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Abstract
Mixed infection by multipleMycobacterium tuberculosis (MTB) strains is associated with

poor treatment outcome of tuberculosis (TB). Traditional genotyping methods have been

used to detect mixed infections of MTB, however, their sensitivity and resolution are limited.

Deep whole-genome sequencing (WGS) has been proved highly sensitive and discrimina-

tive for studying population heterogeneity of MTB. Here, we developed a phylogenetic-

based method to detect MTB mixed infections using WGS data. We collected published

WGS data of 782 global MTB strains from public database. We called homogeneous and

heterogeneous single nucleotide variations (SNVs) of individual strains by mapping short

reads to the ancestral MTB reference genome. We constructed a phylogenomic database

based on 68,639 homogeneous SNVs of 652 MTB strains. Mixed infections were deter-

mined if multiple evolutionary paths were identified by mapping the SNVs of individual sam-

ples to the phylogenomic database. By simulation, our method could specifically detect

mixed infections when the sequencing depth of minor strains was as low as 1× coverage,

and when the genomic distance of two mixed strains was as small as 16 SNVs. By applying

our methods to all 782 samples, we detected 47 mixed infections and 45 of them were

caused by locally endemic strains. The results indicate that our method is highly sensitive

and discriminative for identifying mixed infections from deepWGS data of MTB isolates.

Introduction
Tuberculosis (TB) remains a great threat to human healthy by causing around 9.6 million new
cases and 1.5 million deaths in 2014 [1]. TB is usually caused by infection of a single strain of
M. tuberculosis (MTB), but molecular genotyping methods have proven that a patient could be
infected with multiple genetically distinct strains, which we refer to as “mixed infection” [2–4].
Mixed infections could lead both clinical and public problems. Mixed infections with both
drug sensitive and resistant strains can lead to discordant drug-susceptibility test profiles,
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which could complicate the treatment regimen and lead to poor treatment outcomes [2, 5, 6].
Mixed infections could also lead to underestimation of the ongoing transmission of MTB. It is
possible that only one strain from a patient of mixed infection is transmitted to a secondary
patient. If this strain were not identified from the index case, the transmission would be
ignored [7]. The frequency of mixed infection may differ according to the level of MTB trans-
mission in different areas. If mixed infection is common in a given population, a high rate of
recent transmission may be indicated.

Mixed infection can be detected by traditional genotyping methods, such as spoligotyping,
IS6110 restriction fragment length polymorphism (RFLP), and variable-number tandem repeat
(VNTR). Based on such methods, the rates of mixed infection were found ranged from 10–
20% in high TB incidence areas [4, 8, 9]. However, the estimated rate based on mathematical
model is much higher than we detected [10], which suggest the sensitivity of these methods are
limited. Spoligotyping based detection has the limitation of low resolution as it targets a single
locus of the MTB genome [11]. Furthermore, it is difficult do differentiate the spoligotype pat-
tern of mixed strains from that of a single strain when the spoligotype patterns of local strains
are similar [8]. The detection of mixed strains by IS6110 RFLP is mainly based on the identifi-
cation of hybridizing low-intensity bands, which prone to be subjective [12]. VNTR-based
detection of mixed infection depends on the identification of multiple bands in one or more
VNTR loci. The problem of VNTR typing is that it is difficult to distinguish mixed infections
from clonal heterogeneity [13]. Finally, all above methods have limited sensitivities to detected
low-abundance DNA from the minor strain in a mixed infection. An abundance of 10% of the
minor strain is usually needed to achieve an unambiguous detection by these methods [12, 14].
Recently, some PCR-based methods that target lineage specific markers (i.e., IS6110 insertion,
large fragment deletions) could achieve much higher detection limit of the minor strain. How-
ever, the resolution of such methods is low, as they could only detect mixed infections by cer-
tain MTB lineages/sublineages [4].

Deep whole genome sequencing, which is based on the next generation sequencing tech-
nology, provides ultimate resolution for typing MTB [8]. Single nucleotide variations (SNVs)
detected by mapping sequencing reads to a reference genome were usually used to illustrate
the genomic distance between MTB isolates [15–17]. Clinical MTB isolates from solid/liquid
cultures are mixture of many bacterial colonies multiplied from the original sputum, thus the
deep sequencing data of such samples contains information refer to the genetic diversity of
the within host bacterial population. Since MTB is haploid, the existence of an extraordinarily
large number of high-quality heterogeneous SNVs may suggest a potential mixed infection
[18]. E.g., Köser CU. et al., identified 209 heterogeneous SNVs from an early positive liquid
(MGIT) culture and they proved that the patient was infected by two distantly related Beijing
strains [19]. Chan J. et al., applied metagenomic analysis to a sample from a 215-year old
mummy and identified 398 heterogeneous SNVs after mapping the sequencing data to the
genome of H37Rv, which indicates the person had a mixed infection of MTB [20]. However,
due to the interference of sequencing error, the calling of high-quality heterogeneous SNVs
usually needs relatively high abundance of the minor strain (i.e.,>30%) in a mixed infection
[18, 19]. Furthermore, only mixed infections caused by genetically distantly related strains
(i.e., genomic difference>100 SNVs) could be unambiguously detected by such methods.
When only a small number of heterogeneous SNVs are detected, it will be less accurate to tell
the heterogeneity is caused by mixed strains or by microevolution after infection [18]. In this
study, by taking the advantage of next generation sequencing, we developed a phylogenetic-
based method that could achieve a sensitive and discriminative detection of mixed infection
of MTB.
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Materials and Methods

WGS data collection and SNV detection
We downloaded the WGS data of 782 strains from NCBI SRA database (S1 Table) [16, 21–26].
The reads of each strain were extracted by Fastq-dump of SRA Toolkit (v2.5.7). The low quality
reads were trimmed with Sickle (https://github.com/ucdavis-bioinformatics/sickle). The
trimmed reads were then mapped against the artificial genome of the most recent common
ancestor (MRCA) of MTB (MTBmrca) [27] with Bowtie2 (v2.1.0). SNVs were identified using
SAMtools/BCFtools (v0.1.18) and VarScan (v.2.3.6).

We used two approaches, SAMtools/BCFtools (v0.1.18) and VarScan (v.2.3.6) for SNV call-
ing. SAMtools/BCFtools was used to call homogeneous SNVs (variant allele frequency�95%),
while VarScan was used to call both homogeneous and heterogeneous SNVs (variant allele fre-
quency<95%) from the pileup files generated by SAMtools. In both cases, SNVs were called at
loci with minimum depth of 15, minimummapping quality of 20 and minimum base quality
of 20. By SAMtools/BCFtools, SNVs were further filtered according to the variant frequency
(� 95%). By VarScan, SNVs were called if they were supported by at least two reads and passed
the strand-bias filter at the same time. SNVs in PE/PPE/PGRS genes and transposons were
excluded to avoid any concern about inaccuracies in the read alignment in those portions of
the genome. Furthermore, SNVs in an additional 39 drug-resistance associated genes [28] were
also removed to exclude the possibility that homoplasy of drug resistance mutations would sig-
nificantly decrease the reliability of phylogeny.

Strain filtering and phylogenomic database construction
Homogeneous SNVs called by both SAMtools/BCFtools and VarScan were used for construct-
ing a phylogenomic database. Firstly, we excluded strains with significantly lower or higher
number of homogeneous SNVs using the methods described by Tukey JW [29]. Since MTB
strains of the same lineage accumulated similar number of SNVs from the MTBmrca [24], an
extraordinary small or large number of SNVs may indicate artifacts in mapping or variant call-
ing, which may influence the reliability of phylogeny. In total, 58 outlier strains were excluded
(S1 Fig). The remaining 724 strains were further defined as clustered/unique strains by pair-
wise comparison. We found 124 strains were grouped into 52 genomic clusters (difference�10
SNVs within cluster). We randomly selected one genome from the clustered strains, resulted in
652 strains represented as unique genomes. We included all the unique genomes for phyloge-
nomic database construction.

Homogeneous SNVs of the selected 652 strains were combined into a non-redundant SNV
list. According to this list, we recovered the base calls for each strain and combined them into a
concatenated alignment. We filtered SNV loci that with a frequency of missing data (caused by
indels, low coverage or low mapping quality)>5%. The filtered alignment was then used to
generate a maximum likelihood (ML) phylogeny by RaxML (v8.0.20) using the GTR nucleotide
substitution model. A joint ancestral sequence reconstruction of each node was inferred with
HyPhy (2.22). Branch specific SNVs were identified by comparing descendent nodes with the
closest ancestral node.

Description of the phylogenetic-based algorithm
The algorithm was designed to detect evolutionary path(s) according to the homogeneous and
heterogeneous SNVs of a sample. Mixed infection was determined as if two or more evolution-
ary paths were detected. The algorithm includes four main steps as follows (S2 Fig).
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1. Map the homogeneous and heterogeneous SNVs (called by VarScan) of a sample to the phy-
logenomic database according to the position and allelic change of each SNV locus and
record the mapped branches (S2A Fig).

2. Exclude mapped branches whose coverage (defined as the proportion of the matched SNVs
in a branch) are lower than 10% and keep the others as candidate branches (S2B Fig).

3. Extract the evolutionary routes for all candidate branches from the database and assemble
them into candidate paths by pairwise comparison, during which the shorter routes were
merged with the longer ones that can fully cover them (S2C Fig).

4. For every combination of two candidate paths, determine the diversification node, the
shared segment and unique segments of them (S2D Fig). Then, identify authentic mixed
infections by following criteria:

a. For the branches in each segment (the shared segment and two unique segments), at
least 60% of them are mapped with coverage�10%.

b. The three branches connected by the diversification node should be all mapped.

Generate synthetic reads for single or mixed MTB strains
We generated artificial genomes for 500 of the 652 strains in the phylogenomic database
according to their homogeneous SNVs. For each strain, we created its synthetic genome based
on the genome of MTBmrca by replacing the ancestral bases with corresponding mutant bases
in the SNV loci. The synthetic genome was then used to generate artificial illumina paired-end
reads (with a depth of 100) using ART (v03.09.15), which simulates base quality and sequenc-
ing errors by emulating the sequencing process with built-in base quality value profiles and
read error models. For the simulation of mixed sample, we selected 25 pairs (S2 Table) of
strains from the 500 strains. The genomic distance between strains in each pair ranged from 10
to 1621 SNVs. To monitor mixed infections at different levels, we mixed the simulated reads of
the paired strains in different ratios, in which the depth of the minor strain was set as 1×, 2×,
3×, 5× or 10×, with corresponding depth of the major strain as 99×, 98×, 97×, 95×, or 90×
respectively to guarantee a total depth of 100×. Similarly, we further generated mixed reads for
52 pairs of MTB strains that were not included in the phylogenomic database (S3 Table). The
synthetic reads of all non-mixed and mixed samples were then mapped to the genome of
MTBmrca and SNVs were called by VarScan as mentioned above.

Detection of mixed infection
The genomic SNVs (including both homogeneous and heterogeneous ones) called by VarScan
from clinical or artificial samples were used as inputs for detecting mixed infections. The non-
mixed samples of 500 individual strains were used to test the specificity of our methods. The
mixed samples of paired strains were used to test the detecting sensitivity (defines as the limit
of depth of the minor strain) and resolution (defines as the limit of genomic distance between
two mixed strains) of our method.

Results

Principle of the phylogenetic-based detection of mixed infection
MTB is a clonal bacterial pathogen whose evolution is mostly a process of stepwise accumula-
tion of genomic mutations [30]. The evolutionary path of a MTB strain could be determined
by mapping its genomic mutations onto a reference phylogeny, computed from pre-existing
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MTB genomes. We defined the MRCA of MTB as ANC0 in the reference phylogeny (Fig 1),
and defined the MRCA of two MTB strains in a mixed infection as ANC1. We called SNVs of
each sample by mapping the sequencing reads to the genome of ANC0. The phylogenetic-
based algorithm was designed to map SNVs to the reference phylogeny and detect potential
evolutionary path(s). If two paths are identified, mixed infection will be determined (Fig 1).
These two paths shared a common evolutionary segment from ANC0 to ANC1 and diverged
into two segments from ANC1.

The reference phylogenomic database of global MTB
By excluding SNVs in drug resistance genes, mobile elements and PE/PPE family genes, a total
of 68,639 homogeneous SNVs of the 652 MTB strains collected worldwide were used to con-
struct a reference phylogenomic database (S1 Text). Firstly, we constructed a maximum likeli-
hood phylogeny based on the concatenated alignment of these strains (Fig 2A). According to
the phylogeny, global MTB consists of seven major lineages, which is consistent with previous
studies [31]. Secondly, we inferred the maximum likelihood sequence of each ancestral node.
Thirdly, we inferred the branch specific SNVs by comparing the reconstructed sequence of the
descendant node to the closest ancestral node. Excluding theM. canettii (the out-group), the
phylogeny consists of 1,313 branches with a median branch length of 41 SNVs (range from 1

Fig 1. Principle of the phylogenomic-database based detection of mixed infection. (A)WGS reads of a
mixed infection by strain A and B were mapped to the ANC0 genome to call SNVs that include common SNVs
(red color) shared by both strains and strain specific SNVs (green and blue color). (B) The evolutionary paths
of the two strains were determined by mapping SNVs to the reference phylogenomic database. These two
paths share a common segment (mapped by common SNVs) from ANC0 to ANC1 and diverged into two
separated segments (mapped by strain specific SNVs) after ANC1.

doi:10.1371/journal.pone.0159029.g001
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Fig 2. The phylogenomic database of global MTB. (A)Maximum-likelihood (ML) phylogeny of 652 global MTB strains
based on the concatenated alignment of 68,639 genomic SNVs. The colors represent seven MTBC lineages. (B) Schematic
diagram illustrating the components of the phylogenomic database. The nodes of the ML phylogeny (represented by a sub-
branch outlined in red in panel A) were numbered to record the branching order. A branch was determined by its mother and
descendant nodes. The SNVs and evolutionary route of the each branch were recorded.

doi:10.1371/journal.pone.0159029.g002
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to 840 SNVs). The branching events along the phylogeny, together with corresponding nucleo-
tide changes, compose the reference phylogenomic database (Fig 2B).

Simulation of artificial sequencing data
Synthetic mixed infections with 25 strain pairs that differ in abundance and/or genomic dis-
tance were generated to test the sensitivity and resolution of our method (Fig 3A). Among the
125 simulations, 124 (99.2%) were successfully detected as mixed infections (Fig 3A). The
detected genomic distance between two mixed strains is close to their real distance when the
depth of the minor strain is higher than 1× (Fig 3B); most of the detected depth of two strains
in each simulation is congruent with the original simulated depth (Fig 3C). For the only one
sample that failed to be detected as mixed infection, it was mixed by a strain pair that has the
smallest genomic distance (10 SNVs) and the lowest depth (1×) of the minor strain.

To test the specificity of our methods, we applied the analysis to the non-mixed reads of 500
individual strains. No mixed infection was detected from these samples, which demonstrated a
specificity of 100%.

Detecting mixed infection from clinical samples
Among all 782 WGS data, 15 were from single-clone MTB culture [32]. By applying our meth-
ods to these data, no mixed infection was detected. For the remaining 767 samples of multi-
clone MTB culture, we detected potential mixed infection from 47 samples (47/767, 6.1%)
(Table 1). The depth of the minor strains in these samples ranged from 2.13× to 100.40×, and
the proportion of the minor strains ranged from 0.64% to 35.83%. Of the detected mixed infec-
tions, 21 cases were caused by two strains of different MTB lineages. For these cases, an average
of 825.8 (from 361 to 1,735) SNVs were mapped to the two strain specific paths. For the
remaining 26 cases, infections were caused by two strains of the same lineage (Lineage 2 or 4)
and an average of 222 (61–655) SNVs were mapped to the two strain specific paths (Table 1).
In most cases (45/47, 95.74%), the two strains of a mixed infection were belonging to local
endemic genotypes (Table 1). E.g., mixed infections in Shanghai were all caused by lineage 2
and/or lineage 4 strains.

Discussion
MTBmixed infection would complicate the treatment regime and interfere the resistance pro-
file detecting [2]. In this study, we developed a phylogenetic-based method for detecting mixed
infection based on WGS data of MTB culture. Our method is based on a reference phyloge-
nomic database, which could not only overcome bias caused by false positive SNV callings, but
also differentiate heterogeneity caused by mixed infections or within-host microevolutions.
Such features make our method highly discriminative that could detect mixed infection by two
strains with very small genetic distance. The method is also highly sensitive that could detect
minority strains with sequencing depth as low as 1×.

Several recent researches reported mixed infections of MTB based on the identification of
hundreds of heterogeneous SNVs identified from NGS data [19, 20]. The heterogeneous SNVs
called from deep sequencing data in this case could be resulted from PCR/sequencing errors or
newly evolved mutations through microevolution after infection, which could confounds the
identification of rare alleles of the minor strain in a mixed infection. Consequently, when the
frequency of the minor strain is high (i.e.,>30%), mixed alleles would be easily identified. Con-
trarily, if the minor strain is less frequent, it will be unpractical to distinguish mixed alleles
from other rare variants. Furthermore, as a number of newly evolved mutations could be
selected or drifted to a high frequency within patient [25], mixed infection could be determined
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Fig 3. Detection of mixed infections from artificial WGS reads. (A) The cells represent 125 synthetic
samples of mixed infection. Samples in the same column represent five different levels of mixed infections
(depth from top to bottom is 1×, 2×, 3×, 5× or 10× for the minor strain) that are synthesized from the same pair
of strains whose genomic distances are in correspondence with the X-axis of panel B. The gray cell indicates
no detection of mixed infection and the cells in other five colors indicate detection of mixed infections in
different mixed levels. (B) The detected genomic distance (defines as number of SNVs) between the mixed
strains in each synthetic sample. (C) The estimated depth of the minor strain under the five simulated depths.

doi:10.1371/journal.pone.0159029.g003
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Table 1. Clinical samples detected asmixed infection by our methods.

Sample ID Origin Minor strain Major strain #Coverage

Depth (abundance) Lineage Depth (abundance) Lineage

SRR671847 Guizhou, China 2.13(1.92%) 2 90.45(98.78%) 2 655/833(78.63%)

SRR671801 Liaoning, China 2.20(1.70%) 4 98.30(99.33%) 2 700/794(88.16%)

855Bb4 Nepal 2.21(1.65%) 4 131.82(99.18%) 3 739/1016(72.74%)

10–390 Shanghai, China 2.25(0.93%) 2 241.13(99.39%) 2 87/111(78.38%)

N0130b4 San Francisco 2.33(1.33%) 2 156.71(99.43%) 2 100/129(77.52%)

SRR671835 Guizhou, China 2.35(2.10%) 2 89.04(98.94%) 4 361/916(39.41%)

SRR671811 Shanghai, China 2.37(2.10%) 2 97.21(98.79%) 2 301/501(60.08%)

*N0182 London/Homerton 2.39(1.91%) 2 99.01(98.35%) 1 1145/1555(73.63%)

12–1813 Shanghai, China 2.45(1.09%) 2 195.79(99.38%) 4 366/949(38.57%)

09–783 Shanghai, China 2.46(0.91%) 2 241.38(99.75%) 4 363/984(36.89%)

SRR671725 Guangdong, China 2.46(2.02%) 2 99.20(98.93%) 4 376/786(47.84%)

SRR671824 Shanghai, China 2.50(2.42%) 2 84.95(99.17%) 2 268/501(53.49%)

DY21 Ghana 2.61(5.11%) 1 46.65(97.04%) 5 1182/1703(69.41%)

12–1828 Shanghai, China 2.61(1.13%) 4 203.33(99.42%) 2 697/944(73.83%)

GX94 Guangxi, China 2.64(2.07%) 2 103.49(99.27%) 2 134/255(52.55%)

09–0645 Shanghai, China 2.67(1.11%) 2 186.37(99.28%) 2 105/131(80.15%)

MTB_DY_131 Ghana 2.67(2.95%) 1 79.87(97.97%) 4 624/1612(38.71%)

09–0645_cut Shanghai, China 2.70(1.02%) 2 210.61(99.11%) 2 107/131(81.68%)

GX187 Guangxi, China 2.73(2.88%) 2 77.69(97.49%) 2 246/423(58.16%)

09–1780 Shanghai, China 2.75(0.64%) 2 414.00(99.77%) 2 221/287(77.00%)

GQ-1165 Shanghai, China 2.75(0.89%) 2 274.19(99.23%) 2 100/167(59.88%)

*N0041b4 San Francisco 2.75(1.99%) 6 137.20(98.86%) 2 994/1764(56.35%)

12_0358 Shanghai, China 3.13(0.83%) 4 376.60(99.51%) 2 693/867(79.93%)

11–1912 Shanghai, China 3.16(0.85%) 2 313.21(99.67%) 2 169/305(55.41%)

11–2094 Shanghai, China 3.33(1.12%) 2 301.31(99.49%) 2 143/204(70.10%)

11_1549 Shanghai, China 3.33(1.37%) 2 207.83(99.63%) 2 105/112(93.75%)

10–360 Shanghai, China 3.43(0.92%) 2 332.15(99.45%) 2 122/193(63.21%)

SRR671837 Guizhou, China 3.58(3.21%) 2 93.37(96.06%) 2 61/69(88.41%)

09–1687 Shanghai, China 3.75(0.79%) 2 390.36(99.36%) 2 241/302(79.80%)

N0185 London 3.93(3.82%) 2 81.57(93.97%) 4 589/835(70.54%)

10–1563 Shanghai, China 4.40(2.38%) 2 165.95(98.91%) 2 144/241(59.75%)

09–1060 Shanghai, China 4.42(2.40%) 2 175.61(97.23%) 4 687/826(83.17%)

SRR671840 Tibet, China 4.64(3.97%) 2 90.87(99.04%) 2 414/784(52.81%)

SRR671866 Beijing, China 5.34(4.88%) 2 88.64(94.04%) 2 120/130(92.31%)

10–592 Shanghai, China 6.16(1.56%) 4 345.88(97.95%) 2 947/1012(93.58%)

BTBS517 Ethiopia 6.50(6.86%) 4 65.61(87.61%) 6 1326/1535(86.38%)

09–799 Shanghai, China 6.65(1.58%) 2 354.19(97.08%) 2 304/334(91.02%)

09–716 Shanghai, China 6.83(1.64%) 2 373.92(98.01%) 2 270/283(95.41%)

751Bb4 Nepal 7.88(5.86%) 2 119.98(93.07%) 3 846/865(97.80%)

MTB_5_V367IO Vietnam 17.62(5.39%) 1 271.46(93.34%) 4 1300/1434(90.66%)

N0089b4 The Gambia 18.37(14.45%) 2 103.06(84.24%) 6 1735/1764(98.36%)

10_0841 Shanghai, China 24.24(10.97%) 2 167.65(84.27%) 4 826/870(94.94%)

D2g0841 Shanghai, China 36.28(9.42%) 2 296.56(85.47%) 4 845/959(88.11%)

09–682 Shanghai, China 37.86(15.28%) 2 226.76(99.75%) 2 129/306(42.16%)

N0138b4 San Francisco 51.71(30.73%) 4 112.67(67.61%) 4 526/543(96.87%)

11–220 Shanghai, China 90.44(35.83%) 2 137.08(56.34%) 2 350/353(99.15%)

(Continued)
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only when the mixed strains are genetically distantly related (e.g., genomic difference>100
SNVs). Our methods successfully exclude the interference of PCR/sequencing errors and
newly evolved mutations through mapping SNVs to the phylogenomic database. Since the
database is constructed based on homogeneous SNVs that have been fixed in clinical strains,
mutations newly evolved after infection will not likely to be mapped to the reference phylog-
eny. As for PCR/sequencing errors, there are very rare chances they would be mapped to the
phylogeny. For the ones that are mapped to the phylogeny, they should appear as sporadic on
the tree and there is a small likelihood to observe a series of adjacent branches mapped by such
SNVs. Thus, the corresponding paths will be filtered by our algorithm.

Recently, several methods have been developed for detecting mixed infection based on deep
sequencing data. David et al. developed a maximum likelihood-based method by estimating
the proportion of major strain and divergent sites [33]. Sergio et al. developed a method by
constructing the haplotypes of mixed strains [34]. However, by applying these two methods to
the data of 15 MTB single-colony samples, we found both methods incorrectly identified
mixed infections in all of them. Since the influence of sequencing error has been largely
excluded in both methods, the false-positive results may be caused by the microevolution,
through which newly evolved mutations may be selected or drifted to a frequency that could be
identified by deep sequencing.

By our method, the detection of mixed infection requires just 1× read depth from the
minority strain. According to the simulation results, when the genetic distance between two
strains is higher than 16, mixed infections can be constantly detected when the depth of the
minor strains is only 1×. For the 47 clinical specimens detected as mixed infections by our
method, the lowest proportion of minority strain is 0.64%, which demonstrated our method is
much more sensitive than current genotyping-based detections (e.g. VNTR based detection
requires a proportion of more than 10% of the minor strain).

Of the mixed infections detected in clinical samples, most (45/47) of the mixed strains
belong to the local endemic genotype, which demonstrates a high reliability of our method. For
the two exceptions, both cases are associated with immigrant (Table 1). Sample N0182 was iso-
lated from London and it was found as a mixed infection by strains of Lineage 1 and Lineage 2.
The corresponding patient was born in Malaysia where Lineage 1 and Lineage 2 strains are
endemic [35]. So it is possible that this patient was infected with these two strains before migra-
tion. The other exception is sample N0041b4 that was isolated from San Francisco and was
found mixed with Lineage 6 and Lineage 2 strains. MTB Lineage 6 was not an endemic geno-
type in San Francisco or in the born place (Vietnam) of the patient. However, as San Francisco
is a city of migrants, it’s possible that this patient had been re-infected with a Lineage 6 strain
from the West African migrants.

The detection of mixed infection by our method is depending on the identification of diver-
gence event (i.e., two strain specific paths) of two mixed strains whose strain specific paths are
both completely or partially included in the database (S3A–S3C Fig). Therefore, if the

Table 1. (Continued)

Sample ID Origin Minor strain Major strain #Coverage

Depth (abundance) Lineage Depth (abundance) Lineage

10–2065 Shanghai, China 100.40(32.88%) 2 177.05(59.57%) 2 351/353(99.43%)

*One of the mixed strains is not belonging to the local endemic genotype.
#Defined as the ratio between the detected number of SNVs and the real number of SNVs of two mixed strains.

doi:10.1371/journal.pone.0159029.t001
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divergence of two strains is not included in the database (S3D and S3E Fig), mixed infection
will be missed. In the current study, we detected almost all of the mixed infections simulated by
25 pairs of strains selected form the database (Fig 3). In contrast, by applying our method to
simulated data of separate MTB genomes (genomes not included in the reference database, S3
Table), we found mixed infections by strains of different lineages could be all detected, while
many mixed infections by strains of the same lineage were missed (S4 Fig). The undetected
mixed infections mainly belonged to pairs of strains with small genomic differences (i.e.,<200
SNVs, S4 Fig), in which cases the divergence of two strains happened more recently and was
not included in the database (data not shown). Taken together, a comprehensive reference
database is necessary for our phylogenetic-based detection. Since it is impossible to cover all
the genetic diversity of global MTB, constructing local databases that contain both remote and
recent divergence events of MTB strains in local areas would be an applicable strategy. More-
over, detecting in a recursive way would also increase the sensitivity of our method. As
described in current study, we firstly constructed the phylogenomic database using the homo-
geneous SNVs of the clinical samples, and then we mapped both heterogeneous and homoge-
neous SNVs of these samples for detection of mixed infections. Similarly, one can integrate
homogeneous SNVs of target samples to an existing reference database and then perform the
detection. By such strategy, the sensitivity of our method could be guaranteed.

In conclusion, we developed a phylogenetic-based method that could achieve a sensitive
and discriminative detection of MTB mixed infection fromWGS data. As WGS has been
increasingly used for studying the epidemiology of TB, more and more sequencing data of
MTB from local areas will be available. Our method provides a solution to inspect mixed infec-
tions from those data and enables to gain a further insight into the local TB epidemic.

Supporting Information
S1 Fig. Exclusion of the outlier strains based on analyzing the SNV number of different
MTB lineages.
(TIF)

S2 Fig. Schematic diagrams illustrating the procedure of determining mixed infection by
the phylogenetic-based method. (A)Map the SNVs (red vertical lines) of a sample to the ref-
erence phylogeny. (B) Exclude branches with low SNV coverage (<10%). (C) Assemble
mapped branches into candidate evolutionary paths (black thick lines). Strings above/below
branches indicate evolutionary routes of corresponding branches. (D) Determine authentic
pairs of paths (colored lines) from all possible combinations.
(TIFF)

S3 Fig. Schematic diagrams illustrating possible cases of mapping the evolutionary paths of
two MTB strains to the reference phylogenomic database. The two unique paths after diver-
gence are completely (A), or partially (B, C) covered by the database. In other cases, one (D) or
both (E) unique paths are not covered by the database. Thick colored lines represent path seg-
ments covered by the database. Red dash lines represent path segments not included in the
database.
(TIFF)

S4 Fig. Detection of mixed infections frommixed reads simulated with MTB genomes not
included in the phylogenomic database. Three panels represent simulated mixed infections
by strains within Lineage 2 (A) or Lineage 4 (B), or by strains of different lineages (C). For each
panel, the numbers above the first row represent the genomic distance between two strains.
The numbers left to the first column represent the depth of the minor strains. The gray and
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blue cells indicate failure and success of detection respectively.
(TIFF)

S1 Table. List of 782 strains downloaded from NCBI SRA database with information of
MTBC lineage, isolation place and mapping information.
(XLSX)

S2 Table. List of the 25 pairs of strains used for simulating mixed infections.
(XLSX)

S3 Table. List of strains separated from our database. These 52 strain pairs were used for
simulating mixed infections.
(XLSX)

S1 Text. The phylogenomic database constructed based on 652 global MTB strains. The
database composes 1,313 branches that have been numbered from the root. For each branch,
the closest ancestral branch, the evolutionary route from the root, the branch level, the genomic
coordinates and nucleotide of corresponding SNVs were recorded.
(TXT)
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