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Abstract: High capacity electrode materials are the key for high energy density Li-ion batteries
(LIB) to meet the requirement of the increased driving range of electric vehicles. Here we report the
synthesis of a novel anode material, Bi2MoO6/palm-carbon composite, via a simple hydrothermal
method. The composite shows higher reversible capacity and better cycling performance, compared
to pure Bi2MoO6. In 0–3 V, a potential window of 100 mA/g current density, the LIB cells based on
Bi2MoO6/palm-carbon composite show retention reversible capacity of 664 mAh·g−1 after 200 cycles.
Electrochemical testing and ab initio density functional theory calculations are used to study the
fundamental mechanism of Li ion incorporation into the materials. These studies confirm that Li ions
incorporate into Bi2MoO6 via insertion to the interstitial sites in the MoO6-layer, and the presence
of palm-carbon improves the electronic conductivity, and thus enhanced the performance of the
composite materials.

Keywords: Li ion batteries; composite; electrode materials; hydrothermal synthesis; electrochemical
performance; ab initio calculations

1. Introduction

Lithium-ion batteries (LIBs) are ubiquitous in electric vehicles, laptops, mobile phones and various
electronic products for energy storage, due to their high energy density, good electronic performance,
low self-discharge and long cycle life [1–3]. The properties of the electrode and electrolyte materials
determine the electrochemical performance of a LIB cell, and thus have been researched widely.
Negative electrode (i.e., anode) materials with low operating potentials (close to 0 VLi (Li+/Li)) and high
storage capacity are important for achieving high LIB battery performance, as the overall cell voltage is
determined by the difference between the positive electrode and the negative electrode. Commercial
LIBs normally utilize a graphite anode which operates at 0.1 VLi with good stability in conventional
liquid carbonate electrolytes and give a specific capacity of 372 mAh·g−1 [4–8]. To further increase the
driving range of electric vehicles and the lifetime of portable electronics between charge and discharge,
we need to have much higher capacity—at least double the capacity of graphite anodes used in LIBs.
Thus, there has been development of new anode materials. Lithium metal has been considered as a
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promising anode material for LIBs owing to its ultra-high theoretical capacity (3860 mAh g−1) [9], but
face significant challenges in the uncontrolled dendrite formation and the associated huge performance
degradation. Although the promise of Li metal anode has attracted a lot of research interests, with
considerable advances being made into understanding the failure mechanisms and various strategies
to mitigate the Li dendrite formation, it is still far from practical utilizations in commercial LIBs [9–11].
The alloy anode materials such as tin and silicon show high specific capacity (1000–4000 mAh·g−1)
and low working voltage (0.1–1.0 VLi). However, the expansion of volume (as much as 400%) and
the consequent irreversible morphological and mechanical changes lead to a significant decrease of
capacity during the alloy reaction, which prohibit the development of commercial products. Although
recent advances in nanostructure, carbon coating and Si/Sn based composite have improved the
stability and the electrochemical performance of the anode materials, further development is still
needed [5,7,8,12]. Conversion type transition metal oxides (such as oxides of iron, manganese, cobalt,
copper and nickel) [13] show high specific capacities and high rate capabilities, and have attracted
increased attention. However, low electrical conductivity [14] and the fragility of the electrode limit
their development and wider use in practical applications [3,5–8].

Both binary oxides (MOx, M = Ti, Mn, Sn, Fe, Co, Mo, Ni and Cu, etc.) [14–16] and ternary
oxides (ABOx A = Ca, Mg, Bi, Ti, Zn, Fe, V, Mn, Co, Ni, Cu; B = Mn, Mo, Co, Fe, Ni, Ti, Nb, Cu,
Sn; A,B.) [17–24] based on different reaction mechanisms (e.g., intercalation, conversion, and alloy
reactions) have been proposed as electrode materials. Ternary oxides are more versatile, with a great
number of possible combinations of metal A and B. ABOx with nanostructure are advantageous as they
have a high specific surface area, as well as a shorter diffusion path for Li ion than their micro-sized
or bulk counterparts. However, most of the nano-sized materials exhibit rapid capacity degradation
due to the inherent nature of low conductivity and aggregation over cycling [13–16]. To increase the
electrochemical performance of metal oxides as battery electrodes, various approaches have been
investigated, including: (1) minimizing particle size and optimizing particle shape, thickness, and
nanostructure self-assembly [8,17], (2) fabricating hierarchically porous structures [25] in order to
enhance the buffer space and active sites of electrochemical reaction which improve the rate capability
and cycling stability of batteries, (3) combining hybrid metal oxides with large surface area and fast
electron transport materials [26], in which case, various carbon materials have been studied for their
high surface area, proper morphology and structures, and excellent electron transfer properties [12,27].
Porous carbonaceous materials [12,27] with tunable porosities, including activated carbon, ordered
mesoporous carbons, carbon aerogels and graphene-based materials, have been widely used in the field
of electrode materials in batteries. Carbon materials derived from biomass have drawn much interest,
as they are sustainable, low cost, and give excellent properties such as high specific surface area,
well-developed porous structure, high electrical conductivity, and electrochemical stability [27,28].

Many molybdenum based oxides were widely used as anode materials because of their high
specific capacity, multiple valance states of oxides and high mass density which increased the capacity
of the electrode materials. Many Mo based oxides, such as binary oxides (MoO3, MoO2), ternary
oxides (CaMoO4, MMoO4, M = Ni, Co, Mn) and CoMoO4 were investigated as anode materials
for LIBs [20–24]. However, unfortunately, complex preparation methods hinder their commercial
application. Metal molybdates, particularly bismuth molybdate (Bi2MoO6), which is a conventional
layered metal molybate consisting of [Bi2O2]+ layers sandwiched between [MO4]2- slabs, could be used
as potential LIB anode materials. The limited research on Bi2MoO6 as LIB anode shows that Bi2MoO6

has a much higher storage capacity than graphite, with initial charge capacity of over 900 mAh·g−1

reported [25,26], and can be considered as a promising material for an LIB anode. However, in the
reported work [25,26,29–31], complicated processes and expensive materials (such as graphene and
Ni foam) have been taken to synthesize Bi2MoO6 based materials, which are expensive and not
suitable for large scale practical applications. Based on previous experience with metal oxides [14–19],
the electrochemical performance of Bi2MoO6 could be improved by hybridizing Bi2MoO6 with cheap
carbon materials, using simpler and cost-effective synthesis methods.
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In this paper, we report our work on the development of Bi2MoO6 hybridized with carbon as LIB
anode materials, via a simple hydrothermal route. The carbon material in this paper is synthesized from
palm tree leaves, and is hereafter referred to as palm carbon. Palm carbon is chosen because it is easy
to obtain, it shows a high electronic conductivity and is derived from a more sustainable source than
other carbon materials, such as graphene and those derived from polymers. The prepared materials
are characterized using a range of techniques including XRD, SEM, STEM (Scanning Transmission
Electron Microscopy), Raman and XPS to understand the morphology and chemical properties.
Density functional theory (DFT) calculations are also performed to gain insights into the structure of
Bi2MoO6 and Li insertion process in Bi2MoO6. The as-synthesized materials are then tested in LIB cells.
The results show that the hybrid Bi2MoO6/palm carbon materials give a much improved performance
compared to Bi2MoO6.

2. Experimental and Computational Details

2.1. Materials Synthesis

All chemical reagents in our study were analytical grade. The Bi2MoO6 material was synthesized
by hydrothermal methods. In addition, 2 mmol Bi(NO3)3 and 1 mmol Na2MoO4 were dissolved in
20 mL de-ionized water under magnetically stirring for 1 h (h) to form a uniform mixture solution of
bismuth molybdate. The mixture solution was then put in a 50 mL hydrothermal reactor and heated
by an electric oven at 180 ◦C for 12 h. The produced precipitates were centrifuged and washed with
water and ethanol for several times, and dried under vacuum at 60 ◦C. Finally, the pure Bi2MoO6 was
obtained, denoted as BMO.

The palm raw material was first washed with de-ionized water and dried under air at 60 ◦C.
The precursor was then boiled in saturated sodium hydroxide (NaOH) for 6 h at 110 ◦C and soaked
in H2O2 (30%) for 12 h at 60 ◦C. Finally, the obtained precursor was centrifuged and washed with
de-ionized water and ethanol, and dried under vacuum at 60 ◦C. The as-prepared palm was pre-oxidized
in a tube furnace at 350 ◦C for 2 h in oxygen atmosphere. The pre-oxidized sample was then carbonized
in a tube furnace at 550 ◦C for 3 h in argon atmosphere, at a heating rate of 3 ◦C·min−1.

The as-prepared palm carbon was ultrasonically dispersed in 10 mL de-ionized water for 2 h; the
palm carbon solution was then added dropwise to the Bi/Mo mixture, under constant stirring. After one
hour of stirring, the mixed solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave
and heated in an oven at 180 ◦C for a duration of 12 h. The obtained precursor was centrifuged and
washed with water and ethanol several times, and dried under vacuum at 60 ◦C. The powders obtained
were annealed in a tube furnace with a temperature ramp of 1 ◦C·min-1 at 550 ◦C for 2 h, to yield
the sample denoted as BMO/C. The weight percentage of palm carbon in the as-synthesized BMO/C
sample is 2%, giving a weight ratio of metal oxide to carbon as 49:1.

2.2. Materials Characterization

The crystal structure of the BMO/C was characterized by X-ray diffraction (XRD) using Cu Kα
radiation (λ = 0.15406 nm) under a voltage of 40 KV and a current of 40 mA. Scanning electron
microscopy (SEM; JEOL JSM, 6510 V) and scanning transmission electron microscopy (STEM, Hitachi
HD2300A, Tokyo, Japan, operated at 200 keV—Schottky field emission gun) are used to characterize
the morphology of the prepared compounds. Samples were prepared by dispersing the powder
in isopropanol and sonicating them for about 20 min. A drop of solution was filtered through a
holey-carbon grid; the grid was dried at 100 ◦C for 5 min before being transferred to the microscope.
Raman spectroscopy of the synthesized powders were conducted using Renishaw 2000 (514 nm green
laser, 40 mW) over the range of 100–1000 cm−1. The oxidation states of the samples were investigated
using an X-ray photoelectron spectrometer (XPS, Escalab 250Xi, Massachusetts, MA, USA).
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2.3. Electrochemical Measurements

The charge and discharge tests were tested by a CR2025 button cell on the battery testing system
(Neware, Shengzhen, China). Two working electrodes were prepared, using BMO and BMO/C
respectively, as active materials. The working electrodes were made of active material, acetylene black,
and Carboxymethylcellulose sodium (CMC) with a molar ratio of 7:2:1. The electrodes were dried at
100 ◦C in a vacuum furnace for overnight. The separator was Celgard 2400 porous polypropylene.
The electrolyte, LiPF6 (1 mol·L−1), was mixed with ethylene carbonate (EC) and diethyl carbonate
(DEC) at a volume ratio of 1:1. Li metal was used as the counter electrode. All the tests were assembled
in an argon-filled box containing less than 1 ppm each of oxygen and moisture. The charge and
discharge processes were tested at a constant current density of 100 mA/g and a voltage range of
0.01 to 3.00 V. The typical mass of the electrode material used in the experimental ranged from 5 to
8 mg. Electrochemical impedance spectroscopy (EIS) experiments and cyclic voltammetry (CV) were
conducted using a CHI 600 E electrochemical workstation.

2.4. Computational Details

Density functional theory (DFT) calculations were conducted in the Vienna Ab initio Simulation
Package (VASP, version 5.3.5) [32–35] to elucidate the Li insertion into Bi2MoO6. To describe the
ion–electron interaction, the projector-augmented wave method (PAW) was used [36]. Based on
convergence tests, the plane wave cut-off and k-space integrals were chosen so that the total energy
was converged to 1 meV/atom, the kinetic energy cut-offs for all systems were set to 600 eV, with a 6 ×
3 × 6 Γ-centered Monkhorst–Pack grid to sample the Brillouin zone [37]. The tetrahedron method with
Blöchl corrections for smearing [36–38] was further applied. The generalized gradient approximation
(GGA) with Perdew–Burke–Ernzerhof (PBE) [39,40] functionals were used to describe the interacting
electron exchange–correlation energy, with an electronic convergence criteria of 10−5 eV and an ionic
convergence criteria of 10−3 eV·Å−1. All of the calculations were performed spin-polarized. Bader
AIM (Atoms in Molecules) charges [41] were calculated with the Henkelman algorithm [42]. Bi2MoO6

is experimentally seen to be a semi-conductor. It is well known that uncorrected GGA underestimates
the band gaps of strongly correlated systems due to the DFT electron self-interaction error, and hence
we have used the On-site Coulombic interaction (DFT + U) for the Mo d-electrons to account for
this error [43–46], by means of Dudarev’s approach [47]. Hubbard parameters (Ueff) of 8.6 eV for
Mo previously parametrized by Getsoian et al. were used [46]. Due to the large polarizability of
this Mo upon Li insertion [47–50], the DFT-D3 method with Becke–Jonson damping of Grimme and
co-workers [51] was included, as has been successfully applied for this system elsewhere [31].

3. Results and Discussion

3.1. Materials Characterization

Computational Characterization of Bi2MoO6

To evaluate energy storage technologies, experimental observations combined with atomistic
insights provided by theory (DFT) is an extremely powerful tool. Knowledge of the electronic states,
relative occupations, magnetic moments, and oxidation/reduction behavior allows an understanding
of the electrochemistry of the system to be elucidated. This is then applied to both the pristine and the
defective (here Li interstitials or Li substitutional defects) Bi2MoO6 systems, giving atomistic meaning
to the experimental Li storage results. Here, firstly, the pristine Bi2MoO6 structure before Li addition is
studied to understand the atomic scale structure of our anode material, and the effect of Li storage in
Bi2MoO6 is included in Section 3.4.

Three crystal structures of Bi2MoO6 have been investigated: orthorhombic with space group
Pca21 (Figure 1a), monoclinic P21/c (Figure 1b), and Pbca (Figure 1c). Based on the total energy from
cell optimizations of these cells, the orthorhombic Pca21 is found to be the most stable structure of
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Bi2MoO6, which is in agreement with experiment [26]. It is worth noting that, at higher temperatures,
a phase transition from the orthorhombic to monoclinic phase has been observed experimentally [52].
For the application of Bi2MoO6 as an anode material for LIBs, the low temperature orthorhombic
structure (as shown in Figure 1a) will be used.
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Figure 1. Polyhedral representation of (a) orthorhombic Pca21, (b) monoclinic p21/c, and (c)
orthorhombic Pbca structures of Bi2MoO6. Purple spheres are Bi, grey Mo, and red O.

Orthorhombic Bi2MoO6 has a layered structure, with alternating layers of corner-sharing MoO6

octahedra and Bi-O-Bi layers. As discussed in the computational details, non-corrected GGA
calculations can result in an underestimation of the electronic band gap. The geometric and electronic
structures of orthorhombic Bi2MoO6 were optimized with both GGA and GGA + U to understand these
differences, as shown in Table 1. It was found that the band gap calculated with GGA underestimated
the previously reported experimental band gap by 0.3 eV, whereas including a U-correction gave a
band gap of 2.45 eV, which is closer to the measured values of 2.53 eV [53], and 2.56 eV [54], respectively.
The GGA + U method also achieved a better agreement with experimental data in terms of lattice
parameters, as GGA was found to overestimate the short (a and c) lattice vectors. The obtained lattice
parameters with GGA were a = 5.66 Å, b = 16.49 Å, and c = 5.68 Å, with GGA + U giving a = 5.45 Å,
b = 16.51 Å, and c = 5.47 Å, as compared to experimental a = 5.45 Å, b = 16.47 Å, and c = 5.47 Å.

Table 1. Comparison of calculated lattice vectors (a, b, and c), angles (α, β, and γ), and band gap.

a (Å) b (Å) c (Å) α = β=γ (◦) Eg (eV)

Experimental 5.45 16.47 5.47 90 2.53 [53], 2.56 [54]
GGA 5.658 16.491 5.676 90 2.23

GGA + U 5.448 16.506 5.467 90 2.45

Calculations of the electronic structure of Bi2MoO6 in terms of the projected density of states
(PDOS) (Figure 2) reveal that the valence band maximum consists of O p-states, whereas Mo d-states
and the Bi p-states make up the conduction band. Utilizing the Bader charge oxidation state convention
presented by Getosian et al. [46] for Bi2MoO6, Bader charge analysis confirms the experimental
findings of assigning an oxidation number of +3 and +6 for bismuth and molybdenum, respectively.
Our calculated Bader charges (per the outlined methodology in Section 2.4) are 1.91 for each bismuth
ion, 2.76 for each molybdenum ion, and −1.10 for the oxygen ions, which corresponds to a formal
oxygen oxidation state of −2.
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Figure 2. Projected density of states (PDOS) for Bi2MoO6. Energies (E) on the x-axis are referenced to
the Fermi level (EF). All PDOS below E-EF = 0 eV represent occupied states (valence band), whereas
those above E-EF = 0 eV, are unoccupied states (conduction band). In addition, positive PDOS values
are the α-spin occupations and negative PDOS values are β-spin occupations.

3.2. Experimental Characterization

The crystallographic structures of both BMO and BMO/C samples were examined by X-ray
diffraction (XRD). Figure 3a shows all major diffraction peaks appearing at the same lattice planes, at 2θ:
10.927◦, 28.309◦, 32.533◦, 32.642◦, 36.055◦, 46.737◦, 47.175◦, 55.585◦, 56.251◦, and 58.477◦, corresponding
to the lattice planes (2 0 0), (0 2 0), (1 3 1), (0 0 2), (1 5 1), (2 0 2), (0 6 2), (1 3 3), (1 9 1) and (2 6 2) of the
Bi2MoO6 structure with high crystallinity (JCPDS card No. 21-0102). These diffraction peaks were
furthermore observed in the simulated BMO XRD pattern from DFT calculations (Figure 3b). No other
impurity peaks are observed. By comparison, only strong peaks of BMO/C phase were presented in the
diffraction peak indexed to the lattice planes (2 0 0) and (0 2 0) corresponding to the lattices planes at
2θ: 10.927◦ and 32.533◦. The difference between the two samples was due to the promoted growth of
BMO by palm carbon. In addition, intensity of peaks for BMO/C was so strong that diffraction peaks of
carbon was not detected, which is in accordance with the SEM and TEM results. To further investigate
the phase of the as-obtained Bi2MoO6/C, Raman spectroscopy was employed (Figure 3b,c). All the
characteristic vibrational bonds for Bi2MoO6 can be observed in Figure 3b: 845 cm−1 (s), 796 cm−1

(vs.), 713 cm−1 (m), 402 cm−1 (m), 352 cm−1 (s), 325 cm−1 (w), 292 cm−1 (m, sh), 282 cm−1 (s), 230 cm−1

(w), 195 cm−1 (m), 139 cm−1 (m) [17]. The band at 139 cm−1 originates from the lattice modes of Bi3+

atoms mainly in the direction perpendicular to the layers [17,26,48]. The 190–405 cm−1 range mostly
corresponds to the stretching and bending modes of BiO3 tetrahedra, coupled with bending motions
of the MoO6 octahedra [55]; the modes at 282 and 292 cm−1 most likely correspond to Eg bending
vibration and the ones around 325, 352, and 402 cm−1 originate from Eu symmetry bending modes [56].
The less intense peaks in the range of 400–600 cm−1 can be assigned to the stretching modes of the
Mo-O bonds and the twisting mode in Bi2MoO6 [57]. As for the modes observed above 700 cm−1,
the peak at 796 cm−1 is attributed to the symmetric stretch of a MoO6 octahedron, whereas modes at
714 and 844 cm−1 represent the orthorhombic distortions of the MoO6 octahedron in Bi2MoO6 [56].

In comparison to BMO, the peaks of BMO/C were found to broaden and slightly shift toward lower
wavenumbers [58], in addition to the presence of a small peak at 885 cm−1, originating from the
vibration of Mo-O bonds in MoO4. Nevertheless, the absence of significant spectral deviation from
the samples revealed that the main structure of the Bi2MoO6 phase was not dramatically disturbed.
To further understand the nature of carbon materials in the BMO/C sample, the sample was examined
in the 1000–2000 cm−1 wave number range. Figure 3c shows the Raman spectra of the sample with
two peaks appearing at 1353 cm−1 (D-band, disordered carbon) and 1589 cm−1 (G-band, graphitic
carbon). The D-band represents the disordered carbon with defect (i.e., the broken of the 6-member
ring symmetry) and the G-band corresponds to the sp2 hybridized carbon with graphitic carbon (i.e.,
with the perfect 6-member ring symmetry). The intensity ratio of D-band and G-band (ID/IG) gives an
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indicator of the degree of disorder of the carbon. Figure 3c shows the intensity ratio of ID/IG = 0.85,
indicating that the sample of BMO/C is present with both graphitic carbon and disordered carbon.
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Figure 3. (a) XRD patterns of BMO/C, BMO and standard card, and (b) DFT simulated XRD pattern for
BMO (c) Raman spectrum of BMO and BMO/C samples in the wavelength range of 100–1000 cm−1;
(d) Raman spectrum of the as- synthesized BMO/C in the wavelength range of 1000–2000 cm−1.

The morphology of the as-synthesized BMO was characterized using SEM and STEM. Figure 4a,c
show the SEM images of BMO particles, with a particle length of about 1 µm. Figure 4b,d show the
SEM images of BMO/C particles of 3D nanosheets, with a particle length of 100 nm. Upon modification
with palm carbon, the flakes appear to be shortened and aggregated, becoming more rounded in nature,
but of smaller sizes. Figure 4e,f show the STEM images of BMO and BMO/C, respectively. The BMO/C
composite image is obtained by overlaying the High-Angle Annular Dark Field image, whose contrast
is proportional to the Z2 of the material, on top of the Secondary Electron image, which reveals the
surface morphology of the sample. It also shows that the Bi2MoO6 particles are attached to the palm
carbon scrolls (green color), confirming the composite nature of the material. This is because the
model approximates hydrogenic cross-sections and flat samples, whilst the experimental comparison is
between the Bi M-edge and the Mo L-edge; XRD confirms that the crystal structure remains that of the
stoichiometric BMO. Figure 4g,h show the statistical analysis of long/short axes ratio for the Bi2MoO6

particles in the BMO and BMO/C samples, with an average value around 4.45 for the BMO sample and
1.19 for the BMO/C sample. This indicates that the BMO sample shows three-dimensional slender
needles; however, upon modification with palm carbon, the Bi2MoO6 particles appear to shorten,
becoming more rounded in nature. Figure 4i,j show the statistical analysis of the Bi2MoO6 particle
size in the BMO and BMO/C samples. It is clear that the particles are much smaller in the BMO/C
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sample (with an average particle size of ~482 nm) than those in the BMO sample (with an average
particle size of ~154 nm). We conclude that the supply of the palm carbon has a remarkable effect on
the morphology of the BMO quasi-nanometer microspheres.
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The chemical compositions and the surface electronic states of the BMO/C sample are investigated
using XPS, with results shown in Figure 5. All the expected elements including Bi, Mo, C and O can be
found in the survey spectra. As shown in Figure 5b, two binding energy peaks appeared at 164.6 eV
for Bi 4f7/2 and 159.3 eV for Bi 4f 5/2, revealing that Bi is in the Bi3+ oxidation state. Figure 5c shows two
peaks with binding energies of 235.8 and 234.2 eV which are assigned to the Mo6+ ions, respectively.
The peak of the O 1s spectrum was observed at 530.27 eV, which is attributed to the lattice oxygen and
near surface oxygen in bismuth molybdate [25,26]. The analysis of XPS shows two obvious peaks at
284.5 eV and 286.2 eV, corresponding to C-C sp2, and C-C sp3, respectively. A slight O=C=O peak
at 288.6 eV is observed, due to the pre-oxidization of the sample [26]. The XPS results confirm the
composition of the BMO/C sample as inferred from EDX and XRD and show that the surface is oxygen
deficient, which is expected to help improve the performance.
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3.3. Electrochemical Properties

Figure 6a,b show the discharge and charge curves of BMO and BMO/C electrodes during 1st, 2nd
and 20th cycles at a constant current density of 100 mA·g−1 and a voltage range of 0.01 to 3.0 V (vs.
Li+/Li). It can be seen from Figure 6a that BMO features two plateaus at approximately 0.65 V and
0.75 V; the initial discharge and charge specific capacity of the BMO electrode are 841 and 753 mAh·g−1,
with an initial columbic efficiency of 89% (which is the ratio of the first cycle discharge capacity
to the first cycle charge). From Figure 6a, we can infer that the reaction during the first discharge
involves intercalation of Li into the BMO lattice, followed by the destruction of the crystal structure,
the amorphization of the BMO lattice, and finally the formation of Bi and Mo metals [20]. Figure 6b
shows that BMO/C also features two plateaus at about 0.5 and 0.6 V which are less than the plateaus
of BMO, and the initial discharge and charge specific capacity of the BMO/C electrode are 1014 and
889 mAh·g−1, with an initial columbic efficiency of 87%. The enhanced performance of BMO/C can be
attributed to two factors: (1) the more rounded shape of the BMO particles, providing more reacting
surface sites [59–62]; (2) palm carbon materials that improve the ionic and electronic transport and
make more BMO reaction sites accessible hence increase the storage capacity.

Figure 6c shows the cycling performance and the columbic efficiency of the BMO and the BMO/C
electrodes. The cycling performance of the BMO/C electrode is superior to the BMO electrode. The
specific capacities of both electrodes decrease after 20 cycles, with the BMO/C electrode maintaining a
capacity of 731 mAh·g−1 and the BMO electrode retaining a capacity of 580 mAh·g−1. At a current
density of 100 mA/g, the loss of the second cycle discharge specific capacity of BMO/C is 8% less than
that of BMO. Remarkably, the increase of the capacity is attributable to the fragmentation of BMO/C
particles during the cycling process, which increases the contact of the material with the electrolyte
and thus the specific capacity. This is similar to the behavior of transition metal oxide anodes such as
Co3O4 [60,61] and ZnMn2O4 [62]. The BMO/C electrode achieved a high reversible capacity of 664



Materials 2020, 13, 1132 11 of 21

mAh·g−1 after 200 cycles, while the BMO electrode only obtained a capacity of 282 mAh·g−1 after
200 cycles. The BMO/C electrode in this work shows improved cycle performance compared to the
reported Bi2MoO6/reduced graphene oxide composites, which has a retention capacity of 705 mAh·g−1

after 100 cycles [26]. Figure 6d shows the capacity retention at load current densities of 100, 200, 500
and 1000 mA·g−1; the discharge specific capacities of the BMO/C electrode are 501, 426, 380 and 332
mAh·g−1. The specific capacity could be recovered to 547 mAh·g−1 when the load current density is
returned to 100 mA·g−1. The BMO electrode, however, gives a much lower specific capacity under the
same condition. The specific capacities of the BMO electrode measured at the same current densities
are 436, 361, 320 and 283 mAh·g−1. With the current density being brought back to 100 mA·g−1, the
retained capacity is 484 mAh·g−1. The better electrochemical properties of BMO/C could be ascribed to
the presence of palm carbon [63,64], which facilitates the charge transfer process in the BMO/C layers.
In addition, the fragmentation of the BMO structure during cycling [17–19] provides a higher number
of smaller BMO particles, and thus higher surface area and access for electrochemical reactions with Li.
The reactions of Li with ternary oxides such as Bi2MoO6 involve multistep reactions which include:
intercalation, conversion reactions (i.e., Bi and Mo are electrochemically active with respect to Li) and
alloying under further reduction of Bi3+ to Bi. Extra discharge capacity can be obtained from the
formation of Li–Bi alloy [17–19]. These factors lead to a significant improvement of the electrochemical
performance for Li-ion batteries [16,18,26].
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Figure 6. Discharge and charge curves of (a) BMO, (b) BMO/C electrodes for the 1st, 2nd and 20th
cycle at a constant current density 100 mA·g−1, and (c) cycling performance and the corresponding
columbic efficiency of BMO and BMO/C electrodes at current density of 100 mA·g−1, (d) discharge and
charge rate performance of BMO and BMO/C electrodes at current densities of 100, 200, 500, 1000 and
100 mA·g−1.

Figure 7a shows the electrochemical impedance spectra (EIS) of the samples acquired in the
frequency range of 0.01 and 100 KHz. The EIS measurement was carried out with fresh cells at an
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open circuit voltage (OCV) of 2.21 eV and 2.60 eV, respectively, for the BMO and BMO/C electrodes.
The intercept of the semicircle appearance of the high frequency is attributed to the ohmic resistance
(the electrolyte resistance, Rs) [65] in the equivalent circuit, which is related to the solid electrolyte
interphase (SEI) film and the contact resistance. The semicircle in the medium frequency region
corresponds to the charge transfer between the electrode and electrolyte. The semicircle is interpreted
as a parallel circuit which consists of the double layer capacitance [66], Cdl, and the charge transfer
resistance [67], Rct. The inclined lines in the low frequency range are related to the lithium ion diffusion
in the BMO and BMO/C electrodes, and are associated with Warburg impedance [68,69] Zw in the
equivalent circuit. The resistance of BMO/C electrode of 138 Ω is lower than that of the BMO electrode
(with a resistance of 246 Ω). The result indicates that the BMO/C electrode exhibits better electronic
conductivity than the BMO electrode. Das et al. reported the electrochemical impedance spectroscopy
(EIS) and the Nyquist (Z′ Vs. - Z”) plots of a Li/Co2Mo3O8 system at a current density of 60 mA/g
and a voltage range of 0.05–3 V during the first discharge and charge cycle [23]. When the OCV is
2.7 V, the Nyquist plot showed a semicircle in the high frequency range and an arc type in the low
frequency range. It was indicated that, when the OCV decreases to 1.5 V, the Nyquist plot had no
significant change except a decrease in the overall impedance. When the discharged voltage was close
to 0.005 V, the second semicircle appeared in the intermediate frequency region at 0.9 V, which was
attributed to the impedance from the bulk. This was consistent with the galvanostatic cycling data,
which indicated the destruction of the crystal structure [23]. The impedance values during the first
discharge/charge cycle supported the reaction mechanism which had the crystal structure destruction
and reaction, as reflected by an increase in the overall impedance value until 0.005 V. When charged,
the overall impedance value decreased with the reformation of corresponding metal oxides [20–23].
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Figure 7. (a) electrochemical impedance spectra (EIS) of the BMO and BMO/C; (b) linear fitting of
Warburg impedance of the BMO and BMO/C electrodes; cyclic voltammograms and FWHM for the 1st,
2nd and 5th cycles of (c) BMO and (d) BMO/C electrodes at the rate of 0.1 mVs−1.
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Figure 7b shows the linear fitting Warburg impedance of BMO and BMO/C. The Warburg
impedance represents the impedance that is generated by the diffusion of Li ions [70] in the lattice of
electrode material. According to the formula Z′ = Rs + Rct + Awω

−1/2, Aw is related to the slope of the
Warburg impedance diagram, andω is assigned to the angular frequency of the alternating current.
The Li+ diffusion coefficient in the electrode can be estimated using Equation (1):

DLi+ = 0.5
[ Vm

FSAw

(
−

dE
dx

)]2
(1)

where Vm is the molar volume of the material, F is the Faraday constant, S is the apparent surface area of
the electrode, and (dE)/(dx) is the slope of the open circuit potentialvs. the mobile ion concentration x at
each x value. Based on the molar volume, the electrode surface area and (dE)/(dx) were substantially the
same. The Li ion diffusion coefficient is proportional to the Warburg coefficient (1/Aw)2. The Warburg
coefficient (Aw) of BMO and BMO/C are 260 and 150 Ωs−1/2, which confirms that the ionic conductivity
of BMO/C is better than that of BMO.

We also evaluated the electrochemical performance using cyclic voltammograms (CVs). Figure 7c,d
show CV curves of the BMO electrode and the BMO/C electrode for the 1st, 2nd and 5th scan, at a scan
rate of 0.01 mVs−1 in the potential range of 0.01 to 3.0 V vs. Li/Li+. It is worth noting that the scan rate
is low enough to obtain accurate estimation of the diffusion coefficient. The FWHM of each peak are
marked in Figure 7c for BMO and Figure 7d for BMO/C. The FWHM of BMO for the 1st cycle is 0.48 V,
while the FWHM of BWO/C is 0.52 V. In addition, after the first oxidation and reduction, the reduction
peaks shifted to 0.73 V, indicating the formation of irreversible phase and the reduction of irreversible
electrolytes [22]. Normally, the irreversible capacity loss (ICL) is related to the intrinsic properties of
metal oxides, the decomposition of electrolyte accompanied by the SEI formation [22]. The FWHM
of BMO and BMO/C for the 2nd and 5th are 0.33 V, which corresponded to the stable reversibility of
the BMO and BMO/C during the lithium-ion intercalation and deintercalation process. The cathodic
peak which appeared at 2.04 V during the first negative scan could be assigned to the formation of
LixBi2MoO6, as a result of lithium ions inserted into the layered structure of Bi2MoO6 crystal. The small
peak at 1.42 V is related to the reduction of Bi2MoO6 to Bi and Mo metal [29,31]. During the first
cathodic scan, two reduction peaks appeared at 0.52 V and 0.73 V. The obvious cathodic peak at
0.52 V can be associated with the alloying reaction of Bi and Li to form Li3Bi [29,31]. Furthermore,
the other broad reduction peak is located at 0.73 V, which is related to the two-step formation of LiBi
and Li3Bi in the electrochemical lithiation reaction process. A strong oxidation peak is observed at
0.98 V, which could be associated with the de-alloying process of Li3Bi to Bi [29,31]. Two small anodic
peaks appeared at about 1.26 and 2.50 V during charging, which can be attributed to the formation of
lithium molybdate and Li2O [29,31]. Figure 7d shows the CVs of BMO/C electrode under the same
conditions. The results suggest that the anodic peaks of the BMO/C electrode at around 0.52 V in the
first sweep move to higher voltages, which could be assigned to the smaller polarization of the BMO/C
electrode compared to the BMO electrode. It is worth noting that the peaks of the BMO/C electrode are
sharper relative to BMO, and the area between the oxidation peak and the reduction peak is narrower.
This indicates that the transfer resistance of Li+ in the BMO/C composite is smaller and the rate of
redox is higher. Furthermore, the more rounded particle shape of BMO/C is associated with a shorter
diffusion length, thus the polarization of BMO/C is weaker than that of BMO. After the first cycle,
the reduction and oxidation peaks in the CV curves overlap. This indicates that the electrode shows
good reversibility and stability over cycling. The above analysis gives us the basis to postulate the
electrochemical reaction mechanism of the BMO electrodes as follows (reactions (1)–(4)).

Bi2MoO6 + xLi+ +xe-→Lix Bi2MoO6 (1)

Lix Bi2MoO6 +(12- x)Li+ +(12-x)e-→2Bi+Mo+6Li2O (2)

Bi + Li++ e-↔ LiBi (3)
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LiBi + 2Li++ 2e-↔Li3Bi (4)

3.4. Modelling of Li Insertion in the Bi2MoO6 Lattice

Atomic scale simulations provide a means to evaluate local structure and help to understand the
factors influencing the electrochemical behavior of battery materials. Computational techniques have
been proven to be very useful for understanding Li incorporation in other oxides previously [70–72].
Hence, we have used DFT simulations to model the Li insertion in Bi2MoO6, to give insights into the
local structure properties at the atomic scale. The Bi and Mo layers within the Bi2MoO6 lattice are
strongly bonded, and hence the breaking of this bonding is unlikely to occur [31]. Firstly, substitutional
Li defects were investigated by replacing the cations with one Li. The defect formation energy (Ef) [73]
of this substitutional defect (LiA) (A = Bi, Mo) was calculated according to

E f (LiA) = ELiA − Ebulk + µA − µLi (2)

where ELiA is the total energy of the system with Li on A site, Ebulk is the total energy of the system
without the defect, µA is the chemical potential of A, and µLi the chemical potential of Li. The chemical
potentials have been taken as the total energy for a single metal atom from Bi, Mo, and Li metallic
bulks, respectively. To evaluate the different inequivalent Bi and Mo lattice sites for Li substitution, the
Site-Occupancy Disorder program (SOD) [74] was employed. These inequivalent substitutional lattice
sites are shown graphically in Figure 8a–c, respectively. Two inequivalent lattice sites for BiLi were
found, whereas all MoLi were equivalent.
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and its charge density difference plotted in (f). Purple spheres are Bi, grey Mo, green Li, and red O.
Yellow iso-surface represents an increase in charge density upon lithium substitution, whereas blue
represents depletion of charge density.
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Calculating the defect formation energy of Li substitutional defects according to Equation (2),
the formation energy for Li substitution on Bi site (LiBi) is 2.31 eV, and 2.35 eV, on site one and two
respectively (Figure 8), with the Li on a Mo site (LiMo) giving a much higher defect formation energy of
8.15 eV. It is hence seen that Li substitution of Bi is more energetically favorable than Mo-substitution.
Examining the differences in charge density induced by Li substitution (Figure 8), it is seen that both
MoLi and BiLi cause wide disruption to the charge distribution, with the extra charge density mainly
located on the oxygen lattice. Hence, Li substitutional defects could induce the formation of local
electric fields, improving the battery performance, but, as these defects have high formation energies,
Li substitutional defects are not energetically favorable in the Bi2MoO6 lattice. Next, Li on interstitial
lattice sites is simulated. Interstitial lithium ions in other oxide-based battery materials have previously
been postulated by computational and experimental studies [70,72].

For Li interstitial lattice sites, equivalent lithium lattice positions have to be considered. The defect
formation energy [73] of Li interstitial in Bi2MoO6 (Liint) was calculated from Equation (3):

E f (Liint) = ELiint − Ebulk − nµLi (3)

Here, ELiint is the total energy of the system with the Li interstitial, Ebulk is the total energy of
Bi2MoO6 without impurities, n is the number of Li atoms in the structure, and µLi is the chemical
potential of Li as described above. The defect formation energy of a single Li at different interstitial
sites in the Bi2MoO6 lattice is presented in Table 2.

Table 2. Defect formation energy (Ef) in eV, average Bader charges (q) with standard deviation, and
unique Bader charge for nearest neighbor (NN) atoms to Li site (in e) for insertion of a single Li at
different lattice sites. Graphical representation of interstitial site numbering is presented in Figure 9.
For comparison, qBi = 1.91 e, qMo = 2.76 e, and qO= −1.10 e for pristine Bi2MoO6.

Site Ef qBi qBi,NN qMo qMo,NN qO qO,NN qLi

BiO-layer

1 −1.79 1.85 ± 0.03 1.83, 1.85 2.68 ± 0.08 2.55, 2.67 −1.08 ± 0.05 −1.05, −1.11, −1.10 0.51

2 −1.44 1.83 ± 0.02 1.79 2.64 ± 0.03 2.60, 2.67 −1.07 ± 0.05 −1.03, −1.08, −1.15 0.52

3 −1.79 1.85 ± 0.03 1.80, 1.82 2.70 ± 0.08 2.57, 2.73 −1.09 ± 0.04 −1.12, −1.07, −1.11 0.62

MoO6-layer

4 −2.34 1.87 ± 0.02 1.89, 1.85 2.75 ± 0.06 2.66, 2.82 −1.11 ± 0.04 −1.08, −1.15 0.63

5 −2.45 1.88 ± 0.02 1.87 2.72 ± 0.07 2.62, 2.80 −1.10 ± 0.04 −1.04, −1.09 0.61

In-between layers

6 −1.45 1.84 ± 0.02 1.81, 1.82 2.61 ± 0.09 2.70, 2.46 −1.07 ± 0.05 −1.09, −1.10 0.54

As opposed to Li substitutional defects, the Li defect formation energy is negative, indicating
that Li interstitials are energetically favorable to be present in this system. Li interstitials sites are
present in both the MoO6-layer and the BiO-layer. Comparing E f (Liint), the introduction of a single Li
interstitial at different lattice sites, it is seen that Li interstitials in the MoO6-layer are more energetically
favorable than a Li interstitial in the BiO-layer. Examining the difference in lattice response to Li
interstitial in terms of charge density (Figure 9), it is clear that Li interstitials in the BiO-layer lead to
a larger charge density difference than the equivalent process for a Li interstitial in the MoO6-layer.
This more concentrated redistribution of charge for the Li interstitial in MoO6-layers could be favorable
for electrochemical performance, forming a local electric field around the Li interstitial.
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Examining the change in average Bader charges (Table 2) from the pristine Bi2MoO6 cell to the
system with Li interstitials, it is seen that the average Bi, Mo, and O charges remain close to their
Bi2MoO6 values. Examining the change in Bader charge to the species nearest to the Li interstitial
site (Table 2), it is observed that upon introducing a Li interstitial in the Bi layer, or in between the
layers, the nearest Bi ions to the Li are reduced, as compared to the bulk, by ~0.1 e. Li interstitials
in the molybdenum layer do not show any such clear change in the Bi charge state. Finally, in all
systems, the standard deviation between the Bi Bader charges is less than 0.03 e, indicating on average
no change in the Bi oxidation state. Similar observations are made for the oxygen charges, where a
wider charge distribution upon the inclusion of a Li interstitial is seen, centered around the pristine
Bi2MoO6 value. However, it is important to note that slight (<0.1 e) reductions and increases of charge
near the lithium interstitial sites occur on the oxygen ions. For Mo, the introduction of Li interstitials
to the system does reduce the neighboring Mo ions Bader charge markedly by between 0.05 to 0.2 e.
This could indicate a change from Mo6+ to Mo5+, or a mixed 5+/6+ charge state. Li interstitials in the
molybdenum layer also increase the molybdenum Bader charge, by a maximum of 0.06 e, as compared
to the pristine bulk. This does not, however, indicate a change to a higher oxidation state [46].

Finally, previous computational studies have shown that the DFT-derived defect formation
energies can be used to calculate cell voltage trends [75–81]. The cell voltage vs. Li/Li+ (V) was
calculated using the following formula [76,78,79,82]:

V =
−E f (Liint)

nz
(4)

where n is the number of lithium interstitial, and z is the formal charge of Li. Hence, the cell voltage vs.
Li/Li+ for the system calculated here for the most favourable Li interstitial site is 2.45 eV. Furthermore,
this and all calculated cell voltages sit within the experimental range.
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Following the identification of the MoO6-layer as the most favorable layer for Li interstitial sites,
the concentration of Li interstitials per molybdenum (x) in the lattice was investigated, up to a total
of 1:1 of Li: Mo ratio (x = 1.00). Higher Li: Mo ratios were found to lead to heavy distortions of the
Bi2MoO6 lattice and are hence not presented here. The formation energy E f (Liint) and Li incorporation
energy per Li interstitial (E f (Liint)/n) are presented in Table 3.

Table 3. Formation energy of a Li interstitial defect, and Li incorporation energy for different numbers
of Li (nLi) in lattice.

nLi Ef(Liint) (eV) Eincorp (eV/Li)

1 −2.45 −2.45
2 −4.38 −2.19
3 −6.58 −2.19
4 −7.79 −1.95

From Table 3, it can be seen that the formation of interstitial Li defects is energetically favorable at
all x investigated here; the incorporation of Li interstitials in the Bi2MoO6 lattice is also favourable,
in terms of the incorporation energy (E f (Liint)/n) per Li atom. However, it is worth noting that
E f (Liint)/n decreases with increasing x. When examining the electronic structure of LixBi2MoO6, it is
found that the defect states induced by the Li interstitials are introduced in the band gap. This changes
the character of the valence band and conduction band maxima, and thus the Li ion incorporation
energy. Nevertheless, the semi-conductor properties of Bi2MoO6 are maintained.

4. Conclusions

In this work, Bi2MoO6/carbon (in brief, BMO/C) composite materials have been successfully
synthesized by hydrothermal route. XRD and DFT simulations demonstrated that Bi2MoO6 in the
BMO/C composite has the orthorhombic structure. The relative peak intensities of BMO/C are higher
than BMO, indicating that the crystallinity of Bi2MoO6 in the BMO/C composite is increased over
that of pure Bi2MoO6. SEM show Bi2MoO rectangle flakes with the size of ~1 µm, whilst the BMO/C
composite showed more rounded and smaller (0.2 µm), faceted Bi2MoO6 flakes, connected with
the carbonized palm. The chemical compositions and surface electronic states of the manufactured
products were investigated by XPS, confirming the chemical compositions of the materials as expected.
The electrochemical performances of Bi2MoO6 and its composite BMO/C were tested when used as
an anode material for Li ion batteries. The initial discharge specific capacity of the BMO/C electrode
was 1014 mAh·g−1 and remains at 664 mAh·g−1 after 200 cycles, much higher than that of Bi2MoO6.
It is worth noting that this good performance of the BMO/C electrode is achieved based on a simple
synthesis process and using sustainable low-cost palm carbon, which makes it suitable for large-scale
practical applications.

The Li incorporation mechanism was also estimated by CV for both Bi2MoO6 and its composite
BMO/C. The results indicated that the two materials have the same charge and discharge mechanism.
Furthermore, the EIS results show that the BMO/C have lower surface layer resistance, which can
improve the electronic conductivity and the electrochemical activity. DFT studies show the fundamental
mechanisms of Li ion incorporation into Bi2MoO6 as Li insertion via the interstitial sites into the
MoO6-layer. These studies confirm that the improved electrochemical performance of the BMO/C
composite is mainly attributed to the enhanced electronic conductivity and more Bi2MoO6 reaction
sites made accessible by palm carbon. All the results show that the BMO/C composite will promote a
novel anode material application for Li ion battery.
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