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The beta-cells in the islets of Langerhans in the pancreas secrete insulin and play an 
important role in glucose homeostasis. Diabetes, characterized by hyperglycemia, 
results from an absolute or a relative deficiency of the pancreatic beta-cell mass. Islet 
transplantation has been considered to be a useful therapeutic approach, but it is largely 
unsuccessful because most of the transplanted islets are lost in the early stage of trans-
plantation. To evaluate the efficacy of intervention methods for the improvement of islet 
survival, monitoring of the functional islet mass is needed. Various techniques to image 
and track transplanted islets have been investigated to assess islets after transplantation. 
In this review, recent progresses in imaging methods to visualize islets are discussed.

Keywords: pancreatic islet, non-invasive imaging, islet mass, magnetic resonance imaging, positron emission 
tomography, optical imaging

inTRODUCTiOn

The pancreas is composed of endocrine and exocrine tissues. The endocrine pancreas constitutes 
only 1–2% of the total pancreatic mass and is composed of cell clusters called the islets of Langerhans. 
The islets of Langerhans contain insulin-producing beta-cells (about 80% of the islet cells), glucagon-
producing alpha-cells, somatostatin-producing delta-cells, pancreatic peptide-producing PP-cells, 
and ghrelin-producing epsilon-cells. The exocrine pancreas, which occupies most of the pancreatic 
tissue and produces digestive enzymes, is composed of acinar cells and ductal cells. As the islets of 
Langerhans are scattered sparsely throughout the pancreas, it is difficult to access them for in vivo 
imaging.

Diabetes is characterized by defective control of blood glucose resulting from an absolute or 
relative deficiency of insulin, the hormone released from pancreatic beta-cells. Type 1 diabetes 
results from the insufficient production of insulin due to the autoimmune-mediated destruction of 
pancreatic beta-cells (1, 2). Type 2 diabetes results from insufficient insulin to compensate for insulin 
resistance (3). Insulin therapy has been clinically used for the treatment of diabetes; however, insulin 
injections do not restore tight glycemic control or prevent diabetes-associated complications. An 
alternative and safe method for the treatment of diabetes is islet transplantation, which can restore 
insulin production by implanting functioning pancreatic islets into the liver of diabetic patients 
(4). Since the first attempt at clinical islet transplantation in 1974 (5), numerous trials have been 
performed. However, alloislet transplantation still has obstacles for treatment of type 1 diabetes 
because of the lack of pancreatic islet donors. Therefore, porcine islets (6) or beta-cells differentiated 
from stem cells (7, 8) have been investigated as sources of islets for transplantation, but are far 
from clinical application. In addition, islet rejection due to an inflammatory response called instant 
blood-mediated inflammatory reaction, hypoxia, nutrient deprivation, and islet toxicity caused by 
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immunosuppressants result in significant islet loss in the early 
transplantation stage (9, 10).

Monitoring the condition of pancreatic islets would be 
important to assess the outcome of islet transplantation. The 
ability to image and track islets and to quantify viable islets after 
transplantation and correlate this with their function (functional 
beta-cell mass) before blood glucose changes occur, which is 
a late marker for islet dysfunction, could guide an appropriate 
treatment for prevention of islet loss. Endogenous islet imaging is 
particularly challenging, due to the deep abdominal location, size 
(50–600 µm in diameter), and density (about 1%) in the pancreas. 
In addition, a specific probe for beta-cells, but not for other cells 
such as alpha-, delta-, or exocrine cells, is needed to accurately 
measure the beta-cells.

Non-invasive monitoring of transplanted islets have been 
investigated using different imaging modalities such as positron 
emission tomography (PET), single-photon emission computed 
tomography (SPECT), magnetic resonance imaging (MRI), 
ultrasonography (US), bioluminescence imaging (BLI), and 
fluorescence imaging. In this review, we briefly summarize the 
recent progress in non-invasive islet imaging of transplanted 
pancreatic islets.

POSiTROn eMiSSiOn TOMOGRAPHY

Positron emission tomography is a non-invasive nuclear medical 
imaging modality routinely used in the hospital for diagnosis of 
cancers. PET is much more sensitive than MRI and is able to detect 
picomoles of positron-emitting tracer (11). Imaging is obtained 
by the administration of molecules labeled with positron-
emitting radioisotopes such as 2-[18F] fluoro-2-deoxy-d-glucose 
(FDG). When islets labeled with FDG were transplanted into 
the liver of syngeneic rats, PET imaging detected islets up to 6 h 
after transplantation (12). In addition, preclinical trials in pigs 
using FDG-labeled porcine islets revealed that about 50% of the 
infused radioactivity was detected in the liver after intraportal 
transplantation with no accumulation in the lungs or brain (13), 
suggesting a potential for clinical application. In 2009, clinical 
trials were carried out in six patients in which FDG-labeled islets 
were detected in the liver of patients without adverse effects (14). 
This was the first report showing the clinical feasibility of FDG/
PET imaging for real-time quantitative and qualitative evalua-
tion of pancreatic islets. However, one drawback to FDG is its 
short half-life, making it difficult to monitor islets for a long time. 
Several other probes specific to beta-cells have been developed 
such as [18F] dithizon targeting Zn ions in secretory granule of 
pancreatic islets, [11C] dihydrotetrabenazine (DTBZ) targeting 
vesicular monoamine transporter 2 (VMAT2), [11C] and [18F] 
l-3,4-dihydroxyphenylalanine ([18F]DOPA) (a catecholamine 
precursor). Injection of [11C] DTBZ visualized islets in normal 
rats, but not in diabetic rats (15), suggesting that VMAT2 in 
beta-cells was successfully targeted by this method. Also it was 
reported that rat islets transplanted into muscle were visualized 
by DTBZ and PET (16).

The glucagon-like peptide (GLP)-1 receptor agonist, 
exendin-4, also has been investigated as an effective probe for 
PET imaging of islets, as the GLP-1 receptor is highly expressed 

in beta-cells (17, 18). In addition, a study on GLP-1 receptor-
based imaging of human beta-cells transplanted into the muscle 
of patients suggests the feasibility of this method of islet mass 
measurement in clinical transplantation (19). A recent report 
also revealed that an imaging marker for islet mass, the serotonin 
precursor [11C]5-hydroxytryptophan, which is clinically used for 
localization of neuroendocrine metastasis in the liver, showed a 
positive correlation between the hepatic uptake and function of 
intraportal transplanted islets (20), suggesting a promising tool 
for monitoring viable pancreatic islets. Beta-cell-specific peptides 
and antibodies that can be tagged with PET reporters have been 
also investigated for PET imaging (21, 22). More recently, in vivo 
PET imaging of viable subcutaneous human islets was conducted 
using [18F]DOPA as a biomarker for the transplanted islet mass 
(23). However, all of these PET tracers for visualizing transplanted 
islets use ionizing radiation, so developing PET tracers with non-
toxic, high specific binding to beta-cells in the pancreatic islets is 
an important objective for future studies.

SinGLe-PHOTOn eMiSSiOn COMPUTeD 
TOMOGRAPHY

Single-photon emission computed tomography is a nuclear medi-
cal imaging modality using gamma rays. SPECT can evaluate 
islet function based on the tracer enhancement as a marker of 
radioactivity, but the spatial resolution is not good. Transplanted 
beta-cells (INS-1 832/13) stably transfected with a herpes simplex 
virus type 1–thymidine kinase-green fluorescent protein fusion 
construct could be visualized with 5-131I-iodo-1-(2-deoxy-2-
fluoro-b-d-arabinofuranosyl) uracil by SPECT imaging in an 
animal model (24). It was recently reported that SPECT quan-
tification of 111In-exendin-3 uptake was positively correlated 
with the insulin-positive area of islet transplants in the muscle 
of mice, suggesting potential for in vivo monitoring of beta-cell 
mass in islet grafts (25). Like PET, SPECT tracers are also based 
on radioactivity, so it is necessary to develop a non-toxic tracer.

MAGneTiC ReSOnAnCe iMAGinG

Magnetic resonance imaging is an attractive islet imaging modal-
ity due to a high spatial resolution, good penetration, longer 
imaging time than other methods, no ionizing radiation, and 
repeatable clinical measurements. An MRI requires exogenous 
contrast agents to enhance visualization of pancreatic islets. 
Superparamagnetic iron oxide (SPIO) particles have long been 
used as an MRI contrast agent for imaging, and the MR signal by 
iron oxide labeling is able to image a single cell. Rat pancreatic 
islets labeled with SPIO particles were visualized by MRI in vitro 
and also in vivo for 22 weeks post-transplantation in an animal 
model (26). The SPIO labeling of islets did not affect islet cell 
viability or beta-cell function (27). Transplanted SPIO-labeled 
islets in the liver were imaged as hypointense spots, which may 
represent either a single labeled islet or a cluster of many islets 
(27). These hypointense spots disappeared when the transplanted 
allogeneic or xenogeneic islets were rejected (28, 29), indicating 
that SPIO-labeled islets could be visualized, although this method 
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could not monitor islet viability. The SPIO particles modified 
with the near-infrared fluorescent Cy5.5 dye were used to label 
human islets and image them after transplantation to the kid-
ney capsule and liver of a mouse (30). The first clinical trial of 
MRI of SPIO-labeled islets transplanted into the liver has been 
carried out, but no correlation was observed between number 
of transplanted islets and the number of spots within the liver 
(31). Recently, clinical grade iron nanoparticles, ferucarbotran 
(Resovist®), have been tried for labeling islets, and low toxicity 
and signal stability of this contrast agent were shown (32, 33). 
Transplanted ferucarbotran-labeled islets in C-peptide-negative 
patients were visualized up to 24 weeks by MRI, and MR detec-
tion was correlated with C-peptide production (34).

To improve contrast enhancement, an MRI contrast agent 
that uses paramagnetic ions [gadolinium (Gd)] was used to label 
human islets, and the islets could be visualized when transplanted 
in immune-deficient mice. The resulting hyperintense spots 
were easier to identify and quantify than SPIO-labeled cells, 
as the volume of enhancement was equal to the cell size (35). 
However, Gd-based agents showed adverse effects in patients 
with nephrogenic systemic fibrosis. Imaging of perfluorocarbon-
labeled human islets using fluorine-19 (19F) MRI was reported 
(36), and this agent has no background 19F signal in tissues (37). 
Most recently, labeling of human islets with multiwalled carbon 
nanotubes has been investigated for imaging transplanted islets, 
suggesting that these nanotubes can be an alternative labeling 
compound to be used with human islets for experimental and 
transplantation studies (38).

Although their application to transplanted islets have not 
been reported, Zn- and Mn-targeted MRI techniques might be 
used for visualizing transplanted islets because these ions reflect 
insulin production and therefore the mass of beta-cells. Since 
Mn2+ ions enter beta-cells through voltage-gated Ca2 + channels, 
Mn2+ ion-labeled beta-cells can be measured by hyperintensity 
on MR images (39). The Zn2+ ion is secreted together with insulin 
in response to glucose, therefore MRI detection of Zn2+ released 
from beta-cells is only observed during glucose-stimulated insu-
lin secretion (40).

An MRI is considered as an ideal non-invasive method for 
transplanted islet cells; however, quantification of the islet mass 
by contrast agents remains challenging. 3D radial ultrashort echo 
time (UTE) imaging is proposed as a technique for quantifying 
the transplanted islet mass (41). Crowe et  al. used Resovist 
(carboxydextran-coated SPIO particles) as a contrast agent, and 
they found that the images showed quantifiable positive contrast 
from the labeled cells. The 3D radial UTE method has shown the 
ability to detect spots clearly and distinctly, as well as assessing and 
quantifying changes with number of cells and progression over 
time (42). Further studies are required for clinical application.

ULTRASOnOGRAPHY

Ultrasonography imaging is one of the most used methods 
for the clinical and diagnostic evaluation of the pancreas due 
to its safety (no ionizing radiation exposure for the patient), 
high availability in clinical settings, and relative ease of use. 
High-frequency US was used to image islets transplanted into 

subrenal capsule of diabetic mice, and the calculated islet volume 
was positively correlated with the number of transplanted islets 
and serum insulin levels (43). US imaging has been tried in the 
clinical setting and could detect the aggregate of islets, but not 
individual transplanted islets, in the portal vein during trans-
plantation (44), indicating the possible use of US for imaging 
transplanted islets. Further studies are required for the clinical 
application.

BiOLUMineSCenCe AnD 
FLUOReSCenCe iMAGinG

Bioluminescence imaging is an optical technique for imaging 
islets using light-generating enzymes (e.g., luciferase reporter 
gene). The transfected reporter gene in cells or the transgenic 
expression of the reporter gene in an animal catalyzes luciferin to 
emit visible light, which can be visualized from outside the body. 
Transplanted islets from transgenic mice expressing luciferase 
under the control of the mouse insulin promoter could be visual-
ized by bioluminescence, and the survival rate of islet grafts could 
be evaluated (45, 46). Although this method is a sensitive and 
quantitative measure of the beta-cell mass, it is not suitable for 
the clinical application.

Fluorescence imaging is also a useful modality for imaging 
pancreatic islets. Islets from transgenic mice expressing green 
fluorescent protein (47) or red fluorescent protein (48) under 
the control of the mouse insulin promoter could be imaged by 
a light signal generated from the light excitation to visualize islet 
engraftment. In addition, ex vivo fluorescence imaging of beta-cell 
apoptosis could be visualized after systemic administration of a 
fluorescent marker of apoptosis (CY5.5-labeled annexin V) (49). 
Furthermore, intravenous injection of a fluorescence-labeled 
exendin-4 analog with specificity for the GLP-1 receptor in beta-
cells could distinguish beta-cells from exocrine pancreatic cells 
(50). However, these optical imaging modalities cannot visualize 
deep tissues and are restricted to preclinical studies.

COnCLUSiOn AnD FUTURe 
eXPeCTATiOnS

Pancreatic islet transplantation has a great potential for the 
treatment of type 1 diabetes. However, a significant number of 
transplanted islets are lost after transplantation, and therefore, 
the transplantation efficacy is insufficient to be a mainstream 
therapeutic method. It is difficult to investigate the cause of 
islet loss or intervention strategies to prevent islet loss without 
methods to assess islet survival or function. Current progress in 
non-invasive imaging techniques for transplanted islets, includ-
ing PET, MRI, US, and optical imaging, allows quantification 
and functional evaluation of transplanted islets in experimental 
conditions. Techniques under development for imaging the 
pancreatic islets illustrate the capabilities and limitations of 
each imaging modality. The strengths and weaknesses of these 
imaging methods are summarized in Figure 1. Probes targeting 
biomarkers related to beta-cell function are another possibility 
for imaging, for example, Mn and Zn targeting (39, 40). MRI 
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FiGURe 1 | Strengths and weaknesses of non-invasive imaging of islets. The term “resolution” is used for a pixel count in digital imaging, and “spatial resolution” is 
used for the measure of how close lines can be resolved in an image, not just the pixel resolution in pixels per inch. PET, positron emission tomography. Reprinted 
with permission from Ref. (20). SPECT, single-photon emission computed tomography. Reprinted with permission from Ref. (25). US, ultrasonography. Reprinted 
with permission from Ref. (43). Optical imaging, especially bioluminescence imaging. Reprinted with permission from Ref. (46). MRI, magnetic resonance imaging. 
Reprinted with permission from Ref. (30). 3D-UTE, three-dimensional ultrashort echo time, imaging. Reprinted with permission from Ref. (42).
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techniques might be possible for analysis of the functional 
beta-cell mass, because these images would reflect the insulin 
production of beta-cells. In addition, microencapsulated islets, 
rather than naked islets, would ameliorate the potential toxicity 
of labeling agents (51).
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