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Abstract: In this work, we introduce a generalized measure of cumulative residual entropy and
study its properties. We show that several existing measures of entropy, such as cumulative residual
entropy, weighted cumulative residual entropy and cumulative residual Tsallis entropy, are all special
cases of this generalized cumulative residual entropy. We also propose a measure of generalized
cumulative entropy, which includes cumulative entropy, weighted cumulative entropy and cumu-
lative Tsallis entropy as special cases. We discuss a generating function approach, using which
we derive different entropy measures. We provide residual and cumulative versions of Sharma–
Taneja–Mittal entropy and obtain them as special cases this generalized measure of entropy. Finally,
using the newly introduced entropy measures, we establish some relationships between entropy and
extropy measures.

Keywords: cumulative entropy; cumulative residual entropy; extropy; Tsallis entropy; weighted
cumulative residual entropy

1. Introduction

The uncertainty associated with a random variable can be evaluated using information
measures. In many practical situations in lifetime data analysis, experimental physics,
econometrics and demography, measuring the uncertainty associated with a random
variable is very important. The seminal work on information theory started with the
concept of Shannon entropy or differential entropy introduced by Shannon (1948) [1].
For an absolutely continuous non-negative random variable X, the differential entropy is
given by

H(X) = −E(log f (X)) = −
∫ ∞

0
f (x) log f (x)dx,

where f (x) is the probability density function of X and “log” stands for the natural loga-
rithm, with 0 log 0 taken as 0.

Several measures of entropy have been introduced in the literature since then, each
one being suitable for some specific situations. The widely used measures of entropy are
cumulative residual entropy (CRE) [2], cumulative entropy (CE) [3] and the corresponding
weighed measures by Mirali et al. (2016) [4] and Mirali and Baratpour (2017) [5]. A unified
formulation of entropy has been put forward by Balakrishnan et al. (2022) [6] recently. For
a non-negative random variable X with distribution function F(x), the cumulative residual
entropy, which measures the uncertainty in the future of a lifetime of a system, is defined as

E(X) = −
∫ ∞

0
F̄(x) log F̄(x)dx, (1)
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where F̄(x) = 1− F(x) is the survival function of X. Asadi and Zohrevand (2007) [7] gave
a representation of (1) based on the mean residual life function as

E(X) = E(r(X)),

where r(t) is the mean residual life function of X at time t given by

r(t) = E(X− t|X > t) =

∫ ∞
t F̄(u)du

F̄(t)
.

Di Crescenzo and Longobardi (2009) [3] introduced cumulative entropy for estimating the
uncertainty in the past lifetime of a system as

CE(X) = −
∫ ∞

0
F(x) log F(x)dx. (2)

The weighted versions of E(X) and CE(X) have been studied in the literature as well.
Weighted cumulative residual entropy, introduced by Mirali et al. (2016) [4], is defined as

Ew(X) = −
∫ ∞

0
xF̄(x) log F̄(x)dx. (3)

Mirali and Baratpour (2017) [5] introduced weighted cumulative entropy as

CEw(X) = −
∫ ∞

0
xF(x) log F(x)dx. (4)

A detailed discussion on weighted entropies has been made by Suhov and Sekeh (2015) [8].
Some additional recent developments in this area were due to [9–12].

Recently, Kharazmi and Balakrishnan (2020) [13] proposed Jensen cumulative residual
entropy, which is an extension of (1). Kharazmi and Balakrishnan (2020) [14] then studied
cumulative residual and relative cumulative residual Fisher information measures and
their properties. More general cumulative residual-information-generating and relative
cumulative residual-information-generating measures have been introduced and studied
by Kharazmi and Balakrishnan (2021) [15]. Fractional generalized cumulative entropy and
its dynamic version have been proposed by Di Crescenzo et al. (2021) [16].

Several extensions of Shannon entropy are available in the literature, obtained by in-
troducing some additional parameters so that these measures become sensitive to different
characteristics and shapes of probability distributions. One important generalization of
Shannon entropy is due to Tsallis (1988) [17], known as generalized Tsallis entropy of order
α. For a continuous random variable X, the generalized Tsallis entropy of order α is defined
as [17]

Tα(X) =
1

α− 1

(
1−

∫ ∞

0
f α(x)dx

)
, α 6= 1.

Many extensions or modifications have also been provided for Tα(X). Sati and Gupta
(2015) [18] proposed a cumulative Tsallis residual entropy of order α, and Rajesh and Sunoj
(2019) [19] modified it and defined cumulative residual Tsallis entropy of order α as

CRTα(X) =
1

α− 1

∫ ∞

0
(F̄(x)− F̄α(x))dx, α > 0, α 6= 1. (5)

For a non-negative continuous random variable X, Chakraborty and Pradhan (2021) [20]
defined weighted cumulative residual Tsallis entropy (WCRTE) of order α as

WCRTα(X) =
1

α− 1

∫ ∞

0
x(F̄(x)− F̄α(x))dx, α > 0, α 6= 1. (6)

They also introduced dynamic weighted cumulative residual Tsallis entropy of order α.
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Calì et al. (2017) [9] introduced cumulative Tsallis past entropy as

CTα(X) =
1

α− 1

∫ ∞

0
(F(x)− Fα(x))dx, α > 0, α 6= 1. (7)

Calì et al. (2021) [21] subsequently introduced a family of mean past weighted entropies of
order α, using the concept of mean inactivity time. Chakraborty and Pradhan (2021) [20]
defined weighted cumulative Tsallis entropy (WCTE) of order α as

WCTα(X) =
1

α− 1

∫ ∞

0
x(F(x)− Fα(x))dx, α > 0, α 6= 1. (8)

They also studied dynamic weighted cumulative Tsallis entropy of order α. As is evident
from the description above, several entropy measures are available in the literature. Re-
cently, Balakrishnan et al. (2022) [22] have provided a unified formulation of entropy and
demonstrated its applications.

In the present work, we define a generalized cumulative residual entropy and study
its properties in Section 2. We show that cumulative residual entropy, weighted cumulative
residual entropy, cumulative residual Tsallis entropy and weighted cumulative residual
Tsallis entropy are all special cases of the proposed measure. We also propose a new
generalized cumulative entropy measure and discuss some of its properties. We use the
generating function approach to obtain some new entropy measures. In Section 3, we
provide cumulative (residual) versions of Sharma–Taneja–Mittal entropy and obtain them
as special cases of the generalized measures of entropy introduced in Section 2. In Section 4,
we establish some relationships between entropy and extropy measures. Finally, we make
some concluding remarks in Section 5.

2. Generalized Cumulative Entropy

In this section, we introduce generalized cumulative (residual) entropy measures. We
then show that several entropy measures are special cases of the proposed entropies. Some
generalizations of CRE and CE have been discussed in the literature and we now review
these briefly. Drissi et al. (2008) [23] generalized the definition of CRE, given by Rao et al.
(2004) [2], to the case of distributions with general support. They also showed that this
generalized CRE can be used as an alternative to differential entropy. Kayal (2016) [24]
introduced a generalization of CE proposed by Di Crescenzo and Longobardi (2009) [3]
and their dynamic versions. Their definition is related to lower records and the reversed
relevation transform. Psarrakos and Navarro (2013) [25] proposed a generalized cumu-
lative residual entropy (GCRE), related to record values from a sequence of independent
and identical random variables and with the relevation transform. Some properties and
applications of the GCRE in actuarial risk measures have been discussed by Psarrakos and
Toomaj (2017) [26]. Under some assumptions, Navarro and Psarrakos (2017) [27] proved
that the GCRE function of a fixed order n uniquely determines the distribution function.
Consequently, some characterizations of particular probability models have been obtained
from this general result. Di Crescenzo and Toomaj (2017) [28] obtained some further results
associated with generalized cumulative entropy, such as stochastic orders, bounds and
characterization results. Some characterizations for the dynamic generalized cumulative
entropy have also been derived. Recently, Di Crescenzo et al. (2021) [16] proposed the
fractional generalized cumulative entropy and its dynamic version.

We introduce here generalized CRE and CE, which encompass most of the existing
variations of these measures, as demonstrated below.

2.1. Generalized Cumulative Residual Entropy

Let X be a non-negative random variable with absolutely continuous distribution
function F(x) and F̄(x) as the survival function. We assume that the mean µ = E(X)
is finite.
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Definition 1. Let X be a non-negative random variable with absolutely continuous distribution
function F. Further, let φ(.) be a function of X and w(.) be a weight function. Then, the generalized
cumulative residual entropy of X is defined as

GE(X) =
∫

w(u)E
[
φ(X)− φ(u)|X > u

]
dF(u), (9)

where w and φ can be chosen arbitrarily under the existence of the above integral such that GE(X)
becomes concave.

Entropy is defined as a measure of uncertainty associated with a model. Strict concav-
ity implies that entropy will increase under averaging. The general definition of entropy
we have given contains two arbitrary functions φ and w, and though it is difficult to state
general conditions under which concavity of the general measure will hold, one can chose
these functions so that GE(X) becomes concave.

However, with different choices of weight function w(.) and φ(.), we can introduce
several measures of entropy. First, we show that the new measure reduces to the cumulative
residual entropy of Rao et al. (2004) [2] and the weighted cumulative residual entropy of
Mirali et al. (2016) [4] for some specific choices of φ(.) and w(.).

Using integration by parts, from (1), we obtain (see [29])

E(X) =
∫ ∞

0
x[− log F̄(x)]dF(x)− E(X).

Let us denote the hazard rate of X by

λ(x) =
f (x)
F̄(x)

,

where f is the density function of X. Then, the cumulative hazard function Λ(x) can be
expressed as

Λ(x) =
∫ x

0
λ(u)du = − log F̄(x).

Now, with w(u) = 1 and φ(x) = x, the expression in (9) becomes

GE(X) =
∫ ∞

0
E(X− u|X > u)dF(u)

=
∫ ∞

0
E(X|X > u) f (u)du−

∫ ∞

0
udF(u)

=
∫ ∞

0

f (u)
F̄(u)

∫ ∞

u
xdF(x)du− E(X)

=
∫ ∞

0
x
∫ x

0

f (u)
F̄(u)

dudF(x)− E(X)

=
∫ ∞

0
x
∫ x

0
λ(u)dudF(x)− E(X)

=
∫ ∞

0
x[− log F̄(x)]dF(x)− E(X).

Thus, GE(X) reduces in this case to the cumulative residual entropy of Rao et al. (2004) [2].
The weighted cumulative residual entropy defined in (3) can be written as [29]

Ew(X) =
1
2

∫ ∞

0
x2[− log F̄(x)]dF(x)− 1

2
E(X2).
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If we choose w(u) = 1/2 and φ(x) = x2 and proceed as above, we can show that (9)
becomes

GE(X) =
1
2

∫ ∞

0
E(X2 − u2|X > u)dF(u)

=
1
2

∫ ∞

0
x2[− log F̄(x)]dF(x)− 1

2
E(X2).

Thus, GE(X) reduces in this case to the weighted cumulative residual entropy, Ew(X).
Next, we show that the cumulative residual Tsallis entropy of order α is a special case

of GE(X). An alternative representation of CRTα(X) is [19]

CRTα(X) = E(r(X)F̄α−1(X)),

where r(X) = E(X − x|X > x). If we now choose w(u) = F̄α−1(u) and φ(x) = x, (9)
becomes

GE(X) =
∫ ∞

0
E(X− u|X > u)F̄α−1(u)dF(u) = E(r(X)F̄α−1(X)).

Chakraborty and Pradhan (2021) [20] expressed a weighted version of cumulative
residual Tsallis entropy of order α in (6) as

WCRTα(X) =
∫ ∞

0

1
F̄(t)

∫ ∞

t
xF̄(x)dxF̄α−1(t)dF(t). (10)

Upon noting that the integral

1
F̄(t)

∫ ∞

t
xF̄(x)dx =

1
F̄(t)

∫ ∞

t
x
∫ ∞

x
dF(y)dx

=
1

F̄(t)

∫ ∞

t

∫ y

t
xdxdF(y)

=
1

F̄(t)

∫ ∞

t

1
2
(y2 − t2)dF(y)

=
1
2

E(X2 − t2|X > t),

Equation (10) becomes

WCRTα(X) =
1
2

∫ ∞

0
E(X2 − t2|X > t)F̄α−1(t)dF(t).

Now, for the choices of w(u) = F̄α−1(u) and φ(x) = 1
2 x2, from (9), we obtain the above

expression. Thus, WCRTα(X) is a special case of GE(X) as well. The special cases of GE(X)
discussed here are all listed in Table 1.

Table 1. Special cases of generalized residual entropy.

Entropy Measure w(u) φ(x)

Cumulative residual entropy 1 x
Weighted cumulative residual entropy 1

2 x2

Cumulative residual Tsallis entropy F̄α−1(u) x
Weighted cumulative Tsallis residual entropy F̄α−1(u) x2

2

Next, we derive expressions for GE(X) for some specific distributions.
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Consider the exponential distribution with mean λ. Then, it is well-known that mean
residual life is equal to mean. Thus, when w(u) = 1, we have

GE(X) =
∫ ∞

0
w(u)λdF(u) = λ.

In general, GE(X) is a constant for any weight function. For the standard exponential,
taking φ(x) = x2, we have

GE(X) =
∫ ∞

0
w(u)E(X2 − u2|X > u)e−udu

=
∫ ∞

0
w(u)(u + 1)e−udu.

Thus, GE(X) = 2 when w(u) = 1 and GE(X) = 1.5 when w(u) = F̄(u).
Next, let us consider the standard uniform distribution with pdf f (x) = 1, 0 < x < 1.

Then,

GE(X) =
∫ 1

0
w(u)

1
1− u

∫ 1

u
(1− x)dxdu

=
∫ 1

0
w(u)

1
2(1− u)

(u− 1)2du

=
∫ 1

0
w(u)(1− u)du.

We thus obtain the residual entropy as 1
4 . Additionally, when w(u) = 1 and φ(x) = x2/2,

we get

GE(X) =
1
6

∫ 1

0
(1− u)(2u + 1)du =

5
36

,

as given in Example 5 of Balakrishnan et al. (2022) [29].

2.2. Generalized Cumulative Entropy

In this sub-section, we introduce a generalized cumulative entropy and discuss some
of its properties.

Definition 2. Let X be a non-negative random variable with absolutely continuous distribution
function F. Further, let φ(.) be a function of X and w(.) be a weight function. Then, the generalized
cumulative entropy is defined as

GCE(X) =
∫ ∞

0
w(u)E

[
φ(u)− φ(X)|X ≤ u

]
dF(u), (11)

where w and φ can be chosen arbitrarily under the existence of the above integral such that GCE(X)
becomes concave.

For the choices of w(u) = 1 and φ(x) = x, (11) reduces to CE(X) [3]. Similarly, GCE(X)
in (11) reduces to the weighted cumulative entropy of Mirali and Baratpour (2017) [5] for
the choices of w(u) = 1/2 and φ(x) = x2.

The reversed hazard rate function of X, denoted by h(.), is defined as

h(x) =
f (x)
F(x)

,
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which yields the cumulative reversed hazard rate function as

H(x) =
∫ ∞

x

f (u)
F(u)

du = − log F(x).

The cumulative entropy in (2) can be expressed as (see [29])

CE(X) =
∫ ∞

0
x[− log F(x)]dF(x) + E(X).

Thus, by using the cumulative reversed hazard rate function, we can express

CE(X) = −
∫ ∞

0
x[log F(x)]dF(x) + E(X)

= E(X)−
∫ ∞

0
x
∫ ∞

x

f (u)
F(u)

dudF(x)

= E(X)−
∫ ∞

0

1
F(u)

∫ u

0
xdF(x)dF(u)

=
∫ ∞

0
E(u− X|X ≤ u)dF(u),

which is the special case of the generalized cumulative entropy in (11) for the choices of
w(u) = 1 and φ(x) = x. Proceeding similarly, we can show that GCE(X) reduces to the
weighted cumulative entropy [5] for the choices of w(u) = 1/2 and φ(x) = x2.

Next, we show that the cumulative Tsallis entropy of order α is a special case of
GCE(X) in (11). The mean inactivity time function of a random variable X, at time x, is
defined as

m(x) = E(x− X|X ≤ x) =
1

F(x)

∫ x

0
ydF(y).

Using m(x), CTα(X) can be expressed as [9]

CTα(X) = E(m(X)Fα−1(X)).

Now, for the choices of w(u) = Fα−1(u) and φ(x) = x, (11) yields

GCE(X) =
∫ ∞

0
Fα−1(u)E

[
u− X|X ≤ u

]
dF(u) = E(m(X)Fα−1(X)).

An alternative expression for the weighted cumulative Tsallis entropy of order α is given
by [20]

WCTα(X) =
∫ ∞

0

1
F(t)

∫ ∞

t
xF(x)dxFα−1(t)dF(t). (12)

As in Section 2, simple algebraic manipulations yield

WCTα(X) =
1
2

∫ ∞

0
E(t2 − X2|X ≤ t)Fα−1(t)dF(t).

Again, for the choices of w(u) = Fα−1(u) and φ(x) = 1
2 x2, (11) yields

GCE(X) =
1
2

∫ ∞

0
E
[
u2 − X2|X ≤ u

]
Fα−1(u)dF(u).

Thus, WCTα(X) is a special case of GCE(X). In Table 2, we list the cumulative entropies
derived from GCE(X).
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Table 2. Special cases of generalized entropy.

Entropy Measure w(u) φ(x)

Cumulative entropy 1 x
Weighted cumulative entropy 1

2 x2

Cumulative Tsallis entropy Fα−1(u) x
Weighted cumulative Tsallis entropy Fα−1(u) x2

2

Next, we derive expressions for GCE(X) for some specific distributions. Consider the
standard exponential distribution with mean λ = 1. Then, for the choices of w(u) = 1 and
φ(x) = x, we have

GCE(X) =
∫ ∞

0

1
1− e−u

∫ u

0
(u− x)e−xdxdF(u)

=
∫ ∞

0

1
1− e−u (u− (1− e−u)e−udu

=
∫ ∞

0

1
1− e−u ue−udu− 1 =

π2

6
− 1.

Next, let us consider the standard uniform distribution with pdf f (x) = 1, 0 < x < 1.
Then, for the choices of w(u) = 1 and φ(x) = x, we obtain

GCE(X) =
∫ 1

0

1
u

∫ u

0
(u− x)dxdu

=
1
2

∫ 1

0
udu = 1/4.

These two examples have been presented earlier by Balakrishnan et al. (2022) [29].

2.3. Generating Function

We now introduce generating function related to generalized entropy measures dis-
cussed in the preceding sections.

Definition 3. Let X be a non-negative random variable with absolutely continuous distribution
function F. Further, let φ(.) be a function of X and w(.) be a weight function. We then define a
generating function for the generalized cumulative residual entropy measure as

G fre(t) =
∫ ∞

0
w(u)E

(
[exp(tφ(X))− exp(tφ(u))]|X > u

)
dF(u). (13)

Being a function of t, we can interpret G fre(t) as a generating function for the general
entropy measure introduced in Section 2. If we differentiate the expression in (13) with
respect to t once, we obtain

G f
′
re(t) =

∫ ∞

0
w(u)E

(
[φ(X) exp(tφ(X))− φ(u) exp(tφ(u))]|X > u

)
dF(u).

Now, by setting t = 0 in the above expression, we obtain the generalized entropy measure
in (9). We, therefore, refer to it as generalized cumulative residual entropy of order 1.
Higher-order derivatives with respect to t would similarly give rise to generalized cumula-
tive residual entropies of orders 2, 3 and so on. For example, the generalized cumulative
residual entropy of order two is given by

G fre(2) =
∫ ∞

0
w(u)E

(
φ2(X)− φ2(u)|X > u

)
dF(u). (14)
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For the choice of w(u) = 1/2 and φ(x) = x, G fre(2) reduces to the weighted cumulative
residual entropy of Mirali et al. (2016) [4].

In a similar manner, we define the generating function for the generalized cumulative
entropy as follows.

Definition 4. Let X be a non-negative random variable with absolutely continuous distribution
function F. Further, let φ(.) be a function of X and w(.) be a weight function. We then define the
generating function for the generalized cumulative entropy as

G fce(t) =
∫ ∞

0
w(u)E

(
[exp(tφ(u)− exp(tφ(X)))]|X ≤ u

)
dF(u). (15)

Once again, differentiating (15) with respect to t once and setting t = 0, we obtain the
generalized cumulative entropy (of order 1) measure in (11). From (15), we can similarly
obtain the generalized cumulative entropy of order 2 to be

G fce(2) =
∫ ∞

0
w(u)E

(
φ2(u)− φ2(X)|X ≤ u

)
dF(u). (16)

The weighted cumulative entropy of Mirali and Baratpour (2017) [5] can be obtained
from (16) for the choices of w(u) = 1/2 and φ(x) = x. Naturally, higher-order derivatives
with respect to t would give rise to generalized cumulative entropies of orders 3, 4 and
so on.

3. Sharma–Taneja–Mittal Entropy

In this section, we introduce the cumulative (residual) versions of Sharma–Taneja–
Mittal (STM) entropy. We then show that these are indeed special cases of the generalized
residual and the past entropy introduced in Section 2.

Sharma and Taneja (1975) [30] and Mittal (1975) [31] independently introduced an
entropy of the form

Sα,β =
1

α− β

∫ ∞

0
( f α(x)− f β(x))dx, α, β > 0, (α, β) 6= (1, 1). (17)

For different choices of α and β, from (17), we obtain some entropy measures discussed in
the literature. In particular, for α = 1 + κ and β = 1− κ, we obtain Kaniadakis entropy [32],
as a special case of Sharma-Mittal entropy. For more details, see [33] along with Table 1 of
Ilic et al. (2021) [34].

3.1. Sharma–Taneja–Mittal Cumulative Residual Entropy

In this sub-section, we introduce the cumulative residual version of the STM entropy.

Definition 5. Let X be a non-negative random variable with absolutely continuous survival
function F̄. Then, the cumulative residual STM entropy is defined as

SRα,β =
1

α− β

∫ ∞

0
(F̄α(x)− F̄β(x))dx, α, β > 0, (α, β) 6= (1, 1). (18)

We also introduce the weighted cumulative residual STM entropy as follows.

Definition 6. Let X be a non-negative random variable with absolutely continuous survival
function F̄. Then, the cumulative weighted residual STM entropy is defined as

SRWα,β =
1

α− β

∫ ∞

0
x(F̄α(x)− F̄β(x))dx, , α, β > 0, (α, β) 6= (1, 1). (19)
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Next, we show that SRα,β and SRWα,β are indeed special cases of GE(X). Consider

SRα,β =
1

α− β

∫ ∞

0
(F̄α(x)− F̄β(x))dx

=
1

α− β

∫ ∞

0
(F̄(x)− F̄β(x)− (F̄(x)− F̄α(x)))dx. (20)

Now, consider∫ ∞

0
(F̄(x)− F̄β(x))dx =

∫ ∞

0
F̄(x)(1− F̄β−1(x))dx

=
∫ ∞

0
F̄(x)

∫ x

0
(β− 1)F̄β−2(t)dF(t)dx

= (β− 1)
∫ ∞

0
F̄β−2(t)

∫ ∞

x
F̄(x)dxdF(t)

= (β− 1)
∫ ∞

0
F̄β−1(t)

1
F̄(t)

∫ ∞

t
F̄(x)dxdF(t)

= (β− 1)
∫ ∞

0
F̄β−1(t)r(t)dF(t)

= (β− 1)E(r(X)F̄β−1(X)). (21)

Similarly, we obtain∫ ∞

0
(F̄(x)− F̄α(x))dx = (α− 1)E(r(X)F̄α−1(X)). (22)

Upon substituting (21) and (22) in (20), we obtain

SRα,β =
1

α− β
E
(

r(X)
(
(β− 1)F̄β−1(X)− (α− 1)F̄α−1(X)

))
. (23)

Now, for the choices of w(u) = 1
α−β ((β − 1)F̄β−1(u) − (α − 1)F̄α−1(u)) and φ(x) = x,

from (9), we obtain SRα,β.
By following the same steps as performed for (23), the cumulative weighted residual

STM entropy can be expressed as

SRWα,β =
1

α− β

∫ ∞

0
E(X2 − x2|X > x)

(
(β− 1)F̄β−1(x)− (α− 1)F̄α−1(x)

)
dF(x). (24)

Again, for the choices of w(u) = 1
α−β ((β− 1)F̄β−1(u)− (α− 1)F̄α−1(u)) and φ(x) = x2/2,

from (9), we arrive at (24).

3.2. Sharma–Taneja–Mittal Cumulative Entropy

In this sub-section, we introduce cumulative and weighted cumulative STM entropies,
and then show that they are indeed special cases of the generalized entropy.

Definition 7. Let X be a non-negative random variable with absolutely continuous distribution
function F. Then, the cumulative STM entropy is defined as

SPα,β =
1

α− β

∫ ∞

0
(Fα(x)− Fβ(x))dx, α, β > 0, (α, β) 6= (1, 1). (25)

In this case, the weighted cumulative STM entropy is defined as follows.
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Definition 8. Let X be a non-negative random variable with absolutely continuous distribution
function F. Then, the cumulative weighted STM entropy is defined as

SPWα,β =
1

α− β

∫ ∞

0
x(Fα(x)− Fβ(x))dx, α, β > 0, (α, β) 6= (1, 1). (26)

Of course, in the special cases of α = 1 + κ and β = 1− κ, the above definitions would
result in the corresponding generalized versions of Kaniadakis entropy. Following the
same steps as those used to obtain alternative expressions for SPα,β and SPWα,β, we can
express SPα,β and SPWα,β, respectively, as

SPα,β =
1

α− β
E
(

m(X)
(
(β− 1)F̄β−1(X)− (1− α)F̄α−1(X)

))
,

SPWα,β =
1

α− β

∫ ∞

0
E(x2 − X2|X ≤ x)

(
(β− 1)F̄β−1(x)− (1− α)F̄α−1(x)

)
dF(x). (27)

Now, let w(u) = 1
α−β ((β− 1)F̄β−1(u)− (α− 1)F̄α−1(u)). Then, from (11), we obtain SPα,β

and SPWα,β in (27) and (27) by taking φ(x) = x and φ(x) = x2/2, respectively.

4. Connection between Entropy and Extropy

Apart from entropy, extropy and its properties have also been studied for quantifying
the uncertainty associated with a random variable X. Using the new entropy measures
introduced in the preceding sections, we establish some relationships between entropy and
extropy measures in this section.

For a non-negative random variable X, extropy is defined as [35]

J(X) = −1
2

∫ ∞

0
f 2(x)dx.

Now, we briefly discuss some recent developments associated with extropy measures.
Jahanshahi et al. [36] defined the cumulative residual extropy as

CRJ (X) = −1
2

∫ ∞

0
F̄2(x)dx, (28)

and the cumulative extropy is defined as [37]

CJ (X) = −1
2

∫ ∞

0
(1− F2(x))dx. (29)

Sudheesh and Sreedevi (2022) [38] discussed non-parametric estimation of CRJ (X) and
CJ (X) for right-censored data.

Recently, Balakrishnan et al. [29], Bansal and Gupta [39] and Sathar and Nair [40–42]
introduced different weighted versions of extropy. The weighted version of the survival
extropy is given by [41]

J(X, w) = −1
2

∫ ∞

0
xF̄2(x)dx.

These authors also introduced the weighted version of the cumulative extropy as

H(X, w) = −1
2

∫ ∞

0
x(1− F2(x))dx,

and Sathar and Nair [42] subsequently defined dynamic survival extropy as

Jt(X) = − 1
2F̄2(t)

∫ ∞

t
F̄2(x)dx.
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For various properties of Jt(X), one may see [36]. Sudheesh and Sreedevi (2022) [38]
proposed simple alternative expressions for different extropy measures. Using these ex-
pressions, they established relationships between different dynamic and weighted extropy
measures, and reliability concepts. In particular, they expressed Jt(X) as

Jt(X) = −1
2

E(min(X1, X2)− t|min(X1, X2) > t). (30)

Thus, −2Jt(X) is the mean residual life function of a series system having two identical
components.

Sathar and Nair [41] defined weighted dynamic survival extropy as

Jt(X, w) = − 1
2F̄2(t)

∫ ∞

t
xF̄2(x)dx.

Kundu (2021) [43] introduced dynamic cumulative extropy as

Ht(X) = − 1
2F2(t)

∫ t

0
F2(x)dx,

while Sathar and Nair [41] defined the weighted dynamic cumulative extropy as

Ht(X, w) = − 1
2F2(x)

∫ t

0
xF2(x)dx.

Sudheesh and Sreedevi (2022) [38] expressed Ht(X) as

Ht(X) = −1
2

E(t−max(X1, X2)|max(X1, X2) ≤ t). (31)

Thus, −2Ht(X) is the mean past life function of a parallel system having two identical
components, where the mean past life function of a random variable X is defined as
E(t− X|X ≤ t).

Next, we establish some connections between different entropy and extropy measures.
For the choice of w(u) = F̄(u) and φ(x) = x, from (9), we obtain

GE(X) =
∫ ∞

0
F̄(u)F(u)du =

∫ ∞

0
F̄(u)du−

∫ ∞

0
F̄2(u)du.

Thus, using (28), we have the relationship

GE(X) = 2CRJ (X) + E(X).

Again, for the choices of w(u) = F̄(u) and φ(x) = x2, from (9), we obtain

GE(X) =
∫ ∞

0
2uF̄(u)F(u)du =

∫ ∞

0
2uF̄(u)du−

∫ ∞

0
2uF̄2(u)du.

For a non-negative random variable X, we have

E(X2) =
∫ ∞

0
x2dF(x) =

∫ ∞

0
2xF̄(x)dx.

Thus, in this case, we obtain the relationship

GE(X) = 4CRJ (X, w) + E(X2).
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For the choices of w(u) = −F(u) and φ(x) = x, from (12), we obtain

GCE(X) = −
∫ ∞

0
F̄(u)F(u)du. (32)

Using the identity 1− F2(x) = F̄(x) + F̄(x)F(x), from (29) and (32), we have the relationship

GCE(X) = 2CJ (X) + E(X).

Additionally, for the choices of w(u) = −F(u) and φ(x) = x2, from (12), we obtain

GCE(X) = −
∫ ∞

0
2uF̄(u)F(u)du.

Thus, in this case, we obtain the relationship

GCE(X) = 4CJ (X, w) + E(X2).

Let X1 and X2 be two independent and identical random variables having the same
distribution function F. Let Z = min(X1, X2) be the lifetime of a series system having two
identical components. Using (9), we define the generalized residual entropy associated
with Z as

GE(Z) =
∫

2w(u)E
[
φ(Z)− φ(u)|Z > u

]
F̄(u)dF(u), (33)

where φ(.) is a function of Z and w(.) is a weight function. Now, for the choices of
w(u) = − 1

4 and φ(z) = z, from (33), we obtain

GE(Z) = −1
2

∫
E
[

min(X1, X2)− u|min(X1, X2) > u
]

F̄(u)dF(u).

Thus, the generalized residual entropy associated with Z is the weighted average of the
dynamic survival extropy in (30).

Next, let Z = max(X1, X2) be the lifetime of a parallel system having two identical
components. Then, the generalized cumulative entropy associated with Z is defined as

GCE(Z) =
∫ ∞

0
2w(u)E

[
φ(u)− φ(X)|X ≤ u

]
F(u)dF(u). (34)

Again, for the choices of w(u) = − 1
4 and φ(z) = z, from (34), we obtain

GCE(Z) = −1
2

∫ ∞

0
E
[
u−max(X1, X2)|max(X1, X2) ≤ u

]
F(u)dF(u).

Thus, the generalized cumulative entropy associated with Z is the weighted average of the
dynamic cumulative extropy in (31).

5. Concluding Remarks

In this work, we have introduced two general measures of entropy, viz., generalized
cumulative residual entropy and generalized cumulative entropy. Several entropy measures
known in the literature were all shown to be special cases of these generalized measures.
Cumulative residual entropy, weighted cumulative residual entropy, cumulative residual
Tsallis entropy and weighted cumulative residual Tsallis entropy are all special cases of
the generalized cumulative residual entropy. Cumulative entropy, weighted cumulative
entropy, cumulative Tsallis entropy and weighted cumulative Tsallis entropy are all special
cases of the generalized cumulative entropy.

We have presented a generating function approach to obtain generalized measures of
higher-order. We have shown that the generalized cumulative residual entropy of order two
reduces to the weighted cumulative residual entropy of Mirali et al. (2016) [4]. Moreover,
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the weighted cumulative entropy of Mirali and Baratpour (2017) [5] is a special case of the
generalized cumulative entropy of order two. We have also established some relationships
between entropy and extropy measures.

In information theory literature, conditional entropy is the amount of information
required to describe the outcome of one random variable Y, given the value of another
random variable X. Conditional entropy, as a measure of information, can be defined
through any measure, such as the Shannon entropy measure (denoted by H(Y|X)). The
conditional entropy defined through Shannon entropy measure, for example, is given by

H(Y|X) = −
∫ ∞

0

∫ ∞

0
f (x, y) log

f (x, y)
f (x)

dydx.

In this way, we can define the conditional entropy measures even in a generalized form.
The generalized versions we have introduced in the present work can thus be extended to
conditional entropy notions. However, we plan to carry out a detailed study of this in our
future work. It will be of interest to develop some inferential methods for these measures
as well. We are currently working in these directions and hope to report these finding in a
future paper.

Author Contributions: Methodology, S.K.K., E.P.S. and N.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Our sincere thanks go to the anonymous reviewers for their valuable suggestions
and comments on an earlier version of this manuscript, which resulted in this improved version.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CE Cumulative entropy
CRE Cumulative residual entropy
STM Sharma–Taneja–Mittal
WCRTE Weighted cumulative residual Tsallis entropy
WCTE weighted cumulative Tsallis entropy

References
1. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
2. Rao, M.; Chen, Y.; Vemuri, B.; Wang, F. Cumulative residual entropy: A new measure of information. IEEE Trans. Inf. Theory 2004,

50, 1220–1228. [CrossRef]
3. Di Crescenzo, A.; Longobardi, M. On cumulative entropies. J. Stat. Plan. Inference 2009, 139, 4072–4087. [CrossRef]
4. Mirali, M.; Baratpour, S.; Fakoor, V. On weighted cumulative residual entropy. Commun. Stat.-Theory Methods 2016, 46, 2857–2869.

[CrossRef]
5. Mirali, M.; Baratpour, S. Some results on weighted cumulative entropy. J. Iran. Stat. Soc. 2017, 16, 21–32.
6. Balakrishnan, N.; Buono, F.; Longobardi, M. A unified formulation of entropy and its application. Phys. A Stat. Mech. Its Appl.

2022, 127214. [CrossRef]
7. Asadi, M.; Zohrevand, Y. On the dynamic cumulative residual entropy. J. Stat. Plan. Inference 2007, 137, 1931–1941. [CrossRef]
8. Suhov, Y.; Sekeh, S.Y. Weighted cumulative entropies: An extension of CRE and CE. arXiv 2015, arXiv:1507.07051.
9. Calì, C.; Longobardi, M.; Ahmadi, J. Some properties of cumulative Tsallis entropy. Phys. A Stat. Mech. Its Appl. 2017, 486,

1012–1021. [CrossRef]
10. Calì, C.; Longobardi, M.; Navarro, J. Properties for generalized cumulative past measures of information. Probab. Eng. Inform. Sci.

2020, 34, 92–111. [CrossRef]

http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/TIT.2004.828057
http://dx.doi.org/10.1016/j.jspi.2009.05.038
http://dx.doi.org/10.1080/03610926.2015.1053932
http://dx.doi.org/10.1016/j.physa.2022.127214
http://dx.doi.org/10.1016/j.jspi.2006.06.035
http://dx.doi.org/10.1016/j.physa.2017.05.063
http://dx.doi.org/10.1017/S0269964818000360


Entropy 2022, 24, 444 15 of 15

11. Tahmasebi, S. Weighted extensions of generalized cumulative residual entropy and their applications. Commun. Stat.-Theory
Methods 2020, 49, 5196–5219. [CrossRef]

12. Toomaj, A.; Di Crescenzo, A. Connections between weighted generalized cumulative residual entropy and variance. Mathematics
2020, 8, 1072. [CrossRef]

13. Kharazmi, O.; Balakrishnan, N. Jensen-information generating function and its connections to some well-known information
measures. Stat. Probab. Lett. 2020, 170, 108995. [CrossRef]

14. Kharazmi, O.; Balakrishnan, N. Cumulative residual and relative cumulative residual Fisher information and their properties.
IEEE Trans. Inf. Theory 2020, 67, 6306–6312. [CrossRef]

15. Kharazmi, O.; Balakrishnan, N. Cumulative and relative cumulative residual information generating measures and associated
properties. Commun. Stat.-Theory Methods 2021, 1–14. [CrossRef]

16. Di Crescenzo, A.; Kayal, S.; Meoli, A. Fractional generalized cumulative entropy and its dynamic version. Commun. Nonlinear Sci.
Numer. Simul. 2021, 102, 105899. [CrossRef]

17. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
18. Sati, M.M.; Gupta, N. Some characterization results on dynamic cumulative residual Tsallis entropy. J. Probab. Stat. 2015,

2015, 1155. [CrossRef]
19. Rajesh, G.; Sunoj, S.M. Some properties of cumulative Tsallis entropy of order α. Stat. Pap. 2019, 60, 933–943. [CrossRef]
20. Chakraborty, S.; Pradhan, B. On weighted cumulative Tsallis residual and past entropy measures. Commun. Stat.-Simul. Comput.

2021, 1–15. [CrossRef]
21. Calì, C.; Longobardi, M.; Psarrakos, G. A family of weighted distributions based on the mean inactivity time and cumulative past

entropies. Ric. Mat. 2021, 70, 395–409. [CrossRef]
22. Balakrishnan, N.; Buono, F.; Longobardi, M. On cumulative entropies in terms of moments of order statistics. Methodol. Comput.

Appl. Probab. 2022, 24, 345–359. [CrossRef]
23. Drissi, N.; Chonavel, T.; Boucher, J.M. Generalized cumulative residual entropy for distributions with unrestricted supports. Res.

Lett. Signal Process. 2008, 2008, 79060. [CrossRef]
24. Kayal, S. On generalized cumulative entropies. Probab. Eng. Inform. Sci. 2016, 30, 640–662. [CrossRef]
25. Psarrakos, G.; Navarro, J. Generalized cumulative residual entropy and record values. Metrika 2013, 76, 623–640. [CrossRef]
26. Psarrakos, G.; Toomaj, A. On the generalized cumulative residual entropy with applications in actuarial science. J. Comput. Appl.

Math. 2017, 309, 186–199. [CrossRef]
27. Navarro, J.; Psarrakos, G. Characterizations based on generalized cumulative residual entropy functions. Commun. Stat.-Theory

Methods 2017, 46, 1247–1260. [CrossRef]
28. Di Crescenzo, A.; Toomaj, A. Further results on the generalized cumulative entropy. Kybernetika 2017, 53, 959–982. [CrossRef]
29. Balakrishnan, N.; Buono, F.; Longobardi, M. On weighted extropies. Commun. Stat.-Theory Methods 2020, 1–31. [CrossRef]
30. Sharma, B.D.; Taneja, I.J. Entropy of type (α, β) and other generalized measures in information theory. Metrika 1975, 22, 205–215.

[CrossRef]
31. Mittal, D.P. On some functional equations concerning entropy, directed divergence and inaccuracy. Metrika 1975, 22, 35–45.

[CrossRef]
32. Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Phys. A Stat. Mech. Its Appl. 2001, 296, 405–425. [CrossRef]
33. Lopes, A.M.; Machado, J.A.T. A review of fractional order entropies. Entropy 2020, 22, 1374. [CrossRef] [PubMed]
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