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Abstract: Glucose metabolism plays an important role in many normal and pathological physiological
processes in the body. The breakdown and synthesis of muscle glycogen provides ATP for muscle
activities. A genome-wide association study for muscle glycogen was performed in 474 Jingxing
yellow chickens to identify significant single nucleotide polymorphisms (SNPs) and insertions and
deletions (INDELs) involved in muscle glycogen metabolism. A total of nine SNPs (p < 1/699341) and
three INDELs (p < 1/755733) reached a significant level of potential association. The following results
were obtained through a series of analyses, including additive effects and gene function annotation.
Two significant SNPs were found in introns 12 and 13 of copine 4 (CPNE4) on chromosome 2.
The wild-type and mutant individuals had significant differences in glycogen metabolism at two
loci (p < 0.01 for both). Individuals carrying two mutations had increased muscle glycogen content.
According to the gene annotation of chromosome 11, there is a significant INDEL in intron 6 of
naked cuticle homolog 1 (NKD1). After the INDEL mutation, the glycogen content increased
significantly. There was a significant difference between wild-type and mutant individuals (p < 0.01).
These mutations likely affecting two genes (CPNE4 and NKD1) may affect glycogen storage in a
pleiotropic manner. Gene annotation indicates that CPNE4 and NKD1 may affect the process of
glucose metabolism. Our findings contribute to understanding the genetic regulation of muscle
glycogen metabolism and provide theoretical support.
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1. Introduction

Muscle glycogen is the main source of glucose for muscle glycolysis. Glycolysis is the most
primitive metabolic pathway for producing energy in living organisms. Study of muscle glycogen
function and influencing factors will reveal the genetic mechanism of glucose metabolism and lead to
its application in future molecular breeding research.

Glycogen is the main form of glucose storage in the body, mainly in the form of liver and muscle
glycogen. Glycogen is a branched polysaccharide found in the form of granules in the cytosol of the
cytoplasm, and is connected by many glucosides. The blood glucose concentration is maintained at a
relatively constant level through the synthesis and breakdown of liver glycogen. Numerous studies
have suggested that the main function of muscle glycogen synthesis and breakdown is to provide
the muscle with energy in the form of ATP. However, under some special physiological conditions,
such as intense exercise, muscle glycogen plays an important role in maintaining blood sugar stability
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and regulating the balance of glucose metabolism [1]. In the case of increased blood glucose levels,
the stimulation of insulin secretion causes a rapid increase in the amount of GLUT4, which accelerates
the synthesis of muscle glycogen. Conversely, lower blood glucose levels reduce glucose intake and
promote the gluconeogenesis process [2]. The glycolytic potential (GP) refers to the total amount of
substrate (such as muscle glycogen, glucose-6-phosphate, and glucose) that can be converted into lactic
acid in animals or in muscles after slaughter, and the lactate content [3]. Among these compounds,
glucose-6-phosphate, glucose, and lactic acid are intermediate products of glycogenesis, in which
muscle glycogen plays an important role. Relevant studies have confirmed the relationship between
GP and acidic pH [4–6].

Glycolysis not only plays an important role in numerous pathological physiological processes
in the body, but also has an impact on the flavor quality of meat. It also provides useful molecular
markers for the breeding of high-quality broiler chicken breeds. Genetic research on poultry meat
quality traits started late. Two studies conducted under the same experimental conditions and on the
same broiler production line have shown that the pH value, color, and water retention capacity of meat
have moderately high levels of heritability (from 0.35 to 0.57) [7,8]. In addition, meat quality studies
performed in turkeys revealed that meat quality traits show intermediate heritability values (from 0.12
to 0.22) [9]. Another study reported that the level of glycogen stored in breast muscle showed high
heritability according to the GP during slaughter (h2 = 0.43), as well as a very strong negative genetic
correlation (rg) with pH (rg –0.97) of the final meat, indicating a common genetic control of GP and
pH value [10]. A study including breeding experiments using GP as a biological marker to improve
meat quality, demonstrated, at least in part, the possibility of applying the intermediate products of
glycogen metabolism in pig breeding [11].

Whole-genome sequencing is a rapid and sensitive technology used to not only identify single
nucleotide polymorphisms (SNPs) and candidate genes, but also shorten the cycle of molecular
breeding [12,13].

Research on multiple traits in multiple species using genome-wide association studies (GWAS) is
being conducted [14,15]. The GWAS of glycogen GP and its related components, namely glycogen,
glucose, glucose-6-phosphate, and lactic acid, together with the sequencing analysis results showed
a deletion mutation in the splice acceptor site of intron 9 of PHKG, an open reading frame change
generating a premature stop codon, which led to a 43% increase in GP and a 20% reduction in the
moisture of pork [16]. The above genetic results collectively indicate that glycogen content estimated
from GP is under close genetic control [10]. In poultry and pigs, both traits can be modified by selection.

GWAS is widely used to analyze the genetic structure of growth, reproduction, and meat quality
traits of various poultry. There are no reports about association analyses of poultry glycogen traits,
and the analysis data coverage of most other species using microarrays is limited. In this study, we
performed GWAS analysis of common SNPs and INDELs by whole-genome sequencing of a chicken
line to obtain candidate genes that significantly affect the glycolysis process. It is anticipated to apply
the identified molecular markers for the molecular breeding of poultry.

2. Materials and Methods

2.1. Ethics Statement

The work was approved by the Animal Management Committee of the Institute of Animal
Sciences, Chinese Academy of Agricultural Sciences (IAS-CAAS, Beijing, China). Ethical approval
for this experiment was obtained from the IAS-CAAS Animal Ethics Committee (approval number:
IAS2019-21).
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2.2. Resource Population

The experimental animals were Jingxing yellow chicken. Experimental animals were selected for
the laboratory-specific intramuscular fat selection line, which had been bred for 16 generations. A total
of 474 chickens were selected for this trial, of which 217 were chickens in the intramuscular fat selection
line and 256 chickens in the control line (the natural population without selection). All individuals
were 98 days of age and allowed to eat and drink ad libitum. Blood samples were collected the day
before slaughter by standard venipuncture into a tube with anticoagulant and stored at −20 ◦C for
subsequent genomic DNA extraction. The breast muscle tissue samples from each chicken were stored
at −80 ◦C for subsequent measurements of glycogen content.

2.3. Phenotypic Measurement

A sample of 0.1 g of pectoral muscle tissue was used for measurement. Glycogen is stable in
concentrated alkali solutions. The tissue was placed into 300 µL concentrated alkali solution for 20 min
before color development to destroy other components and preserve glycogen. Glycogen was then
dehydrated with concentrated sulfuric acid to form an aldehyde derivative, which was reacted with
anthrone to form a blue compound, which was colorimetrically quantified using a standard glucose
solution treated in the same way, and the glycogen content was ultimately calculated.

2.4. Quality Control and Imputation

Blood collected from veins of the entire population was extracted using the standard
phenol/chloroform extraction method. The quantity and quality of the DNA extracted from whole
blood samples were determined using a Nanodrop ND-1000 Spectrophotometer (Thermo Fisher
Scientific Inc., Waltham, MA, USA) to measure their concentration and integrity, as well as by agarose
gel electrophoresis to visually assess DNA integrity. Samples that passed the quality test were sent to
the company for 10G whole-genome sequencing. A total of 474 adult females Jingxing yellow chickens
(14 weeks of age) were selected to perform the GWAS. Data were first filled with the Beagle v5.0
software [17,18] for all SNP loci, and the filled SNP locus was quality-controlled with the Plink v1.9
software [19]. The standard procedure was to remove sites with a minimum allele frequency (MAF) of
less than 5% (MAF < 0.05) and sites with a deletion rate greater than 5% (geno > 0.05).

2.5. Whole-Genome Resequencing

After the examinations, paired-end libraries were generated for each eligible sample using standard
procedures. The average insert size was 300–500 bp, and the average read length was PE150 bp
(150 bp double-ended). All libraries were separately sequenced on a Novaseq 6000 sequencer (Illumina,
San Diego, CA, USA) to an average raw read sequence coverage of ×10 for the natural populations.
Accession data code is CRA002643 at https://bigd.big.ac.cn/gsa/.

The filtered pure reads were compared with the reference genome (RefSeq GCF_000002315.4)
using the MEM mode of the BWA software (version 0.7.12) (http://bio-bwa.sourceforge.net), and then
Picard-tools(version 1.119) (https://broadinstitute.github.io/picard/) and Sam-tools (version 1.9) (http:
//samtools.sourceforge.net/) were used to obtain the sorted BAM files. Before detecting mutations,
the basic quality score recalibration (BQSR) had to be recalibrated. The BQSR involves two steps. In the
first step, Base Recalibrator, the Picard tool and stool were used to obtain the classified BAM file for
analysis. In the second step, Apply BQSR, the calibration table file obtained in the first step was used to
readjust the basic quality value in the original BAM file; this new quality value was then re-exported to
a new BAM file. GATK (version 4.0.2.1) selects variants and GATK variants for filtering [20]. The hard
filter standard for SNPs is QualByDepth (QD) < 2.0, RMSMappingQuality (MQ) < 40, FisherStrand
(FS) > 60.0, StrandOddsRatio (SOR) > 3.0, MappingQualityRankSumTest (MQNankSum) < –12.5;
the INDELs hard filter standard is QD < 2.0, FS > 200, SOR > 10.0, MQNankSum < –12.5.

https://bigd.big.ac.cn/gsa/
http://bio-bwa.sourceforge.net
https://broadinstitute.github.io/picard/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
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2.6. Population Structure and Association Analysis

As an effective means of GWAS analysis, the genome-wide efficient mixed-model association
(GEMMA) v0.94 software, which can perform genomic localization of traits based on population SNP
or INDEL information using an efficient exact mixed model approach, was implemented with the
valid individuals and SNPs or insertions and deletions (INDELs) for univariate analysis. The method
makes exact GWAS computationally feasible for large sample sizes. Independent SNPs or INDELs
were used to compute the centered relatedness matrix, and the significance p-value level between SNPs
or INDELs and phenotypes was calculated from a derived Wald test. The analysis was performed
using the GEMMA software [21], and the calculation model was:

y = Wα+ Xβ+ Zu + ε, (1)

where u ∼ MVNm
(
0, λτ−1K

)
,ε ∼ MVNn

(
0, τ−1In

)
n is the number of individuals, m is the number

of packets of random effects, y is the n × 1 dimensional quantitative trait phenotype value, W is the
covariance matrix of n × c, α is the c × 1 covariate, β is the effective SNP or INDEL, Z is the n ×m load
matrix, u is m × 1 random effect vector, ε is an n × 1 error vector. τ -1 is the residual variance, λ is the
ratio of the variance components, K is the m ×m affinity matrix, and In is the n × n unit matrix.

The genomic inflation factor was calculated with R (https://www.r-project.org/). In this analysis,
the first and second principal components were used as covariates, and the affinity matrix (plink,
prune, r2 > 0.2) was established by using unlinked SNPs or INDELs. Individual SNPs or INDELs
were solved one by one. Additionally, the significance of the SNP or INDEL was determined by the
likelihood ratio test (LRT).

2.7. Gene Identification and Annotation

The annotated genes that were the nearest or harboring significant SNPs were identified as
candidate genes in which significant loci were located [22]. Genes in a specific genomic region [23,24]
were detected by using Variant Effect Predictor (VEP) based on the galGal5 assembly supported by
Ensembl (oct2018.archive.ensembl.org/Gallus_gallus/Info/Index) accessed in May 2019.

3. Results

3.1. Phenotypic Data and Structural Analysis

The maximum and minimum glycogen traits of the 474 individuals were 8.92 mg/g and 0.23 mg/g,
respectively, and the average was 2.37 mg/g, with a coefficient of variation of 56%. In the GWAS analysis,
population stratification effects may lead to false positive results [25]. As our population was composed
of two groups, we calculated the genome-controlled inflation factor (λ) of glycogen to be 1.155. Since
this value should ideally be equal to 1, this result indicated that there was a significant population
stratification effect. Therefore, in the GWAS, we took the first and second principal components of the
population as fixed effects and analyzed them as a whole.

3.2. Genome-Wide Association Studies (GWAS) for Single Nucleotide Polymorphism (SNP) and Additive Effect

In this study, for the Q-Q plot presented as Figure 1. The Manhattan map of muscle glycogen
is shown in Figure 2. p-value correction was first performed using the PLINKv1.9 software [19] for
block analysis. This experiment used the Bonferroni correction method to correct the p-value. The D’
was set to 0.8, the maximum chain length was 500 Kb, and a total of 699,341 independent linkage
disequilibrium (LD) blocks were obtained.

https://www.r-project.org/
oct2018.archive.ensembl.org/Gallus_gallus/Info/Index
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Figure 1. Quantile–quantile plots of p-values for muscle glycogen. The x-axis is the expected −log10
p-value and the y-axis is the observed −log10 p-value.

In the GWAS analysis of muscle glycogen, nine SNPs reached a significant level of potential
association (Figure 2), annotated as a 100-Kb gene near the locus (Table 1). There is no gene in the
100 Kb region of chromosome 1 plus or minus, and two SNP sites on chromosome 2 are in the intronic
region of the CPNE4 gene. The chromosome 3 rs13720604 has three genes in this region. The mutation
of TTC7A mainly acts on the gastrointestinal tract. The TTC7A protein is part of a complex that localizes
phosphatidylinositol 4-kinase (PI4K) to the plasma membranes. SOCS5 is a cytokine signaling inhibitor
that acts on IGF-1 receptor signaling and EGF signaling. There are three SNPs on chromosome 4 that
reached a significant level. GRIA3 is a glutamate receptor that acts as a ligand-gated ion channel in
the central nervous system and plays an important role in excitatory synaptic transmission. MFAP3L
protein may participate in the nuclear signaling of EGFR and MAPK1/ERK2 pathway. Chloride
voltage-gated channel 3 (CLCN3) is a protein coding gene which is associated with cystic fibrosis.
Among its related pathways are the activation of cAMP-dependent PKA and the transport of glucose
and other sugars, bile salts and organic acids, metal ions, and amine compounds. There are two genes
associated with the chromosome 11 locus. CYLD encodes a cytoplasmic protein with three conserved
cytoskeletal-associated protein-glycine (CAP-GLY) domains that functions as a deubiquitinating
enzyme. Gene Ontology (GO) annotations associated with the other gene on this locus, SNX20, include
phosphatidylinositol binding.

Genes 2020, 11, x FOR PEER REVIEW 5 of 12 

 

In the GWAS analysis of muscle glycogen, nine SNPs reached a significant level of potential 
association (Figure 2), annotated as a 100-Kb gene near the locus (Table 1). There is no gene in the 100 
Kb region of chromosome 1 plus or minus, and two SNP sites on chromosome 2 are in the intronic 
region of the CPNE4 gene. The chromosome 3 rs13720604 has three genes in this region. The mutation 
of TTC7A mainly acts on the gastrointestinal tract. The TTC7A protein is part of a complex that 
localizes phosphatidylinositol 4-kinase (PI4K) to the plasma membranes. SOCS5 is a cytokine 
signaling inhibitor that acts on IGF-1 receptor signaling and EGF signaling. There are three SNPs on 
chromosome 4 that reached a significant level. GRIA3 is a glutamate receptor that acts as a ligand-
gated ion channel in the central nervous system and plays an important role in excitatory synaptic 
transmission. MFAP3L protein may participate in the nuclear signaling of EGFR and MAPK1/ERK2 
pathway. Chloride voltage-gated channel 3 (CLCN3) is a protein coding gene which is associated with 
cystic fibrosis. Among its related pathways are the activation of cAMP-dependent PKA and the 
transport of glucose and other sugars, bile salts and organic acids, metal ions, and amine compounds. 
There are two genes associated with the chromosome 11 locus. CYLD encodes a cytoplasmic protein 
with three conserved cytoskeletal-associated protein-glycine (CAP-GLY) domains that functions as a 
deubiquitinating enzyme. Gene Ontology (GO) annotations associated with the other gene on this 
locus, SNX20, include phosphatidylinositol binding. 

 
Figure 2. Manhattan plot derived from a genome-wide association studies (GWAS) single nucleotide 
polymorphisms (SNPs)at muscle glycogen. Each dot corresponds to a SNP within the dataset, while the 
horizontal blue and red lines denote the genome-wide significance (7.15 x 10-8) and suggestive significance 
thresholds (1.43 x 10-6), respectively. The Manhattan plot contains –log10 observed p-values for genome-wide 
SNPs (y-axis) plotted against their corresponding position on each chromosome (x-axis). 

Table 1. SNPs with genome-wide significance for muscle glycogen. 

Chromosome SNP ID Position (BP) p_Wald Nearest Gene Location (Kb) 
1 rs314624646 150449184 1.05 x 10-06 / / 
2 rs313265900 42074647 2.89 x 10-07 CPNE4 Intronic 
2 NEW 42078810 9.95 x 10-07 CPNE4 Intronic 

3 rs13720604 26983490 1.04 x 10-06 
MCFD2 D12.4 
TTC7A U26.6 
SOCS5 D72.7 

3 rs740265511 101450476 6.58 x 10-07 OSR1 D18.5 
4 rs733544036 15746019 2.29 x 10-07 GRIA3 U62.1 
4 rs741487544 18209706 5.66 x 10-07 IDS U53.5 

4 rs315075611 25507719 3.14 x 10-07 
MFAP3L D30.8 
CLCN3 U32.8 
HPF1 D22.1 

11 rs734443657 6224928 6.02 x 10-07 
CYLD D50.2 
SNX20 U73.2 

U: Upstream, D: Downstream, CPNE4: Copine 4, MCFD2: Multiple Coagulation Factor Deficiency 2, 
TTC7A: Tetratricopeptide Repeat Domain 7, SOCS5: Suppressor Of Cytokine Signaling 5A, OSR1: Odd-
Skipped Related Transcription Factor 1, GRIA3: Glutamate Ionotropic Receptor AMPA Type Subunit 3, IDS: 
Iduronate 2-Sulfatase, MFAP3L: Microfibril Associated Protein 3 Like, CLCN3: Chloride Voltage-Gated 
Channel 3, HPF1: Histone PARylation Factor 1, CYLD: CYLD Lysine 63 Deubiquitinase, SNX20: Sorting 
Nexin 20. 

Figure 2. Manhattan plot derived from a genome-wide association studies (GWAS) single nucleotide
polymorphisms (SNPs) at muscle glycogen. Each dot corresponds to a SNP within the dataset,
while the horizontal blue and red lines denote the genome-wide significance (7.15 × 10−8) and
suggestive significance thresholds (1.43 × 10−6), respectively. The Manhattan plot contains –log10

observed p-values for genome-wide SNPs (y-axis) plotted against their corresponding position on each
chromosome (x-axis).
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Table 1. SNPs with genome-wide significance for muscle glycogen.

Chromosome SNP ID Position (BP) p_Wald Nearest Gene Location (Kb)

1 rs314624646 150449184 1.05 × 10−06 / /

2 rs313265900 42074647 2.89 × 10−07 CPNE4 Intronic
2 NEW 42078810 9.95 × 10−07 CPNE4 Intronic

3 rs13720604 26983490 1.04 × 10−06
MCFD2 D12.4
TTC7A U26.6
SOCS5 D72.7

3 rs740265511 101450476 6.58 × 10−07 OSR1 D18.5
4 rs733544036 15746019 2.29 × 10−07 GRIA3 U62.1
4 rs741487544 18209706 5.66 × 10−07 IDS U53.5

4 rs315075611 25507719 3.14 × 10−07
MFAP3L D30.8
CLCN3 U32.8
HPF1 D22.1

11 rs734443657 6224928 6.02 × 10−07 CYLD D50.2
SNX20 U73.2

U: Upstream, D: Downstream, CPNE4: Copine 4, MCFD2: Multiple Coagulation Factor Deficiency 2, TTC7A:
Tetratricopeptide Repeat Domain 7, SOCS5: Suppressor Of Cytokine Signaling 5A, OSR1: Odd-Skipped Related Transcription
Factor 1, GRIA3: Glutamate Ionotropic Receptor AMPA Type Subunit 3, IDS: Iduronate 2-Sulfatase, MFAP3L: Microfibril
Associated Protein 3 Like, CLCN3: Chloride Voltage-Gated Channel 3, HPF1: Histone PARylation Factor 1, CYLD: CYLD
Lysine 63 Deubiquitinase, SNX20: Sorting Nexin 20.

Based on the SNP sites typing results of the whole genome sequencing data, the average genotype
frequency and phenotype of nine SNPs were calculated (Table 2). The data in Table 3 reveal that the
dominant genotype rs314624646 is TT; the dominant genotypes rs313265900 and rs740265511 are CC;
the dominant genotype rs13720604, rs733544657, and rs734443 are GG; and the dominant genotypes
rs13720604, rs741487544, and rs315075611 are AA.

The additive effect of alleles is the average of the two homozygous dispersions. According to the
cumulative effect, the glycogen content of the rs314624646, rs13720604, and rs740265511 mutations
decreased, and the glycogen content of the remaining six SNPs increased. In stepwise conditional
analysis, important SNP genotypes were added to the univariate model to elucidate independent
signals, and significant differences were found between the nine SNP wild-type and mutant individuals
(Figure S1, Table S1: SNP1–SNP9).
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Table 2. Allelic frequency, phenotypic mean, additive effect of significant SNP.

Chr Position (BP) ref alt freq_ref|ref freq_ref|alt/alt|ref freq_alt|alt pheno_ref|ref pheno_ref|alt pheno_alt|alt Additive Effect

1 150449184 C T 0.1308 0.3059 0.5633 3.1108 2.4512 2.1559 –0.4775
2 42074647 C T 0.8376 0.1414 0.0211 2.2755 2.5604 4.8972 1.3108
2 42078810 A C 0.8586 0.1224 0.0190 2.2726 2.7663 4.2772 1.0023
3 26983490 G A 0.4515 0.4051 0.1435 2.6424 2.2138 1.9615 –0.3405
3 101450476 C T 0.5380 0.2025 0.2595 2.6404 2.1277 2.0027 –0.3188
4 15746019 G T 0.8658 0.1216 0.0126 2.2689 2.8665 4.5671 1.1491
4 18209706 A G 0.8692 0.1097 0.0211 2.2713 2.8023 4.2408 0.9847
4 25507719 A G 0.8847 0.1048 0.0105 2.2757 2.9680 4.3935 1.0589
11 6224928 G A 0.6603 0.2869 0.0527 2.1946 2.6683 2.9648 0.3851

ref means wild type; alt means mutant; freq_ref|ref refers to the genotype frequency of a wild-type individual; freq_ref|alt/alt|ref refers to the genotype frequency of heterozygous
individuals; freq_alt|alt refers to the genotype frequency of a mutant individual; pheno_ref|ref refers to the mean of the wild-type individual phenotype; pheno_ref|alt refers to the average
phenotype of heterozygous individuals; pheno_alt|alt refers to the average phenotype of mutant individuals.

Table 3. Allelic frequency, phenotypic mean, additive effect of significant INDEL.

Chr Position (BP) ref alt freq_ref|ref freq_ref| alt/alt |ref freq_ alt|alt pheno_ref|ref pheno_ref| alt pheno_ alt|alt Additive Effect

1 7169549 G GACAA 0.8421 0.1308 0.0219 2.2696 2.8068 3.9756 0.8530
3 27425548 T TA 0.3861 0.3991 0.2148 2.1143 2.3646 2.8366 0.3612
11 6376492 AG A 0.5416 0.3539 0.1045 2.1395 2.5656 2.9383 0.3994

ref means wild type; alt means insertions and deletions; freq_ref|ref refers to the genotype frequency of a wild-type individual; freq_ref|alt/alt|ref refers to the genotype frequency of
heterozygous individuals; freq_alt|alt refers to the genotype frequency of a mutant individual; pheno_ref|ref refers to the mean of the wild-type individual phenotype; pheno_ref|alt refers
to the average phenotype of heterozygous individuals; pheno_alt|alt refers to the average phenotype of mutant individuals.
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3.3. GWAS for Insertions and Deletions (INDEL) and Additive Effect

In this study, for the Q-Q plot presented as Figure 3. The results of the GWAS analysis indicated that
there were three significant levels of metabolism related INDELs in the whole genome (p < 1.32 × 10−6)
(Figure 4), which were located on chromosomes 1, 3, and 11 (Table 4). Genes such as NKD1 and FOSL2
were identified. The INDEL of chromosome 11 is located in the NKD1 gene, which encodes a protein
that is an inhibitor of the canonical WNT signaling pathway. Glycogen synthase kinase 3A (GSK3A)
is among the activated target genes of NKD1. At 29.7 Kb upstream of chromosome 3, 27425548 is
the FOSL2 gene, which, as a dimer with JUN, activates LIF transcription and CEBPB transcription in
PGE2-activated osteoblasts. CEBPB plays a major role in adipogenesis and gluconeogenesis. There is
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Table 4. INDELs with genome-wide significance for glycogen traits.

Chromosome Position (BP) p_Wald Nearest Gene Location (Kb)

1 7169549 1.23 × 10−06 / /

3 27425548 1.03 × 10−06 FOSL2 U29.7Kb
11 6376492 1.18 × 10−06 NKD1 Intronic

FOSL2: FOS Like 2, AP-1 Transcription Factor Subunit; NKD1: naked cuticle homolog 1.
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The same method as that used for the calculation of SNPs in Section 3.2 was used to calculate
the average genotype frequency and phenotype of INDELs (Table 3). The results indicate that the
three INDELs (sorted from small to large on the chromosome) dominant genotypes are wild-type,
heterozygous, and wild-type.

The same additive effect found that the three INDELs resulted in varying degrees of glycogen
content. In stepwise conditional analysis, important INDEL types were added to the univariate model
to identify independent signals, and significant differences were found between the three INDELs
wild-type and mutant individuals (Figure S1, Table S1: INDEL1–INDEL3).

4. Discussion

Muscle glycogen and glucose in the glucose metabolism cycle are the main compounds that
maintain normal metabolism and function in skeletal muscle cells. Glycogen also affects meat quality
through its GP [26].

The Efficient Mixed-Model Association eXpedited (EMMAX) test and the Genome Association
and Prediction Integrated Tool (GAPIT) both adopt the strategy of unchanged variance components in
the fixed zero model to improve the operation speed. This is actually an approximate algorithm which
is not as accurate as GEMMA. GEMMA can directly use the plink binary format data without complex
data format conversion. It is more comprehensive and can perform single-label GWAS, multilabel
GWAS and multitrait GWAS analysis.

INDEL marker refers to the insertion or deletion of nucleotide fragments of different sizes at
the same site in the genome between different individuals of the same species or between different
individuals of different species [27]. The distribution of INDEL markers in the genome is second only
to SNP markers, but it has good stability, high polymorphism, and simple banding [28]. We performed
GWAS for SNPs and INDELs associated with glycogen metabolism, both of which found significant
sites that enriched the results, and identified more candidate SNP or INDEL sites and genes [21].

This trial aims to identify relevant SNP or INDEL sites and genes that affect chicken muscle
glycogen content. Although many studies have attempted to identify the genetic determinants of
chicken meat traits, most of them focused on the use of chips to study the visual traits of the slaughtered
animal, and to date, there has been no related research on glucose metabolism indicators, such as
muscle glycogen.

According to the association analysis of data binding phenotypes of the 474 individuals using
whole-genome sequencing, two SNP sites on chromosome 2 are on the intronic region of the gene
CPNE4, which belongs to the highly-conserved copine family. It encodes a calcium-dependent,
phospholipid-binding protein which is significantly expressed in cancer tissues [29]. To date, there
have been no reports of CPNE4 affecting glycogen content. The two SNP mutations in chromosome 2
have a glycogen-increasing effect; the SNP is located on the intronic region of the gene, and may have
an enhancing effect by regulating the promoter. However, there are fewer individuals with mutations,
which may be due to the small size of the population sample, and a larger sample and further research
are needed in the future. CPNE4 can be considered as a candidate gene that affects muscle glycogen
of chicken muscle, and provides a reference for marker-assisted selection of Jingxing yellow chicken.
However, the related mechanism needs further verification.

The site at 62.1 Kb upstream of the rs733544036 on chromosome 4 is located adjacent to the
glutamate ionotropic receptor AMPA type subunit 3 (GRIA3) gene. It has been reported that after
astrocyte uptake of glutamate, the glutamate transporter initiates the glycolysis process [30–32], GRIA3
is involved in muscle glycogen synthesis and affects muscle glycogen content and changes in its content.
The additive effect showed that the phenotype increased after mutation at this site; the mean values
of the phenotypes of the wild-type and mutant individuals were significantly different. At 32.8 Kb
upstream of the rs315075611 is the gene CLCN3, which encodes a member of the voltage-gated
chloride channel (ClC) family. This ClC protein is required for lysophosphatidic acid (LPA)-activated
Cl-current activity and fibroblast-myofibroblast differentiation. Indeed, the identification of receptors
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in lysophospholipid cells revealed that LPA is a transcellular PPAR gamma (PPARG) agonist [33],
and PPARG regulates two enzymes involved in glucose metabolism by inhibiting TGFB1-induced
mitochondrial activation [34]. As an inducer of brown fat, PPARG plays an important role in regulating
glucose oxidation and glucose uptake in brown fat [35].

A total of three INDELs in the GWAS analysis reached a potential level of association. The INDEL
with the most significant association to the glycogen metabolism is the locus in the NKD1 gene on
chromosome 11. NKD1 is an inhibitor of the canonical WNT signaling pathway and is involved in
β-catenin-dependent WNT signaling. GSK3A is one of the major target genes for activation of the
WNT pathway. GSK3A was originally identified as one of five phosphorylating [36,37], rate-limiting
glycogen-synthase kinases that help insulin regulate glycogen synthesis by phosphorylating and
inhibiting glycogen synthase 1 (GYS1) activity, and thereby inhibiting glycogen synthesis [38,39].

Close to the chromosome three INDEL is the gene FOSL2, whose protein product activates CEBPB
transcription in PGE2-activates osteoblasts. It is rapidly expressed during adipogenesis, induces CEBPA
and PPARG after activation by phosphorylation, and activates a series of adipocyte genes that cause
the adipocyte phenotype. Glucose and lipid metabolism are a research hotspot. A negative correlation
between muscle GP and its fat content (r = –0.27, p < 0.05) has been reported [40]. We speculate that
the INDEL affects FOSL2, thereby influencing the expression of lipid metabolism genes, and ultimately,
the glycogen content.

A total of nine SNPs and three INDELs reached a significant level, and the SNP and INDEL
genotypes were added to the univariate model to identify independent signals in a stepwise conditional
analysis, which revealed nine SNPs and three INDELs wild type and mutations. Significant differences
existed between individuals, and both site mutations and insertional deletions resulted in significant
changes in glycogen content. Additive effects and other analyses showed that the loci identified by
our analysis are valid and can be used for subsequent further verification, and also provide a relevant
theoretical basis for related research.

In view of the described GWAS analysis, the relevant loci, and the identification of genes near
each locus, we speculate that CPNE4 and NKD1 may affect the muscle glycogen metabolism process
in chickens.

5. Conclusions

This study comprised a GWAS analysis of SNP and INDEL associated with chicken glycogen traits,
revealing genes associated with muscle glycogen content. The identified glycogen content-associated
genes, CPNE4 and NKD1, may be important candidate genes involved in the regulation of muscle
glycogen content by influencing glucose metabolism. Our findings provide new insights into the
genetic mechanism of muscle glycogen metabolism.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/5/497/s1,
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