length cDNAs (including stop codon) of

either gon-2 (5796 bp), gtl-1 (5085 bp), or gtl-2 (4421 bp) were

prepared using RT-PCR and/or combining yk cDNA clones

(yk1643c08 for gon-2, yk398a12 and yk440a7 for gtl-1, and

yk405b5 for gtl-2).

Transgenic Strains
The following transgenic lines were generated and used:

lin-15(n765ts);tgEx137[Psulp-4::mCherry;lin-15(+)],

lin-15(n765ts);gtl-2(tm1463);tgEx143[Psulp-4::mCherry;lin-15(+)],

gtl-2(tm1463);tgEx133[Pgtl-2::gtl-2cDNA::gfp;Pgtl-2::mCherry],

gtl-2(tm1463);tgEx135[Psulp-4::gtl-2cDNA::gfp;Psulp-4::mCherry],

gtl-2(tm1463);tgEx124[Pgtl-2::gtl-2cDNA;sur-5::gfp],

gtl-2(tm1463);tgEx131[Pgtl-2::gtl-1cDNA;sur-5::gfp],

gtl-2(tm1463);tgEx140[Pgtl-2::gon-2cDNA;sur-5::gfp].

Transgenic strains were generated by injecting the mixed DNA

of an expression plasmid (100 ng/ml) and a genetic marker plasmid

(100 ng/ml) into young adult worms as described [34]. To test

rescue of the tm1463 allele by the gtl-2 cDNA driven by Pgtl-2, at

least three independent extrachromosomal lines were analyzed.

Measurement of Trace Elements
Strains analyzed by ICP-MS were grown on NGM-lite plates.

In each case, animals were rinsed off in HPEG (water with 0.1%

PEG 8000), then washed twice prior to drying. Samples were

analyzed by the Dartmouth ICPMS facility, as described

previously [9]. Although worms analyzed by ICPMS typically

contained some E. coli in the gut, the contribution of unabsorbed

cations within the lumenal fluid to overall levels is likely to be

minimal.

Growth Assays
Each growth assay was performed as previously described [9].

Before starting each assay, animals were kept on electrolyte-free

plates (see C. elegans strains section) for at least two generations at

20uC, except gtl-1(tg113) mutant animals. The gtl-1 mutants were

maintained on conventional NGM-lite plates to avoid growth

defects [9]. About 50 eggs were collected and transferred to each

assay plate. All strains were grown at 25uC and the number of

adult animals was determined every 12 or 24 hours. All data for

transgenic lines were corrected for the number of progeny that lost

the extrachromosomal array.

RNAi Experiments
For the data reported in Figure S2, feeding RNAi was

performed as described by Kamath et al. [35], using one clone

that contained a portion of the gtl-1 cDNA(656 bp) and another

that contained GFP (as control). We used NGM plates containing

25 mM carbenicillin instead of ampicllin, and 2 mM IPTG was

used for induction. Other conditions were the same as in our

conventional growth assays.

Microscopy
Worms were immobilized with 0.03% (w/v) NaN3, and then

mounted on 2% agar pads under coverslips. For Figure 2, images

were taken using a Zeiss Axioskop 2, using a ccd (charge-coupled

device) camera (1300; Micromax) and MetaMorph software

(version 7.1; MDS Analytical Technologies). The fluorescence

image was deconvoluted using AutoDeblur/AutoVisualize soft-

ware (version 1.4.1.; Media Cybernetics). For Figure 3A and S1,

images were taken using a color ccd camera (FLOVEL Inc.).

Image brightness and contrast were adjusted using Photoshop CS3

software (Adobe).

Embryonic Cell Culture
Primary cultured cells were prepared from transgenic animals as

described previously [36]. Eexcretory cells were identified in

primary culture based on mCherry expression.

Electrophysiology
Whole-cell currents were recorded as described previously

[9,22]. Pipette electrodes were made from 1/0.58 OD/ID (mm)

borosilicate glass capillary 1B100F-4 (World Precision Instru-

ments) using a P-97 micropipette puller (Sutter Instruments). The

electrodes had a resistance of 15–20 M ohm when filled with the

standard pipette solution. The membrane potential was clamped

at 0 mV and a 1–2 min period was allowed after rupture of the

membrane to equilibrate the cell interior with pipette solution.
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Current through the electrode was recorded by 700A amplifier

(Axon Instruments) after filtering at 5 kHz.

All data are corrected for the liquid junction potential of the

pipette solution relative to Ringer’s in the bath (+15 mV) and for

leak currents collected in the standard extracellular solution

containing 100 mM LaCl3, which completely inhibits currents (see

Fig. 3D).

The standard pipette solution contained the following compo-

nents (in mM) 147 sodium gluconate, 0.6 CaCl2, 1 MgCl2, 10

EGTA, 10 HEPES, 2 Na+ATP, 0.5 Na+GTP. The pH was

adjusted to 7.2 with CsOH, and osmolarity was adjusted to 325

mOsm. The standard extracellular Ringer’s solution contained (in

mM): 145 NaCl, 1 CaCl2, 5 MgCl2, 10 Hepes, 20 Glucose, 24

sucrose. The pH was adjusted to 7.2 with NaOH, and osmolarity

was adjusted to 345 mOsm. Voltage steps from 2100 to +100 mV

lasting 400 ms were applied every 1 sec from a holding potential

of 0 mV. Averaged results are presented as the mean value 6

SEM. All curve fitting was done by least-squares methods.

Supporting Information

Figure S1 Subcellular l socalization of GTL-2. Top panel, DIC

low magnification. Middle panel, a merged image of GFP and

mCherry signal; low magnification. Bottom panel, a high magnifi-

cation image of the canal. The imaged animal was of genotype: gtl-

2(tm1463);tgEx133[Pgtl-2::gtl-2cDNA::gfp;Pgtl-2::mCherry]. Faint

green fluorescence and particles were detected from auto-fluorescent

granules in the intestine.

Found at: doi:10.1371/journal.pone.0009589.s001 (0.87 MB TIF)

Figure S2 Effect of gtl-1(RNAi) on growth rates of wild type and

gtl-2(tm1463)) mutant animals. RNAi was performed as described

in Materials and Methods. When animals are grown on 0 mM

Mg2+ plates gtl-1(RNAi) inhibits the growth rate of both wild type

and gtl-2(tm1463) mutant animals, but wild type animals are much

more severely affected. In wild type animals, 5 mM Mg2+, almost

completely suppresses the growth inhibitory effect of gtl-1(RNAi).

In gtl-2(tm1463) mutants, gtl-1(RNAi) efficiently rescues the

growth arrest phenotype induced by 5 mM Mg2+.

Found at: doi:10.1371/journal.pone.0009589.s002 (0.10 MB TIF)

Table S1 Trace elements measured in wild type and gtl-1 gtl-2

double mutants in response to different Mg2+ concentrations.

Found at: doi:10.1371/journal.pone.0009589.s003 (0.05 MB

DOC)
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