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Background: Alzheimer’s disease (AD) and Type 2 Diabetes Mellitus (T2DM) are

two of the most common diseases for older adults. Accumulating

epidemiological studies suggest that T2DM is a risk factor for cognitive

dysfunction in the elderly. In this study, we aimed to dissect the genetic

links between the two diseases and identify potential genes contributing the

most to the mechanistic link.

Methods: Two AD (GSE159699 and GSE28146) and two T2DM (GSE38642 and

GSE164416) datasets were used to identify the differentially expressed genes

(DEGs). The datasets for each disease were detected using two platforms,

microarray and RNA-seq. Functional similarity was calculated and evaluated

between AD and T2DM DEGs considering semantic similarity, protein-protein

interaction, and biological pathways.

Results: We observed that the overlapped DEGs between the two diseases are

not in a high proportion, but the functional similarity between them is

significantly high when considering Gene Ontology (GO) semantic similarity

and protein-protein interactions (PPIs), indicating that T2DM shares some

common pathways with AD development. Moreover, we constructed a PPI

network consisting of AD and T2DMDEGs, and found that the hub gene SLC2A2

(coding transmembrane carrier protein GLUT2), which connects themost DEGs

in both AD and T2DM, plays as a key regulator in linking T2DM and AD via

glucose metabolism related pathways.

Conclusion: Through functional evaluation at the systems biology level, we

demonstrated that AD and T2DM are similar diseases sharing common

pathways and pathogenic genes. SLC2A2 may serve as a potential marker

for early warning and monitoring of AD for the T2DM patients.
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Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative

disorder and the most common form of dementia that affects

over 55 million people worldwide in 2020 (Gilbert, 2013). During

the past decades, although massive efforts have been made to

decipher the pathogenesis of AD, no effective therapies have been

developed to tackle this complex neurodegenerative disease

(Matthews et al., 2019). Two major pathological hallmarks

were identified for AD, both involved neuronal apoptosis: β-
amyloid plaques formed by toxic Aβ deposition and,

neurofibrillary tangles (NFTs) caused by

hyperphosphorylation of tau proteins (Marques et al., 2010).

Several risk factors that may trigger or facilitate the

development of AD have been identified, including high

cholesterol and Type 2 diabetes mellitus (T2DM) (Dominguez

et al., 2012; De Felice et al., 2014). In recent years, accumulative

evidence suggests shared pathology or treatment between T2DM

and AD (Akter et al., 2011). T2DM, characterized by insulin

resistance and relative insulin deficiency, is a disease of elderly

persons with an increased risk of dementia at 1.5~2.5 times

(Exalto et al., 2012). Cohort studies also verified that T2DM is

associated with late-onset AD. The most possible mechanism by

which T2DM may contribute to the pathogenesis of AD is the

alteration of insulin signaling in the brain. Insulin, a

neuroprotective growth factor in the brain, could be

desensitized in both diseases. Not only insulin could affect Aβ
production and degradation, but also many downstream

molecules in the insulin signaling pathway, such as GSK3β,
ERK, AKT, etc., are involved in tau hyperphosphorylation

(Takeda et al., 2011). Due to the close association between

T2DM and AD, it is possible that drugs developed to treat

T2DM, which targets insulin signaling, may be applied to

prevent or suspend neuronal apoptosis in AD brain and lead

to less cognitive impairment in AD patients.

Over the past decade, a growing number of transcriptome

works have been conducted to identify expression alterations

associated with complex diseases, which is a typical workflow in

bioinformatics analysis and preclinical research (Santiago et al.,

2019; Shu et al., 2022). But it is worth noting that many

differentially expressed genes (DEGs) do not have known

biological effects, or each gene may contribute small but

complex effects to the pathogenesis of diseases (Riancho,

2012). According to a recent network-based study, genes that

were differentially expressed in the disease condition tend to

form modules of interacting and functionally related genes and

propagate the effects of disease phenotype through a highly

interconnected protein-protein interaction (PPI) network. In

other words, DEGs may indirectly work together with others

involved in the same pathways or implemented in similar

biological processes.

Among elderly people, co-morbidity is an increasingly

common medical reality (Tabares-Seisdedos and Rubenstein,

2013). Despite unique pathological features of each disease,

some essential cellular functions or molecular processes whose

alterations might collectively dictate disease progression are

similar to the other types of diseases. In this study, we

systematically compared the molecular mechanisms and

relationships of AD and T2DM by integrating transcriptome

data, interactome data, and function data, to examine the

existence of shared risk for AD and T2DM. The consistency

of these two diseases was evaluated at the functional similarity

and gene interaction levels. Although many studies have

indicated the underlying links between AD and T2DM, our

study comprehensively investigates their connections from the

perspective of functional analysis and interaction analysis. Also,

SLC2A2 was detected as the crosstalk gene playing a key role in

linking these two diseases for further experimental validation.

Materials and methods

Gene expression data

The human gene expression data of AD and T2DM were

collected from the Gene Expression Omnibus (GEO)

database (Barrett et al., 2013). For AD,

GSE159699 includes 12 disease and 10 normal samples

while GSE28146 data include 22 disease and 8 normal

samples (Blalock et al., 2011; Nativio et al., 2020). For

T2DM, GSE38642 consists of nine diseases and 54 normal

islets samples while the GSE164416 contains 39 disease and

18 control islets samples, which are selected from 133 samples

among four diabetes statuses (Taneera et al., 2012; Wigger

et al., 2021). For each disease, RNA-seq and microarray

platforms were separately used for the two datasets.

Specifically, GSE159699 and GSE164416 were detected

using RNA-seq platform while GSE28146 and

GSE38642 were measured using microarray platform. The

platform information is detailed in Table 1.

Data preprocessing and differential
analysis

The Affymetrix GeneChip data are preprocessed by RMA

(Robust Multi-array Analysis) (Bolstad et al., 2003). The

annotation soft tables downloaded from the corresponding

GPL platform were used for assigning Probe ID to Gene

Symbol. Probes with ambiguous or multiple gene symbols

were removed. Averaged the expression intensity when

replicated probes mapping to the identical gene. The entire

expression matrix was log2 transformed. Fold Change (FC)

and Mann-Whitney test were used to identify the

differentially expressed genes (DEGs). Genes with |FC|

>1.5 and Mann-Whitney test p-value<0.05 were defined as
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DEGs. Considering that different array platforms have

different gene coverage, we just studied genes presented in

all the analyzed datasets. Reads per kilo base per million

mapped reads (FPKM) was used to measure the expression

intensity for the RNA-seq data and the data was preprocessed

using the methods mentioned in the original papers. All the

analysis was carried out using R-4.1.2.

Protein interaction data

The human protein-protein interaction (PPI) data were

derived from the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING version 11.5) (Szklarczyk et al.,

2019). Interaction with a score greater than 0.4 were used

to build a high-confidence network with 38 edges and

166 nodes. Network degree was defined as the number of

neighbors linking a protein. PPI network was generated and

illustrated by Cytoscape (version 3.9.1) (Shannon et al.,

2003).

Monte carlo simulation

Monte Carlo simulation, also known as multiple probability

simulation, is a mathematical technique used to estimate the

possible outcomes of an uncertain event. p-values are calculated

to see whether observed values are unusually large or small for

the null distribution. This calculation compares the observed

value to the upper/lower tails of the null distribution to explore

whether the observed value is significantly large/small for the

distribution.

p � (m + 1)/(n + 1) (1)

where n is the total number of Monte Carlo simulations, m is the

number of simulations for which the statistic was greater than or

equal to the observed statistic. One (1) is added to the numerator

and denominator because the observed statistic is included in the

reference distribution.

In this study, to access the statistical significance of an

observed SS score, we randomly selected two gene sets with

the same sizes as the two original sets from the background genes

detected by both diseases. We then calculated p-value using these

two gene sets. After 10,000 Monte Carlo random experiments,

the significance level (or p-value) for an observed SS was

calculated as the proportion of random scores higher than the

observed score.

Pathway enrichment analysis

The hypergeometric distribution model was used to evaluate

the significance of enrichment analysis. The probability of

observing at least k genes annotated in a specific term is

calculated as follows:

p � 1 −∑q−1
k�0

( t
k
)(m − t

n − k
)

(m
n
)

(2)

where k is the number of genes of interest, n is the total

number of detected genes, m is the term size or the number of

genes in a term, and t is the number of the overlap genes

annotated in the term. The resulting p-value was then multi-

test adjusted by the BH correction (FDR< 0.05).

Functional enrichment analysis of Gene Ontology (GO)

(Gene, 2021) and Kyoto encyclopedia of genes and genomes

(KEGG) (Kanehisa et al., 2021) pathway was performed to

determine significantly enriched gene functions using the R

package ‘clusterpProfiler’ (R version 4.1.2) (Yu et al., 2012).

Three pathways, Glucagon Signaling Pathway,

Carbohydrate Digestion and Absorption and Central

Carbon Metabolism in Cancer, are collected and

highlighted from KEGG.

Five semantic similarity methods were used to evaluate the

functional similarity between two gene sets, i.e., Wang, Rel, Jiang,

Lin and Resnik (Yu et al., 2012). ‘GOSemSim’ was used for the

calculation of these scores.

TABLE 1 AD and T2DM gene expression datasets.

Dataset Disease Tissue Technology Platform Sample number

Total Case Normal

GSE159699 AD Hippocampus RNA-seq Illumina NextSeq 500 30 12 10

GSE28146 AD Hippocampus Microarray Affymetrix Human Genome U133 30 22 8

Plus 2.0 Array

GSE38642 T2DM Pancreas Microarray Affymetrix Human Gene 1.0 ST Array 63 9 54

GSE164416 T2DM Pancreas RNA-seq Illumina HiSeq 2500 57 39 18
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Results

Differential analysis

Datasets GSE159699 and GSE28146 were used to identify the

differentially expressed genes (DEGs) for AD. Genes with fold

change (FC) larger than 1.5 and p-value less than 0.05 were

identified as DEGs for subsequent analysis. In total, 2323 and

800 DEGs were identified for GSE159699 and GSE28146 (Figures

1A,B), respectively, in which 156 were commonly detected as

DEGs (Figure 1C) and hereafter we defined it as AD DEGs. For

these genes, the expression difference between the AD and

control samples are shown in Figure 1D and Figure 1E for

GSE159699 and GSE28146, respectively, which illustrates that

the two groups of samples can be clearly stratified.

These genes are mainly involved in biological processes of

regulation of amine transport, regulation of trans-synapic

signaling, learning of memory, etc. (Figure 1F) and locate in

FIGURE 1
Differential analysis of AD. Volcano plot of GSE159699 (A) and GSE28146 (B). DEGs are defined as genes with |FC|>log2(1.5) and p-value<0.05.
(C) Venn diagram showing the intersection between DEGs of GSE159699 and GSE28146. Heatmap of expression changes for the common ADDEGs
in GSE159699 (D) and GSE28146 (E). (F–H) Functional enrichment analysis of the common AD DEGs using Biological Process, Cellular Component
and KEGG Pathway.
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transport vesicle, synaptic vesicle, synaptic vesicle membrane, etc.

(Figure 1G). Also, they are implemented in biological pathways of

synaptic vesical cycle, collecting duct acid secretion, glucolysis, etc.

(Figure 1H).

Datasets GSE164416 and GSE38642 were used to identify

DEGs for T2DM. 1790 and 65 DEGs were identified for

GSE159699 and GSE28146 (Figures 2A,B), respectively. The

28 DEGs commonly identified from them were T2DM DEGs

(Figure 2C). For these genes, the expression difference between

the T2DM and control samples is clear based on these T2DM

DEGS for GSE164416 and GSE38642 (Figures 2D,E).

These genes are enriched in biological processes of positive

regulation of T cell differentiation in thymus, regulation of

chemokine production regulation of lymphocyte apoptotic

process, etc. (Figure 1F) and resident in azurophil granule

membrane, coated vesicle, endocytic vesicle, lysosomal membrane,

FIGURE 2
Differential analysis of T2DM. Volcano plot of GSE38642 (A) and GSE164416 (B). The thresholds for the identification of T2DM DEGs are the
same as AD. (C) Venn diagram showing the intersection between DEGs of GSE38642 and GSE164416. Heatmap of expression changes for the
common T2DM DEGs in GSE38642 (D) and GSE164416 (E). (F–H) Functional enrichment analysis of the common T2DM DEGs using Biological
Process, Cellular Component and KEGG Pathway.
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etc. (Figure 1G). Also, they are implemented in biological pathways of

fatty acid metabolism, insulin secretion, arginine biosynthesis, etc.

(Figure 1H).

Functional analysis

Dozens of DEGs were commonly detected by different

datasets for each disease, whereas no common DEGs were

identified between AD and T2DM (Figure 3A), given that the

two diseases are strongly associated. However, these DEGs are

closely related to each other from the function perspective.

Specifically, the semantic similarity (SS) scores among the

four datasets are generally over 0.8, especially for the three

datasets GSE28146, GSE159699 and GSE164416 (SS > 0.9,

Figure 3B). Figure C shows the SS scores between the 156 AD

DEGs and 28 T2DM DEGs. Using Monte Carlo simulation, we

randomly selected the same number of DEGs 1,000 times and

calculate the SS scores to build a simulated SS distribution. The

detected SS score between the 156 ADDEGs and 28 T2DMDEGs

is 0.649, which is significantly higher than most of the simulated

ones (p < 0.01, Figure 3D), indicating that AD and T2DM are

close to each other from the point of biological function.

Using the other four SS methods, also, we calculated the SS

scores and simulated SS distributions (Figures 3E–H), resulting

in the SS scores of 0.748, 0.732, 0.76 and 0.421 for Rel, Jiang, Lin

and Resnik, respectively. As expected, the SS scores of the

simulated data are consistently lower than the real SS scores

(p < 0.01), demonstrating that the DEGs of the two diseases are

involved in some common pathways or functional modules.

Network analysis

To investigate the associations between the two diseases from

the point of protein interaction, we constructed a protein-protein

FIGURE 3
Evaluation of the functional similarity between AD and T2DM. (A) Venn diagram illustrating the DEGs identified from GSE159699, GSE28146,
GSE38642 and GSE164416. (B) Semantic similarity among the DEGs of the four datasets. (C) Heatmap showing the semantic similarity between AD
and T2DMDEGs. (D–H)Distributions of the simulated semantic similarity forWang, Rel, Jiang, Lin and Resnik. The simulated scores are generally less
than the detected one.
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interaction (PPI) network using the AD DEGs and T2DMDEGs.

A network consisting of 184 genes, 156 AD DEGs and 28 T2DM

DEGs, was illustrated in Figure 4A and the genes with high

degree were highlighted (AD in orange and T2DM in green).

38 edges were observed connecting the two gene set. To test

whether the two gene sets are closely connected with each other,

we randomly selected the same number of genes for each set

1,000 times and calculated the connectivity between them.

Distribution of the random data was built and only a few

simulations were larger than 38 (Figure 3B).

The hub genes or genes with the highest degree for AD and

T2DM were shown in Figures 4C,D, respectively. The AD hub

genes consist of G6PC2, PCSK1, ACADSB, and BDNF, while

SLC2A2, PFKFB2, GLP1R, SLC1A1, and CHL1 are the hub

genes of T2DM. It is apparent that the hub DEGs are connected

much denser than the other DEGs, suggesting they are

involved in biological pathways linking AD and T2DM,

such as carbohydrate digestion and absorption, glycolysis,

glucagon signaling pathway, etc. (Figure 4E). Among these

hub genes, SLC2A2, a T2DM hub gene, was up-regulated and

all the others were down-regulated. Also, it has the largest

connectivity of 6 and connects most of the AD hub genes,

suggesting that it is a pivot mediating or triggering the

development from T2DM to AD. Additionally, we observed

that most of the hub DEGs were down-regulated, seven out of

eight in AD and four out of five in T2DM (Figure 5).

FIGURE 4
Network analysis of the AD and T2DM DEGs. (A) PPI network of the AD and T2DM DEGs. Node represents DEGwhile edge indicates interaction
between a pair of DEGs. The hub genes of AD and T2DM are highlighted in orange and green, respectively. (B) Distribution of the connectivity
between simulated data. (C,D)Hub genes with top network degree for AD and T2DM, respectively. (E) Enriched KEGG pathways of the 13 hub DEGs.
(F) Glucagon signaling pathway. G6PC2 and LDHA (AD DEGs) are colored in red and SLC2A2 (T2DM DEG) is colored in green.
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Pathway analysis

The glucagon signaling pathway is a process of a series of

elevated blood glucose enzymatic reactions triggered by the

binding of glucagon that produced by pancreatic islets alpha

cells to the glucagon receptor on the surface of liver cells.

Glucagon signaling pathway mainly assists glucagon to exert

its role of raising blood glucose to sustain blood glucose

homeostasis in the body and synergizes with insulin. In this

pathway, GLUT2, encoded by SLC2A2, is working as a

transmembrane carrier protein that enables protein facilitate

glucose movement across cell membranes. Two AD hub

genes/proteins, G6PC2 and LDHA that are interacted with

GLUT2, are implemented in the pathway (Figure 4F).

In the carbohydrate digestion and absorption pathway,

GLUT2 is critical and ubiquitous in carbohydrate transport

(Figure 6). Glucose and galactose are initially transported into

the enterocyte by SGLT1 located in the apical brush border

membrane (BBM) and then exit through the basolateral

membrane by GLUT2 or release out through exocytosis by

HK1 and G6PC2 located in Endoplasmic Reticulum (ER). In

intestinal glucose absorption, transport by SGLT1 induces rapid

insertion and activation of GLUT2 in the BBM by a PKCβII-
dependent mechanism. Moreover, trafficking of apical GLUT2 is

rapidly promoted by glucose, which acts through T1R2 + T1R3/

alpha-gustducin to activate PLCβ2 and PKCβII.

Discussion

We dissected the genetic links between Alzheimer’s Disease

(AD) and Type 2 Diabetes Mellitus (T2DM) in a systems biology

way. The differentially expressed genes between the two diseases

are not highly overlapped, but the functional similarity between

them is significantly high when considering Gene Ontology

semantic similarity and protein-protein interactions, indicating

that AD and T2DM share some common pathways in disease

development. From the interaction network of DEGs

(Figure 4A), SLC2A2, coding transmembrane carrier protein

GLUT2, has the highest connectivity with other DEGs for

both AD and T2DM. According to these observations, we

suspected SLC2A2 is a potential contributor linking T2DM

and AD via glucose metabolism related pathways.

Glucose uptake mediated by GLUTs is the first step of glucose

metabolism (van der Velpen et al., 2019). Glucose metabolism

entails both delivery of glucose to cells from the bloodstream, and

converting into adenosine triphosphate (ATP) taking place in

mitochondria. Early changes to glucose metabolism possibly

result from abnormal delivery of glucose to the brain. Glucose

is virtually the sole fuel for your brain, which is a hydrophilic

molecule and requires protein transporters to cross cell

membranes. Glucose is released into the bloodstream and

taken up by the brain via the sodium-independent facilitative

transporters GLUT1 and GLUT3.

FIGURE 5
Expression distribution of the hub DEGs. AD and T2DM groups are colored in pink and the corresponding control groups are colored in cyan. *,
**, ***, and **** represent the Mann-Whitney test p-value less than 0.05, 0.01, 0.001 and 0.0001, respectively.
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GLUT1 is responsible for glucose uptake across the BBB

endothelial cells and into astrocytes. Glucose uptake into the

brain appears to correlate with the number of

GLUT1 transporters at the BBB. Reports showed that neurons

do not express GLUT1 (Zlokovic, 2011), and GLUT3 is the key

glucose transporter that promotes the uptake of glucose into

neurons (Patching, 2017). Iadecola et al. demonstrated that a

decrease of glucose in the brain via loss of these major glucose

transporters may reduce brain glucose and therefore limit the

metabolism processes (Iadecola, 2015). According to recent brain

studies, most glucose transport is regulated by GLUT1 and

GLUT3, but Knezovic et al. evidenced that GLUT2 leads

specific neuronal populations more vulnerable to pathogenic

mechanisms underlying AD (Knezovic et al., 2017).

The influence of the demographic characteristics among the

four datasets was not evaluated in this study, due to only the two

microarray datasets have demographic characteristics while the

two RNA-seq datasets do not have. For the T2DM dataset

GSE38642, 36 male and 27 female samples are included with

an average age of 57. For the T2DM dataset GSE28146, 12 male

and 18 female samples are included with an average age of 85.

The AD patients are generally much older than the T2DM

patients, although both T2DM and AD are characterized by

increased incidence and prevalence with aging.

Through functional evaluation at the systems biology level, we

demonstrated that AD and T2DM are similar diseases sharing

common pathways and pathogenic genes. SLC2A2 may serve as a

potential marker for early warning and monitoring of AD for the

T2DM patients.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/supplementary material.

FIGURE 6
Carbohydrate digestion and absorption pathway. G6PC2 and HK1 (AD DEGs) are colored in red and SLC2A2 (T2DM DEG) is colored in green.

Frontiers in Genetics frontiersin.org09

Kang et al. 10.3389/fgene.2022.1019860

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1019860


Author contributions

PK and ZW: Performed the experimental phase,

Methodology, Data curation, Writing-original draft. DQ, BZ,

and CM: Visualization, Data curation. SL and HC: Designed the

study, Writing-review, Editing, Project administration, Funding

acquisition.

Funding

This work was supported by the Natural Science

Foundation of Hebei Province (C2020206044),

the National Natural Science Foundation of China

(82171582).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Akter, K., Lanza, E. A., Martin, S. A., Myronyuk, N., Rua, M., and Raffa, R. B.
(2011). Diabetes mellitus and Alzheimer’s disease: Shared pathology and treatment?
Br. J. Clin. Pharmacol. 71, 365–376. doi:10.1111/j.1365-2125.2010.03830.x

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M.,
et al. (2013). NCBI GEO: Archive for functional genomics data sets--update.Nucleic
Acids Res. 41, D991–D995. doi:10.1093/nar/gks1193

Blalock, E. M., Buechel, H. M., Popovic, J., Geddes, J. W., and Landfield, P. W.
(2011). Microarray analyses of laser-captured hippocampus reveal distinct gray and
white matter signatures associated with incipient Alzheimer’s disease. J. Chem.
Neuroanat. 42, 118–126. doi:10.1016/j.jchemneu.2011.06.007

Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003). A comparison
of normalization methods for high density oligonucleotide array data based on
variance and bias. Bioinformatics 19, 185–193. doi:10.1093/bioinformatics/19.2.185

De Felice, F. G., Lourenco, M. V., and Ferreira, S. T. (2014). How does brain
insulin resistance develop in Alzheimer’s disease? Alzheimers Dement. 10, S26–S32.
doi:10.1016/j.jalz.2013.12.004

Dominguez, R. O., Marschoff, E. R., Gonzalez, S. E., Repetto, M. G., and Serra,
J. A. (2012). Type 2 diabetes and/or its treatment leads to less cognitive impairment
in Alzheimer’s disease patients. Diabetes Res. Clin. Pract. 98, 68–74. doi:10.1016/j.
diabres.2012.05.013

Exalto, L. G., Whitmer, R. A., Kappele, L. J., and Biessels, G. J. (2012). An update
on type 2 diabetes, vascular dementia and Alzheimer’s disease. Exp. Gerontol. 47,
858–864. doi:10.1016/j.exger.2012.07.014

Gene, C. (2021). Ontology, the gene Ontology resource: Enriching a GOld mine.
Nucleic Acids Res. 49, D325–D334.

Gilbert, B. J. (2013). The role of amyloid beta in the pathogenesis of Alzheimer’s
disease. J. Clin. Pathol. 66, 362–366. doi:10.1136/jclinpath-2013-201515

Iadecola, C. (2015). Sugar and Alzheimer’s disease: A bittersweet truth. Nat.
Neurosci. 18, 477–478. doi:10.1038/nn.3986

Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Tanabe, M.
(2021). Kegg: Integrating viruses and cellular organisms. Nucleic Acids Res. 49,
D545–D551. doi:10.1093/nar/gkaa970

Knezovic, A., Loncar, A., Homolak, J., Smailovic, U., Osmanovic Barilar, J.,
Ganoci, L., et al. (2017). Rat brain glucose transporter-2, insulin receptor and glial
expression are acute targets of intracerebroventricular streptozotocin: Risk factors
for sporadic Alzheimer’s disease? J. Neural Transm. 124, 695–708. doi:10.1007/
s00702-017-1727-6

Marques, S. C., Oliveira, C. R., Outeiro, T. F., and Pereira, C. M. (2010).
Alzheimer’s disease: The quest to understand complexity. J. Alzheimers Dis. 21,
373–383. doi:10.3233/JAD-2010-100303

Matthews, K. A., Xu, W., Gaglioti, A. H., Holt, J. B., Croft, J. B., Mack, D., et al.
(2019). Racial and ethnic estimates of Alzheimer’s disease and related dementias in
the United States (2015-2060) in adults aged ≥65 years. Alzheimers Dement. 15,
17–24. doi:10.1016/j.jalz.2018.06.3063

Nativio, R., Lan, Y., Donahue, G., Sidoli, S., Berson, A., Srinivasan, A. R., et al.
(2020). An integrated multi-omics approach identifies epigenetic alterations

associated with Alzheimer’s disease. Nat. Genet. 52, 1024–1035. doi:10.1038/
s41588-020-0696-0

Patching, S. G. (2017). Glucose transporters at the blood-brain barrier: Function,
regulation and gateways for drug delivery. Mol. Neurobiol. 54, 1046–1077. doi:10.
1007/s12035-015-9672-6

Riancho, J. A. (2012). Genome-wide association studies (GWAS) in complex
diseases: Advantages and limitations. Reumatol. Clin. 8, 56–57. doi:10.1016/j.
reuma.2011.07.005

Santiago, J. A., Bottero, V., and Potashkin, J. A. (2019). Transcriptomic and
network analysis highlight the association of diabetes at different stages
of Alzheimer’s disease. Front. Neurosci. 13, 1273. doi:10.3389/fnins.2019.
01273

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al.
(2003). Cytoscape: A software environment for integrated models of biomolecular
interaction networks. Genome Res. 13, 2498–2504. doi:10.1101/gr.1239303

Shu, J., Li, N., Wei, W., and Zhang, L. (2022). Detection of molecular signatures
and pathways shared by Alzheimer’s disease and type 2 diabetes. Gene 810, 146070.
doi:10.1016/j.gene.2021.146070

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al.
(2019). STRING v11: Protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic
Acids Res. 47, D607–D613. doi:10.1093/nar/gky1131

Tabares-Seisdedos, R., and Rubenstein, J. L. (2013). Inverse cancer comorbidity:
A serendipitous opportunity to gain insight into CNS disorders. Nat. Rev. Neurosci.
14, 293–304. doi:10.1038/nrn3464

Takeda, S., Sato, N., Rakugi, H., and Morishita, R. (2011). Molecular mechanisms
linking diabetes mellitus and alzheimer disease: Beta-amyloid peptide, insulin
signaling, and neuronal function. Mol. Biosyst. 7, 1822–1827. doi:10.1039/
c0mb00302f

Taneera, J., Lang, S., Sharma, A., Fadista, J., Zhou, Y., Ahlqvist, E., et al.
(2012). A systems genetics approach identifies genes and pathways for type
2 diabetes in human islets. Cell Metab. 16, 122–134. doi:10.1016/j.cmet.2012.
06.006

van der Velpen, V., Teav, T., Gallart-Ayala, H., Mehl, F., Konz, I., Clark, C., et al.
(2019). Systemic and central nervous system metabolic alterations in Alzheimer’s
disease. Alzheimers Res. Ther. 11, 93. doi:10.1186/s13195-019-0551-7

Wigger, L., Barovic, M., Brunner, A. D., Marzetta, F., Schoniger, E., Mehl, F., et al.
(2021). Multi-omics profiling of living human pancreatic islet donors reveals
heterogeneous beta cell trajectories towards type 2 diabetes. Nat. Metab. 3,
1017–1031. doi:10.1038/s42255-021-00420-9

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16, 284–287. doi:10.
1089/omi.2011.0118

Zlokovic, B. V. (2011). Neurovascular pathways to neurodegeneration in
Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12, 723–738. doi:10.
1038/nrn3114

Frontiers in Genetics frontiersin.org10

Kang et al. 10.3389/fgene.2022.1019860

https://doi.org/10.1111/j.1365-2125.2010.03830.x
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1016/j.jchemneu.2011.06.007
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1016/j.jalz.2013.12.004
https://doi.org/10.1016/j.diabres.2012.05.013
https://doi.org/10.1016/j.diabres.2012.05.013
https://doi.org/10.1016/j.exger.2012.07.014
https://doi.org/10.1136/jclinpath-2013-201515
https://doi.org/10.1038/nn.3986
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1007/s00702-017-1727-6
https://doi.org/10.1007/s00702-017-1727-6
https://doi.org/10.3233/JAD-2010-100303
https://doi.org/10.1016/j.jalz.2018.06.3063
https://doi.org/10.1038/s41588-020-0696-0
https://doi.org/10.1038/s41588-020-0696-0
https://doi.org/10.1007/s12035-015-9672-6
https://doi.org/10.1007/s12035-015-9672-6
https://doi.org/10.1016/j.reuma.2011.07.005
https://doi.org/10.1016/j.reuma.2011.07.005
https://doi.org/10.3389/fnins.2019.01273
https://doi.org/10.3389/fnins.2019.01273
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.gene.2021.146070
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1038/nrn3464
https://doi.org/10.1039/c0mb00302f
https://doi.org/10.1039/c0mb00302f
https://doi.org/10.1016/j.cmet.2012.06.006
https://doi.org/10.1016/j.cmet.2012.06.006
https://doi.org/10.1186/s13195-019-0551-7
https://doi.org/10.1038/s42255-021-00420-9
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/nrn3114
https://doi.org/10.1038/nrn3114
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1019860

	Dissecting genetic links between Alzheimer’s disease and type 2 diabetes mellitus in a systems biology way
	Introduction
	Materials and methods
	Gene expression data
	Data preprocessing and differential analysis
	Protein interaction data
	Monte carlo simulation
	Pathway enrichment analysis

	Results
	Differential analysis
	Functional analysis
	Network analysis
	Pathway analysis

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


