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Abstract
In this paper, we investigate a simple two-phenotype and two-patch model that incorporates

both spatial dispersion and density effects in the evolutionary game dynamics. The migra-

tion rates from one patch to another are considered to be patch-dependent but independent

of individual’s phenotype. Our main goal is to reveal the dynamical properties of the evolu-

tionary game in a heterogeneous patchy environment. By analyzing the equilibria and their

stabilities, we find that the dynamical behavior of the evolutionary game dynamics could be

very complicated. Numerical analysis shows that the simple model can have twelve equilib-

ria where four of them are stable. This implies that spatial dispersion can significantly com-

plicate the evolutionary game, and the evolutionary outcome in a patchy environment

should depend sensitively on the initial state of the patches.

Introduction
In order to explain the evolution of animal behavior, Maynard Smith and Price [1] developed
the concept of evolutionarily stable strategy (ESS) (see also [2–5]). Prior et al. [6] investigated
an evolutionary game model that incorporates both spatial dispersion and density effects in the
evolutionary dynamics. In this model, the population is considered to be dispersed in a patchy
environment, where the background fitness and payoff matrix in each patch can be different.
Migration from region to region is considered as an incidental aspect of the population, i.e., the
migration is a chance event unrelated to an individual’s phenotype (strategy) or the fitness of
the patch. As pointed out by Prior et al. [6], their assumptions differ from that of Ludwig and
Levin [7] who treat the tendency to migrate as an individual characteristic subject to selection
(see also [8–13]), and also differ from that of Hines and Maynard Smith [14] who interpret the
effect of spatial dispersion as an increased tendency to interact with opponents sharing one’s
own characteristics (see also [15]). Recently, Cressman and Krivan [16] investigated the migra-
tion dynamics for the ideal free distribution (IFD) in a patchy environment. They showed that
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IFD is evolutionarily stable under the assumptions that individuals never migrate from patches
with a higher payoff to patches with a lower payoff and some individuals always migrate to the
best patch. But migration does not necessarily lead to IFD if migration rates are independent of
the payoffs of the patches.

For the evolutionary game dynamics in a patchy environment, Prior et al. [6] mainly
focused their analysis on the stability of the homogeneous states, where they assumed that all
patches have the same payoff matrix and density-dependent background fitness. Their main
results showed that a stable equilibrium (e.g. an evolutionarily stable strategy) of the non-dis-
persed frequency dynamics becomes a stable equilibrium of the large system if population den-
sity stabilizes at these fixed frequencies.

In this paper, following Prior et al. [6], a simple two-patch and two-phenotype model is
investigated. Three basic assumptions for this model are:

(i) The environment consists of two patches, called patch 1 and patch 2, respectively. Individu-
als can move from one patch to the other at any time t. The migration rates are patch-
dependent but independent of individual’s phenotype [6]. Let c1 denote the probability that
an individual moves from patch 1 to patch 2, and, similarly, c2 the probability that an indi-
vidual moves from patch 2 to patch 1.

(ii) In each of two patches, individuals display two possible phenotypes (strategies), denoted
by R1 and R2, and individuals interact in random pairwise contests. The payoff matrix is

A ¼ a11 a12

a21 a22

 !
in patch 1 andB ¼ b11 b12

b21 b22

 !
in patch 2, where aij (or bij) is the pay-

off of an individual displaying phenotype Ri when it plays against an individual displaying
phenotype Rj in patch 1 (or in patch 2) for all i, j = 1, 2. Without loss of generality, we also
assume that aij � 0 and bij � 0 for all i, j = 1, 2.

(iii) In each of the two patches, the background fitness is density-dependent [3–4], which is
defined as α1 − β1 n1 in patch 1, and α2 − β2 n2 in patch 2, where n1 is the total population
size in patch 1 and n2 the total population size in patch 2. We also assume that αi> ci for all
i = 1, 2. That is, the migration rates are small enough to ensure that population size in a
patch will increase when there are few individuals in the patch.

Let xi denote the number of individuals with phenotype Ri in patch 1, and yi the number of
individuals with phenotype Ri in patch 2 (i = 1, 2). Clearly, n1 = x1 + x2 and n2 = y1 + y2. Simi-
larly, let p denote the frequency of phenotype R1 in patch 1, and q the frequency of phenotype
R1 in patch 2, i.e., p = x1/n1 and q = y1/n2. According to the basic assumption (ii), the expected
payoff of an individual displaying phenotype Ri is fi = pai1 + (1 − p)ai2 in patch 1, and gi = qbi1
+ (1 − q)bi2 in patch 2 for i = 1, 2. Similarly, according to the basic assumption (iii), the (total)
fitness of an individual displaying phenotype Ri is defined as Fi = (α1 − β1 n1) + fi in patch 1,
and Gi = (α2 − β2 n2) + gi in patch 2 for i = 1, 2. Thus, the time evolution of xi and yi can be
given by

dxi
dt

¼ ½fi þ a1 � b1n1ð Þ�xi � c1xi þ c2yi ;

dyi
dt

¼ ½gi þ a2 � b2n2ð Þ�yi � c2yi þ c1xi ;

ð1Þ

respectively, for i = 1, 2. Dynamics (1) also equivalent to the following system expressed in
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terms of phenotypic frequency and population size in each patch.

dp
dt

¼ pð1� pÞðf1 � f2Þ þ c2ðq� pÞ n2

n1

;

dq
dt

¼ qð1� qÞðg1 � g2Þ þ c1ðp� qÞ n1

n2

;

dn1

dt
¼ ½�f þ a1 � b1n1ð Þ�n1 � c1n1 þ c2n2 ;

dn2

dt
¼ ½�g þ a2 � b2n2ð Þ�n2 � c2n2 þ c1n1 ;

ð2Þ

where �f ¼ pf1 þ ð1� pÞf2 and �g ¼ qg1 þ ð1� qÞg2 are the average payoffs in patch 1 and
patch 2, respectively.

In this paper, the equilibria of dynamics (2) and their stabilities are analyzed. Different from
Prior et al. [6] who focused on the homogeneous states, we are primarily interested in analyzing
the heterogeneous states, where two patches have different ESSs. Our main goal is to reveal the
dynamical properties of the evolutionary game in a heterogeneous patchy environment.

Results

Symmetric equilibria of dynamics (2)
For given p and q with 0� p, q� 1, an equilibrium of dynamics

dn1

dt
¼ n1

�f þ a1 � b1n1ð Þ� �� c1n1 þ c2n2 ;

dn2

dt
¼ n2 �g þ a2 � b2n2ð Þð Þ � c2n2 þ c1n1 ;

ð3Þ

denoted by (n1(p, q), n2(p, q)), satisfies

n2 ¼
n1

c2
c1 � �f � a1 � b1n1ð Þ� �

;

n1 ¼
n2

c1
c2 � �g � a2 � b2n2ð Þð Þ :

ð4Þ

It is clear that (n1, n2) = (0, 0) is always a solution of Eq (4) for any given p and q. Furthermore,
(p, q, 0, 0) must be unstable under dynamics (2) since α1 > c1 and α2 > c2. Notice that n2 is a
parabolic function of n1 and vice versa, Eq (4) also has a unique positive solution, denoted by
ðn̂1; n̂2Þ ¼ ðn1ðp; qÞ; n2ðp; qÞÞ with n̂1 > 0 and n̂2 > 0 (see Fig 1). When this solution corre-
sponds to an equilibrium ðp; q; n̂1; n̂2Þ of dynamics (2), we call it a positive equilibrium. In the
rest of this paper, we only focus on the number and stabilities of these positive equilibria.

A positive equilibrium, ðp; q; n̂1; n̂2Þ, is called a symmetric equilibrium of dynamics (2) if p =
q. That is, at a symmetric equilibrium, population compositions in the two patches are the same.

It is easy to see that dynamics (2) always have two symmetric boundary equilibria,
ð1; 1; n̂1; n̂2Þ and ð0; 0; n̂1; n̂2Þ, where at these equilibria, all individuals in the two patches dis-
play the same phenotype. Stabilities of the boundary equilibria can be characterized by analyzing
the Jacobian matrix of dynamics (2) (see Method section). The main result is that if R1 (or R2) is
an ESS for both payoff matrices A and B, then the boundary equilibrium ð1; 1; n̂1; n̂2Þ (or
ð0; 0; n̂1; n̂2Þ) must be asymptotically stable. This result is consistent with that of Prior et al. [6],
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where the stable equilibrium of the non-dispersed system becomes a stable equilibrium of dynam-
ics (2). However, under the influence of migration, a symmetric boundary equilibria could be sta-
ble even if the corresponding phenotype is not an ESS in either patch. For instance, the boundary
equilibrium ð1; 1; n̂1; n̂2Þ is asymptotically stable if a11< a21 as long as a21 − a11 is small enough.

On the other hand, the symmetric interior equilibrium exists only for a very special case p�

= q� 2 (0, 1), where p� ¼ a12�a22
a12�a22þa21�a11

and q� ¼ b12�b22
b12�b22þb21�b11

. In this case, ðp�; q�; n̂1; n̂2Þ is an
symmetric interior equilibrium of dynamics (2), where ðn̂1; n̂2Þ is the solution of Eq (4) for p =
p� and q = q�. Furthermore, it is asymptotically stable if p� (= q�) is an ESS for both A and B
(see Method section).

General cases
For more general situations (i.e., p� 6¼ q�), it is very tedious to determine the equilibria of
dynamics (2). In fact, numerical simulations show that dynamics (2) may have twelve equilib-
ria. To investigate the properties of the equilibria of dynamics (2), two cases are considered
below. The first case is special in that there is no migration in one direction (i.e., one of c1 and
c2 is 0) and we analyze the number of stable equilibria for all possible payoff structures. The
second case is more general (i.e., c1 > 0 and c2 > 0) and we show the equilibria of dynamics (2)
and their stabilities for 0< p�, q� < 1.

Case 1. c1 > 0 and c2 = 0. Without loss of generality, we here assume that c1 > 0 but c2 = 0,
i.e. individuals can only move from patch 1 to patch 2 but not from patch 2 to patch 1 (the case
of c1 = 0 and c2 > 0 can be analyzed analogously). Then, dynamics (2) can be rewritten as

dp
dt

¼ pð1� pÞðf1 � f2Þ ;

dn1

dt
¼ a1 þ �f � c1 � b1n1

� �
n1 ;

ð5Þ

Fig 1. The unique positive equilibrium of dynamics (3). The red curves correspond to the second
equation of Eq (4) and the green curves to the first equation of Eq (4). For any given p and q, the two curves
have a unique positive intersection (see the black spots). Parameters are taken as β1 = β2 = 0.01, α1 = 0.75,
�f ¼ 0:25, c1 = 0.5 and c2 = 0.5 in all two panels. Furthermore, α2 = 0.55 and �g ¼ 0:2 in panel a, and α2 = 1 and
�g ¼ 0:5 in panel b.

doi:10.1371/journal.pone.0142929.g001
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and

dq
dt

¼ qð1� qÞðg1 � g2Þ þ c1ðp� qÞ n1

n2

;

dn2

dt
¼ a2 þ �g � b2n2ð Þn2 þ c1n1 :

ð6Þ

Notice that dynamics (5) is independent of dynamics (6). Thus, as an equilibrium of dynam-
ics (2), ðp̂; q̂; n̂1; n̂2Þ, is locally asymptotically stable if and only if ðp̂; n̂1Þ is locally asymptoti-
cally stable under dynamics (5) and ðq̂; n̂2Þ is locally asymptotically stable under dynamics (6),
where p and n1 in dynamics (6) correspond to the stable equilibrium, ðp̂; n̂1Þ, of dynamics (5).

We first look at the stability of dynamics (5). It is easy to see that: (i) the boundary equilib-
rium ð1; n̂1Þ (or ð0; n̂1Þ) is locally asymptotically stable if and only if p = 1 (or p = 0) is an ESS
for the payoff matrix A, i.e. a11 > a12 (or a22 > a12), where n̂1 ¼ a1þa11�c1

b1
for p = 1 and n̂1 ¼

a1þa22�c1
b1

for p = 0; and (ii) if the unique interior equilibrium ðp�; n̂1Þ exists, then it is globally

asymptotically stable if and only if p� is an ESS for the payoff matrix A, where p� ¼
a12�a22

a12�a22þa21�a11
2 ð0; 1Þ and n̂1 ¼ a1þ�f ðp�Þ�c1

b1
.

From dynamics (6), the frequency q̂ in a stable equilibrium of dynamics (2), ðp̂; q̂; n̂1; n̂2Þ,
should obey the equation

qð1� qÞðg1 � g2Þ þ
p̂ � q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ �g Þ2 þ 4b2c1n̂1

q
� ða2 þ �gÞ

� �
¼ 0 ; ð7Þ

where p̂ 2 f0; 1; p�g corresponds to the stable equilibrium, ðp̂; n̂1Þ, of dynamics (5). In the
Method section, we analyze the solutions of Eq (7) and the stabilities of the corresponding
equilibria under dynamics (6). According to the stability conditions of dynamics (5) and (6),
the equilibria of dynamics (2) and their properties can be summarized as follows:

1. If R1 (or R2) is the only ESS for A and B, then the symmetric boundary equilibrium
ð0; 0; n̂1; n̂2Þ (or ð1; 1; n̂1; n̂2Þ) is unstable and the other ð1; 1; n̂1; n̂2Þ (or ð0; 0; n̂1; n̂2Þ) is
stable. Furthermore, Eq (7) has no interior solution. This implies that ð1; 1; n̂1; n̂2Þ (or
ð0; 0; n̂1; n̂2Þ) is also globally asymptotically stable, i.e., all individuals in the two patches will
eventually display R1 (or R2) under evolutionary dynamics (2) (see Fig 2A and 2B).

2. If both R1 and R2 are ESSs for A but R1 (or R2) is the only ESS for B, then the symmetric
boundary equilibrium ð0; 0; n̂1; n̂2Þ (or ð1; 1; n̂1; n̂2Þ) is unstable and the other ð1; 1; n̂1; n̂2Þ
(or ð0; 0; n̂1; n̂2Þ) is stable. Furthermore, Eq (7) has a unique (interior) solution q̂, which
corresponds to an asymptotically stable equilibrium ð0; q̂; n̂1; n̂2Þ (or ð1; q̂; n̂1; n̂2Þ) of
dynamics (2). In this situation, either all individuals in the system display R1 (or R2), or
individuals in patch 1 display R2 (or R1) and two phenotypes coexist in patch 2 (see Fig 2C
and 2D).

3. If p� is the only ESS for A (0< p� < 1) and R1 (or R2) is the only ESS for B, then both the
symmetric boundary equilibria ð0; 0; n̂1; n̂2Þ and ð1; 1; n̂1; n̂2Þ are unstable. Furthermore,
Eq (7) has a unique (interior) solution q̂, which corresponds to an asymptotically stable
equilibrium ðp�; q̂; n̂1; n̂2Þ of dynamics (2). Numerical simulation shows that this equilib-
rium is also globally stable. This implies that the two phenotypes will stably coexist in the
system (see Fig 2E and 2F).

4. If R2 (or R1) is the only ESS for A but R1 (or R2) is the only ESS for B, then both the symmet-
ric boundary equilibria ð0; 0; n̂1; n̂2Þ and ð1; 1; n̂1; n̂2Þ are unstable. Furthermore, Eq (7) has

Effect of Spatial Dispersion on Evolutionary Stability

PLOS ONE | DOI:10.1371/journal.pone.0142929 November 13, 2015 5 / 15



a unique (interior) solution q̂, which corresponds to an asymptotically stable equilibrium
ð0; q̂; n̂1; n̂2Þ (or ð1; q̂; n̂1; n̂2Þ) of dynamics (2). Similarly as (3), this equilibrium is also
globally stable, i.e., R2 (or R1) can invade patchy 2 under the influence of migration (see Fig
2G and 2H).

5. If both R1 and R2 are ESSs for A and B, then both the symmetric boundary equilibria
ð0; 0; n̂1; n̂2Þ and ð1; 1; n̂1; n̂2Þ are asymptotically stable. Furthermore, Eq (7) has at most
four (interior) solutions, where two are stable equilibria of dynamics (2) and the other two
are unstable. This implies that the evolutionary outcome in this situation is very difficult to
predict since the system can have four stable states (see Fig 2I).

6. If both R1 and R2 are ESSs for A and q� is an ESS for B, then both the symmetric boundary
equilibria ð0; 0; n̂1; n̂2Þ and ð1; 1; n̂1; n̂2Þ are unstable. Furthermore, Eq (7) has at most two
(interior) solutions, where both of them are stable equilibria of dynamics (2) (see Fig 2J).

Fig 2. Solutions of Eq (7) and their stabilities under dynamics (2) when c1 > 0 and c2 = 0. Intersections of h1(q) and h2(q) (i.e., the solutions of Eq (7)) are
shown for all sixteen possible situations. The red curves denote h1(q) and the green curves h2(q). The intersections denoted by black spots correspond to
stable equilibria of dynamics (2), and the intersections denoted by black circles correspond to unstable equilibria. Parameters are taken as β1 = β2 = 0.01, α1
= 1, α2 = 2 and c1 = 0.5 in all sixteen panels. Payoff matrixes in the panels are: In panel a, A = [1.5, 1.5; 0, 0], B = [5, 1; 0, 0]. In panel b, A = [0, 0; 1, 1], B = [0,
0; 5, 1]. In panel c, A = [1, 0; 0, 1], B = [3, 1; 0, 0]. In panel d, A = [1, 0; 0, 1], B = [0, 0; 3, 1]. In panel e, A = [0, 1.25; 5, 0],B = [3, 1; 0, 0]. In panel f, A = [0, 1.25;
5, 0], B = [0, 0; 3, 1]. In panel g, A = [0, 0; 1, 1], B = [3, 1; 0, 0]. In panel h, A = [1, 1; 0, 0], B = [0, 0; 3, 1]. In panel i, A = [1, 0; 0, 1], B = [2, 0; 0, 1]. In panel j, A =
[1, 0; 0, 1], B = [0, 1; 4, 0]. In panel k, A = [0, 2; 2, 0], B = [0, 1; 5, 0]. In panel l, A = [0, 2; 2, 0], B = [1, 0; 0, 1]. In panelm, A = [0, 0; 1, 1],B = [0, 1; 4, 0]. In panel
n, A = [1.5, 1.5; 0, 0], B = [0, 1; 4, 0]. In panel o, A = [0, 0; 1, 1], B = [2, 0; 0, 1]. In panel p, A = [1, 1; 0, 0],B = [2, 0; 0, 1]. The positions of the interior ESSs p*
and q* (0 < p*, q* < 1) are marked by dashed lines.

doi:10.1371/journal.pone.0142929.g002
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7. If p� is an ESS for A and q� is an ESS for B, then both the symmetric boundary equilibria
ð0; 0; n̂1; n̂2Þ and ð1; 1; n̂1; n̂2Þ are unstable. Furthermore, Eq (7) has a unique (interior)
solution q̂, which corresponds to an asymptotically stable equilibrium ðp�; q̂; n̂1; n̂2Þ of
dynamics (2). Similarly as (3), this equilibrium is also globally stable and two phenotypes
will stably coexist in the system (see Fig 2K).

8. If p� is an ESS for A and both R1 and R2 are ESSs for B, then both the symmetric boundary
equilibria ð0; 0; n̂1; n̂2Þ and ð1; 1; n̂1; n̂2Þ are unstable. Furthermore, Eq (7) has at most three
(interior) solutions, which are denoted by q̂1, q̂2 and q̂3 with q̂1 < q̂2 < q̂3. The two inte-
rior equilibria corresponding to q̂1 and q̂3 are stable under dynamics (2) and the interior
equilibrium corresponding to q̂2 is unstable (see Fig 2L).

9. If R2 (or R1) is the only ESS for A and q� is an ESS for B, then both the symmetric boundary
equilibria ð0; 0; n̂1; n̂2Þ and ð1; 1; n̂1; n̂2Þ are unstable. Furthermore, Eq (7) has a unique
(interior) solution q̂, which corresponds to an asymptotically stable equilibrium
ð0; q̂; n̂1; n̂2Þ (or ð1; q̂; n̂1; n̂2Þ) of dynamics (2). Similarly as (4), this equilibrium is also
globally stable and two phenotypes will stably coexist in patch 2 (see Fig 2M and 2N).

10. If R2 (or R1) is the only ESS for A and both R1 and R2 are ESSs for B, then the symmetric
boundary equilibrium ð0; 0; n̂1; n̂2Þ (or ð1; 1; n̂1; n̂2Þ) is stable and the other ð1; 1; n̂1; n̂2Þ
(or ð0; 0; n̂1; n̂2Þ) is unstable. Furthermore, Eq (7) has at most two (interior) solutions,
where one corresponds to a stable equilibria of dynamics (2) and the other is unstable. Sim-
ilarly as (2), either all individuals in the system display R2 (or R1), or individuals in patch 1
display R2 (or R1) and two phenotypes coexist in patch 2 (see Fig 2O and 2P).

Case 2. c1 > 0 and c2 > 0. We now consider the case with c1 > 0 and c2 > 0. It is easy to
check that dynamics (2) only have two boundary equilibria, ð0; 0; n̂1; n̂2Þ and ð1; 1; n̂1; n̂2Þ, and
the existence of asymmetric boundary equilibrium is impossible, for instance, if p = 0 and q 6¼
0, then dp

dt
> 0. We then focus on the number and stability of interior equilibria. Notice that an

equilibrium of dynamics (2) should be the solution of equation

D1pð1� pÞðp� p�Þ þ c2ðq� pÞ n2

n1

¼ 0 ;

D2qð1� qÞðq� q�Þ þ c1ðp� qÞ n1

n2

¼ 0 ;

½�f þ ða1 � b1n1Þ�n1 � c1n1 þ c2n2 ¼ 0 ;

½�g þ ða2 � b2n2Þ�n2 � c2n2 þ c1n1 ¼ 0 :

ð8Þ

So if both n1 and n2 are positive, then from the first two equations of Eq (8), an interior equilib-
rium of dynamics (2) should obey the equations

D1D2pð1� pÞqð1� qÞðp� p�Þðq� q�Þ ¼ � c1c2ðp� qÞ2: ð9Þ

Furthermore, from the third and the forth equations of Eq (8)

D1pð1� pÞðp� p�Þ
c2ðp� qÞ ¼ b1

b2

�
�g þ a2 � c2 þ D2qð1�qÞðq�q�Þ

q�p

�f þ a1 � c1 þ D1pð1�pÞðp�p�Þ
p�q

; ð10Þ
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where we assume that both p� and q� are in the interval 0< p�, q� < 1 (i.e., we consider the
most complicated payoff structures).

From Eq (9), it is easy to see that for the situation with p� 6¼ q�, if the interior equilibrium
exists, then it should be in the region (0, p�) × (q�, 1), or (p�, 1) × (0, q�) if Δ1Δ2 > 0, and in the
region (0, p�) × (0, q�), or (p�, 1) × (q�, 1) if Δ1Δ2 < 0. Of course, it is very difficult to get the
exactly analytic solutions of Eqs (9) and (10) in general. The numerical analysis suggests that
ten interior equilibria can exist (see Fig 3H). To show this, some examples are plotted in Fig 3.
All of these examples show clearly that the equilibrium structure of dynamics (2) could be very
complicated.

We further look at the bifurcation behaviors of system (2) for the case that both R1 and R2

are ESSs for A and B (i.e., the most complicated case), and assume equal migration rates
between regions, i.e., c1 = c2 = c. In this case, both the symmetric boundary equilibria
ð0; 0; n̂1; n̂2Þ and ð1; 1; n̂1; n̂2Þ are asymptotically stable, and the system can have ten interior
equilibria. When c = 0, it is easy to see that the system has nine equilibria in total, including
four stable (boundary) equilibria and five unstable equilibria. The number of equilibria jumps
from nine to twelve as soon as the migration rates becomes positive although the number of
stable equilibria keeps unchanged (see Fig 4A and 4B). Furthermore, numerical simulation
shows that both the numbers of stable equilibria and unstable equilibria decrease as c increases.
In particular, when c> 0.019, the system has only two stable equilibria (i.e., the two symmetric

Fig 3. Equilibria of Eq (2) on the p − q plane and their stabilities when c1 > 0 and c2 > 0. The red curves correspond to Eq (10) and the green curves Eq
(9). The intersections denoted by black spot correspond to stable equilibria of dynamics (2), and the intersections denoted by black circle correspond to
unstable equilibria. Parameters are taken as: In panel a, A = [0, 1; 1, 0], B = [0, 5; 5, 0], β1 = β2 = 0.01, α1 = 1.25, α2 = 1.8, c1 = 0.25 and c2 = 0.8. In panel b, A
= [0, 1; 1, 0],B = [0, 5; 5, 0], β1 = β2 = 0.01, α1 = 1.125, α2 = 0.1, c1 = 0.125 and c2 = 0.8. In panel c, A = [1, 0; 0, 1], B = [5, 0; 0, 5], β1 = β2 = 0.001, α1 = 1.4, α2
= 1.5, c1 = 0.4 and c2 = 0.5. In panel d, A = [0, 1; 1, 0], B = [5, 0; 0, 5] β1 = β2 = 0.001, α1 = 1.5, α2 = 1.2, c1 = 0.5 and c2 = 0.2. In panel e, A = [0, 5; 1, 0], B = [1,
0; 0, 5], β1 = β2 = 0.001, α1 = 1.5, α2 = 1.2, c1 = 0.5 and c2 = 0.2. In panel f, A = [0, 5; 1, 0], B = [0, 1; 5, 0], β1 = β2 = 0.001, α1 = 1.5, α2 = 1.2, c1 = 0.5 and c2 =
0.2. In panel g, A = [1, 0; 0, 5], B = [5, 0; 0, 1], β1 = β2 = 0.001, α1 = 1.4, α2 = 1.5, c1 = 0.4 and c2 = 0.5. In panel h, A = [1, 0; 0, 1], B = [2, 0; 0, 1], β1 = 0.05, β2 =
0.01, α1 = 1.75, α2 = 2, c1 = 0.25 and c2 = 0.01. The positions of p* and q* are marked by dashed lines (0 < p*, q* < 1, and note that p* and q*may not be
ESS).

doi:10.1371/journal.pone.0142929.g003
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boundary equilibria), and all interior equilibria are unstable (see Fig 4). These results suggest
that small migration rates make the dynamical behavior of the system more complex.

Discussion
A vast amount of research has been devoted to analyze the influence of spatial diffusion on the
evolutionary stability of ecology systems. One well known mathematical approach is the reac-
tion-diffusion equation, where in this framework, individuals are dispersed in a continues
space [10–11, 17–21]. For instance, Hofbauer et al. [11, 21] considered a population of two
types of individuals distributed in an one-dimensional space, and assumed that the migration
(or diffusion) rate is both individual-independent and location-independent. They showed that
in two-strategy coordination games, if the reaction term of the reaction-diffusion equation is
taken as replicator dynamics, then one strategy will drive out the other strategy in form of a
traveling wave front, although there is no simple rule to decide which strategy can survive.

Fig 4. Bifurcation behaviors of Eq (2) when c1 > 0 and c2 > 0. In panel a, the number of equilibria and the number of stable equilibria are denoted by blue
line and yellow line, respectively. In panels b-e, the red curves correspond to Eq (10) and the green curves Eq (9). The intersections denoted by black spot
correspond to stable equilibria of dynamics (2), and the intersections denoted by black circle correspond to unstable equilibria. The positions of p* and q* are
marked by dashed lines. Parameters are taken as: A = [1, 0; 0, 1], B = [2, 0; 0, 1], β1 = 0.05, β2 = 0.01, α1 = 1.75, α2 = 2. In panel b, c1 = c2 = c = 0.014; in
panel c, c1 = c2 = c = 0.015; in panel d, c1 = c2 = c = 0.02; and in panel e, c1 = c2 = c = 0.05.

doi:10.1371/journal.pone.0142929.g004
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In this paper, we assume that individuals are distributed in a (discrete) patchy environment.
Following Prior et al. [6], we investigate a simple two-phenotype and two-patch model, where
individuals compete only with their immediate neighbors and the migration rates between
patches are individual-independent but patch-dependent. Different from Prior et al. [6] who
focused on the homogeneous patchy environment, we here are more interested in the dynam-
ical stability in heterogeneous environment. Our main results show that: (i) if the pure strategy
R1 (or R2) is an ESS for both two patches, then the boundary equilibrium corresponding to
p = 1 and q = 1 (or p = 0 and q = 0) must be asymptotically stable; (ii) if the payoff matrices A

and B satisfy p� ¼ a12�a22
a12�a22þa21�a11

¼ q� ¼ b12�b22
b12�b22þb21�b11

2 ð0; 1Þ, then the interior equilibrium cor-

responding to (p�, q�) is asymptotically stable if p� is an ESS for A and q� an ESS for B; (iii) as a
special case with c1 > 0 and c2 = 0 (or c1 = 0 and c2 > 0), i.e. individuals can only move from
patch 1 to patch 2 (or from patch 2 to patch 1), all possible situations for the existence and sta-
bility of boundary and interior equilibria are considered, and we find that dynamics (2) can
have six equilibria where four of them are stable; (iv) for c1> 0 and c2> 0, the numerical analy-
sis shows that the equilibrium structure and dynamical behavior of the system could be very
complicated in general. In particular, dynamics (2) can have twelve equilibria where four of
them are stable.

Our analysis provides an insight for understanding the effect of spatial dispersion on the
evolutionary stability of patchy environment. Both the analytical analysis and the numerical
simulation indicate that the original ESS formulations which ignore the dispersion process can-
not be applied to predict the evolutionary outcome of the dispersion system even for small
migration rates. For instance, in the case that both patches have multiple ESS’s and no dispersal
between patches, the system has four (boundary) stable equilibria and five unstable equilibria.
However, if one of c1 and c2 becomes positive, the system can have two to four stable equilibria
and four to eight unstable equilibria. Furthermore, we found that both the numbers of stable
equilibria and unstable equilibria decrease in the migration rates. This observation has an intui-
tive biological interpretation [6]. In a heterogenous patchy environment, the effect of selection
is to make the overall population more heterogeneous in the sense of different patches have dif-
ferent population compositions, while the effect of migration is to move the population compo-
sition in each patch towards the mean of the overall population, i.e., migration promotes
homogeneity. Thus, when the migration rates are small (i.e., the effect of selection is strong),
similarly as the case of no dispersal, the system has two stable symmetric boundary equilibria
and two stable asymmetric equilibria; and when the migration rates are large (i.e., the effect of
migration is strong), the existence of stable asymmetric equilibrium is impossible, and the sys-
tem has only two stable symmetric boundary equilibria, where at these equilibria all individuals
display the same phenotype.

In this paper, we focus on the effect of spatial dispersion on two-patch system only. A natu-
ral extension would be to consider the three-patch system. However, analyzing the dynamical
behavior of the three-patch system may be an even more difficult issue because the equilibrium
structure of the two-patch system is already very complex. Another possible development
would be to compare the evolutionary stability of the patchy environment under different
migration rules. One commonly used migration rule is that individuals know perfectly the pay-
off in all patches and they always move to the patch with the highest payoff (i.e., ideal animals)
[15]. In contrast, a more realistic model is that individuals do not migrate to patches with
lower payoff [22]. Recent studies have shown that these two migration rules can lead to the
IFD [16, 23]. Since that the IFD corresponds to a stable equilibrium of the non-dispersed evo-
lutionary dynamics, we can then expect that these migration rules may also lead to the ESS of
the non-dispersed evolutionary dynamics [23].
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Methods

Stability of the symmetric equilibria
The Jacobian matrix of the dynamics (2) about the symmetric boundary equilibrium
ð1; 1; n̂1; n̂2Þ, denoted by J(1,1), is

�ða11 � a21Þ � c2
n̂2
n̂1

c2
n̂2
n̂1

0 0

c1
n̂1
n̂2

�ðb11 � b21Þ � c1
n̂1
n̂2

0 0

ð2a11 � a12 � a21Þn̂1 0 �b1n̂1 � c2
n̂2
n̂1

c2

0 ð2b11 � b12 � b21Þn̂2 c1 �b2n̂2 � c1
n̂1
n̂2

0
BBBBBBBBB@

1
CCCCCCCCCA

;

and similarly, the Jacobian matrix about ð0; 0; n̂1; n̂2Þ, denoted by J(0,0), is
ða12 � a22Þ � c2

n̂2
n̂1

c2
n̂2
n̂1

0 0

c1
n̂1
n̂2

ðb12 � b22Þ � c1
n̂1
n̂2

0 0

ða12 þ a21 � 2a22Þn̂1 0 �b1n̂1 � c2
n̂2
n̂1

c2

0 ðb12 þ b21 � 2b22Þn̂2 c1 �b2n̂2 � c1
n̂1
n̂2

0
BBBBBBBBB@

1
CCCCCCCCCA

:

For the matrix J(1,1), notice that the eigenvalues of the matrix

�ða11 � a21Þ � c2
n̂2
n̂1

c2
n̂2
n̂1

c1
n̂1
n̂2

�ðb11 � b21Þ � c1
n̂1
n̂2

0
@

1
A

have negative real parts if a11 − a21 > 0 and b11 − b21> 0, and that the real parts of the eigen-
values of the matrix

�b1n̂1 � c2
n̂2
n̂1

c2

c1 �b2n̂2 � c1
n̂1
n̂2

0
@

1
A

must be negative. So, if the pure strategy R1 is an ESS for both payoff matrices A and B, then
the eigenvalues of J(1,1) must have negative real parts [6]. Similar to the matrix J(0,0), if the pure
strategy R2 is an ESS for both payoff matrices A and B, then the eigenvalues of J(0,0) have nega-
tive real parts.

The Jacobian matrix about the symmetric interior equilibrium ðp�; q�; n̂1; n̂2Þ, denoted by
J(p� , q�), is

p�ð1� p�ÞD1 � c2
n̂2
n̂1

c2
n̂2
n̂1

0 0

c1
n̂1
n̂2

q�ð1� q�ÞD2 � c1
n̂1
n̂2

0 0

ð�a12 þ a21Þn̂1 0 �b1n̂1 � c2
n̂2
n̂1

c2

0 ð�b12 þ b21Þn̂2 c1 �b2n̂2 � c1
n̂1
n̂2

0
BBBBBBBBB@

1
CCCCCCCCCA

;

where Δ1 = a11 − a12 − a21 + a22 and Δ2 = b11 − b12 − b21 + b22. Also similar to the matrix J(1,1)
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(or the matrix J(0,0)), the eigenvalues of J(p� , q�) have the negative real parts if p� (= q�) is an
ESS for both payoff matrices A and B, i.e., the equilibrium ðp�; q�; n̂1; n̂2Þ is asymptotically sta-
ble if p� (= q�) is an ESS for both A and B.

Stability analysis of dynamics (6) when c1 > 0 and c2 = 0
We first analyze the solutions of Eq (7). For convenience, let

h1ðqÞ ¼ �D2qð1� qÞðq� q�Þ ;

h2ðqÞ ¼ p̂ � q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ �gÞ2 þ 4b2c1n̂1

q
� ða2 þ �g Þ

� �
:

It is easy to see that Eq (7) has a boundary solution q̂ ¼ 0 (or q = 1) if and only if p̂ ¼ 0 (or
p̂ ¼ 1). Furthermore, the interior solutions of Eq (7) should correspond to the intersections of
the functions h1(q) and h2(q) in the interval 0< q< 1. Notice that h1(0) = h1(1) = h1(q�) = 0,
Δ2 h1(q)> 0 for 0< q< q� and Δ2 h1(q)< 0 for q� < q< 1 (if 0< q� < 1), and that h2(0)� 0,
h2(1)� 0, h2ðp̂Þ ¼ 0, h2(q)> 0 for 0 < q < p̂ and h2(q)< 0 for p̂ < q < 1 (if 0 < p̂ < 1).
Then, for the existence of intersections in the interval 0< q< 1, we have that:

1. If R1 is the only ESS for both payoff matrices A and B, then, no intersection can exist (see
Fig 2A); and, similarly, if R2 is the only ESS for both A and B, then no intersection can exist
(see Fig 2B).

2. If both R1 and R2 are ESSs for A but R1 is the only ESS for B, then only one intersection
exists (see Fig 2C); and, similarly, if both R1 and R2 are ESSs for A but R2 is the only ESS for
B, then only one intersection exists (see Fig 2D).

3. If p� 2 (0, 1) is an ESS for A and R1 is the only ESS for B, only one intersection exists (see
Fig 2E); and, similarly, if p� is an ESS for A and R2 is the only ESS for B, then only one inter-
section exists (Fig 2F).

4. If R2 is the only ESS for A and R1 is the only ESS for B, then only one intersection exists (see
Fig 2G); and, similarly, if R1 is the only ESS for A and R2 is the only ESS for B, then only one
intersection exists (see Fig 2H).

5. If both R1 and R2 are ESSs for A and B, then at most four intersections can exist (see Fig 2I).

6. If both R1 and R2 are ESSs for A and q� 2 (0, 1) is an ESS for B, only two intersections exist
(see Fig 2J).

7. If p� is an ESS for A and q� is an ESS for B, the only one intersection exists (see Fig 2K).

8. If p� is an ESS for A and both R1 and R2 are ESSs for B, then there are at most three intersec-
tions (see Fig 2L).

9. If R2 is the only ESS for A and q� is an ESS for B, then only one intersection exists (see Fig
2M); and, similarly, If R1 is the only ESS for A and q� is an ESS for B, then only one intersec-
tion exists (see Fig 2N).

10. If R2 is the only ESS for A and both R1 and R2 are ESSs for B, then there are at most two
intersections (see Fig 2O); and, similarly, if R1 is the only ESS for A and both R1 and R2 are
ESSs, then there are at most two intersections (see Fig 2P).

For the stability of the solutions of Eq (7) under dynamics (6), it is easy to see that for given
p̂ (i.e. p̂ 2 f0; 1; p�g corresponds to the stable equilibrium of dynamics (5)), if ~q ¼ p̂ and ~q is
an ESS for the payoff matrix B, then the corresponding equilibrium ð~q; n̂2Þmust be
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asymptotically stable under dynamics (6). On the hand, let ðq̂; n̂2Þ be an interior equilibrium of
dynamics (6), and the Jacobian matrix about ðq̂; n̂2Þ, denoted by Jðq̂ ;n̂2Þ, is given by

Jðq̂;n̂2Þ ¼
� h1ðqÞ

dq
jq¼q̂ � c1

n̂1

n̂2

�ðp̂ � q̂Þc1 n̂1
n̂2
2

d�gðqÞ
dq

jq¼q̂ n̂2 �c1
n̂1
n̂2
� b2n̂2

0
BBBB@

1
CCCCA :

Clearly, the interior equilibrium ðq̂; n̂2Þ is asymptotically stable (i.e. the eigenvalues of Jðq̂;n̂2Þ
have the negative real parts) if

� h1ðqÞ
dq

jq¼q̂ � 2c1
n̂1

n̂2

� b2n̂2 < 0 ;

h1ðqÞ
dq

jq¼q̂ þ c1
n̂1

n̂2

� �
c1

n̂1
n̂2
þ b2n̂2

	 

þ ðp̂ � q̂Þc1

n̂1

n̂2

� d�gðqÞ
dq

jq¼q̂ > 0 :

Thus, for given parameter values, stabilities of the interior equilibria of dynamics (6) (i.e.,
interior solutions of Eq (7)) can be analyzed numerically according to the above conditions
(see the figure caption of Fig 2 for detailed parameters, note that the following results may not
be true for all parameter values).

1. If R1 (or R2) is the only ESS for A and B, then the boundary equilibrium ð1; n̂2Þ with p̂ ¼ 1

(or ð0; n̂2Þ with p̂ ¼ 0) is asymptotically stable (see also Fig 2A and 2B).

2. If both R1 and R2 are ESSs for A but R1 (or R2) is the only ESS for B, then one boundary
equilibrium ð0; n̂2Þ with p̂ ¼ 0 (or ð1; n̂2Þ with p̂ ¼ 1) is unstable and the other boundary
equilibrium ð1; n̂2Þ with p̂ ¼ 1 (or ð0; n̂2Þ with p̂ ¼ 0) is asymptotically stable. Furthermore,
the unique interior equilibrium ðq̂; n̂2Þ is also asymptotically stable (see also Fig 2C and
2D).

3. If p� is an ESS for A and R1 (or R2) is the only ESS for B, then the unique interior equilib-
rium is asymptotically stable (see also Fig 2E and 2F).

4. If R2 (or R1) is the only ESS for A but R1 (or R2) is the only ESS for B, then the boundary
equilibrium ð0; n̂2Þ with p̂ ¼ 0 (or ð1; n̂2Þ with p̂ ¼ 1) is unstable and the unique interior
equilibrium is asymptotically stable (see also Fig 2G and 2H).

5. If both R1 and R2 are ESSs for A and B, then the boundary equilibrium ð1; n̂2Þ with p̂ ¼ 1,
or the boundary equilibrium ð0; n̂2Þ with p̂ ¼ 0, is stable, and for four interior equilibria,
two are stable and the other two are unstable (see also Fig 2I).

6. If both R1 and R2 are ESSs for A and q� is an ESS for B, then the boundary equilibrium
ð1; n̂2Þ with p̂ ¼ 1, or the boundary equilibrium ð0; n̂2Þ with p̂ ¼ 0, is unstable, and the two
interior equilibria are asymptotically stable (see also Fig 2J).

7. If p� is an ESS for A and q� is an ESS for B, then the unique interior equilibrium is asymptot-
ically stable (see also Fig 2K).

8. If p� is an ESS forA and both R1 and R2 are ESSs for B, then there are at most three interior
equilibria corresponding to three intersections of h1 and h2, which are denoted by q̂1, q̂2 and
q̂3 with q̂1 < q̂2 < q̂3, the two interior equilibria corresponding to q̂1 and q̂3, respectively,
are stable and the interior equilibrium corresponding to q̂2 is unstable (see also Fig 2L).
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9. If R2 (or R1) is the only ESS for A and q� is an ESS for B, then the boundary equilibrium
ð0; n̂2Þ with p̂ ¼ 0 (or ð1; n̂2Þ with p̂ ¼ 1Þ is unstable and the unique interior equilibrium is
asymptotically stable (see also Fig 2M and 2N).

10. If R2 (or R1) is the only ESS forA and both R1 and R2 are ESSs for B, then there are at most
two interior equilibria, the boundary equilibrium ð0; n̂2Þ for p̂ ¼ 0 (or ð1; n̂2Þ for p̂ ¼ 1) is
stable, and one interior equilibrium is stable and the other unstable (see also Fig 2O and 2P).
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