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Abstract: A series of 5-arylisoxazole derivatives were synthesized via the reaction of  

3-(dimethyl-amino)-1-arylprop-2-en-1-ones with hydroxylamine hydrochloride in aqueous 

media without using any catalyst. This method has the advantages of easier work-up, mild 

reaction conditions, high yields, and an environmentally benign procedure. 
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1. Introduction 

The need to reduce the amount of toxic waste and byproducts arising from chemical processes 

requires increasing emphasis on the use of less toxic and environmentally compatible materials in the 

design of new synthetic methods [1]. One of the most promising approaches is the use of water as the 

reaction medium [2]. Compared to organic solvents the aqueous medium is less expensive, less 

dangerous, and more environmentally friendly. In recent years, there has been increasing recognition 

that water is an attractive medium for many organic reactions [3–5]. Many important types of 

heterocycles, such as furans, pyridines, quinolines, indoles, triazines, acridines, pyrazines, and 

pyrimidines have been synthesized in aqueous media [6–15]. The synthesis of new and other important 

type of heterocyclic compounds in water continues to attract wide attention among synthetic chemists. 
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Nitrogen-containing heterocyclic building blocks are of great importance to both medical and 

organic chemists, and their synthesis continues to represent a challenge from both academic and 

industrial perspectives [16]. Isoxazole derivatives are an important class of heterocyclic 

pharmaceuticals and bioactive natural products because of their significant and wide spectrum of 

biological activities, including potent and selective antagonism of the NMDA receptor [17] and anti-HIV 

activity [18]. Many syntheses of isoxazoles have been developed [19,20]. However, these syntheses 

are usually carried out in organic solvents. As part of our current studies on the development of new 

routes to heterocyclic systems in aqueous media [21–28], we now report an efficient and clean 

synthetic route to isoxazole derivatives via the reaction of 3-(dimethylamino)-1-arylprop-2-en-1-ones 

with hydroxylamine hydrochloride in aqueous media. 

2. Results and Discussion 

When an equivalent mixture of an 3-(dimethylamino)-1-arylprop-2-en-1-one derivative 1 and 

hydroxylamine hydrochloride (2) was stirred at 50 °C in aqueous media, 5-arylisoxazole derivatives 3 

were obtained in good yields (Scheme 1). The results are summarized in Table 1. 

Scheme 1. The synthesis of 5-arylisoxazole derivatives in aqueous media. 

 

Table 1. The synthetic results of 5-arylisoxazole derivatives in aqueous media. 

Entry Product Ar R Isolated Yield (%) 

1 3a 4-ClC6H4 H 88 
2 3b 4-CH3OC6H4 H 93 
3 3c 4-BrC6H4 H 89 
4 3d Naphthen-2-yl H 84 
5 3e C6H5 CH3 88 
6 3f 4-CH3OC6H4 CH3 92 
7 3g 4-CH3C6H4 CH3 89 
8 3h 4-BrC6H4 CH3 90 
9 3i 4-ClC6H4 CH3 86 

10 3j 4-CH3OCOC6H4 CH3 84 
11 3k 4-BocNHC6H4 CH3 86 
12 3l Thiophen-2-yl CH3 93 

As shown in Table 1, this protocol could be applied to the 3-(dimethylamino)-1-arylprop-2-en-1-ones 

with both electron-withdrawing groups (such as halide groups) and electron-donating groups (such as 

methyl or methoxyl groups). Polysubstituted 3-(dimethylamino)-1-arylprop-2-en-1-ones could also be 

used in this synthesis. We concluded that the electronic nature of the substituent on the aromatic ring 

of 3-(dimethylamino)-1-arylprop-2-en-1-ones had no significant effect on this reaction. This synthesis 

was confirmed to follow the group-assisted-purification chemistry process [29–31], which can avoid 
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traditional chromatography and recrystallization purification, that is, all the pure products can be 

obtained only by suction filtration without further purification. All the products 3 were identified from 

their IR, 1H-NMR, and HRMS spectra. 

Although the detailed mechanism of this reaction remains to be fully clarified, the formation of  

5-arylisoxazoles 3 could be explained by the reaction sequence presented in Scheme 2. First, the 

Michael addition of 3-(dimethylamino)-1-arylprop-2-en-1-ones 1 and hydroxylamine 2 gives the 

intermediate A, which then eliminates one molecule of dimethylamine to give the intermediate B, 

which upon intramolecular cyclization and dehydration gives rise to the final product 3. 

Scheme 2. The proposed mechanism for the synthesis of 5-arylisoxazoles. 
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3. Experimental 

All reagents were purchased from commercial suppliers and used without further purification. 

Melting points are uncorrected. IR spectra were recorded on Varian F-1000 spectrometer in KBr with 

absorptions in cm−1. 1H-NMR and 13C-NMR spectra were recorded on a Varian Inova-300 MHz or 

Varian Inova-400 MHz in CDCl3 solution. J Values are in Hertz. Chemical shifts are expressed in 

parts per million downfield from internal standard TMS. High-resolution mass spectra (HRMS) were 

obtained using Bruker microTOF-Q instrument. 

3.1. General Procedure for the Synthesis of 3-(Dimethylamino)-1-arylprop-2-en-1-ones 1a–l 

A solution of substituted acetophenone (2 nmol) in N,N-dimethylformamide dimethyl acetal or  

N,N-dimethylacetamide dimethyl acetal (10 mL) was refluxed for 20 h during which time some 

methanol was formed and removed through a reflux condenser. After cooling, the precipitate was 

collected by suction to give compounds 1. 

1-(4-Chlorophenyl)-3-(dimethylamino)prop-2-en-1-one (1a). Mp: 84–86 °C; IR (KBr) ν: 2916, 2804, 

1648, 1580, 1545, 1433, 1411, 1353, 1279, 1237, 1118, 1088, 1053, 1010, 980, 899, 837, 790, 742, 

678 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 2.89 (s, 3H, NCH3), 3.12 (s, 3H, NCH3), 5.63 (d,  

J = 12.4 Hz, 1H, CH), 7.34 (d, J = 8.4 Hz, 2H, ArH), 7.78 (d, J = 12.8 Hz, 1H, CH), 7.81 (d, J = 8.4 Hz, 

2H, ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 37.2, 45.0, 91.6, 128.2, 128.8, 136.8, 138.7, 154.4, 

187.0; HRMS calcd. for C11H13ClNO [M+H]+: 210.0686; found: 210.0685. 

3-(Dimethylamino)-1-(4-methoxyphenyl)prop-2-en-1-one (1b). Mp: 92–94 °C; IR (KBr) ν: 2905, 2838, 

1643, 1603, 1583, 1432, 1358, 1305, 1242, 1175, 1117, 1057, 1026, 901, 774 cm−1; 1H-NMR (400 MHz, 
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CDCl3) δ (ppm) 2.89 (s, 3H, NCH3), 3.05 (s, 3H, NCH3), 3.80 (s, 3H, CH3O), 5.66 (d, J = 12.4 Hz, 1H, 

CH), 6.86-6.88 (m, 2H, ArH), 7.74 (d, J = 12.4 Hz, 1H, CH), 7.86–7.88 (m, 2H, ArH); 13C-NMR  

(75 MHz, CDCl3) δ (ppm) 37.1, 44.8, 55.2, 91.5, 113.1, 129.3, 132.9, 153.7, 161.8, 187.2; HRMS 

calcd. for C12H16NO2 [M+H]+: 206.1181; found: 206.1205. 

1-(4-Bromophenyl)-3-(dimethylamino)prop-2-en-1-one (1c). Mp: 81–83 °C; IR (KBr) ν: 2910, 2808, 

1649, 1575, 1540, 1435, 1357, 1304, 1271, 1237, 1120, 1056, 1003, 895, 847, 808, 775, 760, 673 cm−1; 
1H-NMR (400 MHz, CDCl3) δ (ppm) 2.88 (s, 3H, NCH3), 3.11 (s, 3H, NCH3), 5.62 (d, J = 12.4 Hz, 

1H, CH), 7.50 (d, J = 8.4 Hz, 2H, ArH), 7.73 (s, 1H, CH), 7.75–7.79 (m, 2H, ArH); 13C-NMR  

(75 MHz, CDCl3) δ (ppm) 37.3, 45.1, 91.6, 125.4, 129.1, 131.3, 139.3, 154.6, 187.2; HRMS calcd. for 

C11H13BrNO [M+H]+: 254.0181; found: 254.0182. 

3-(Dimethylamino)-1-(naphthalen-2-yl)prop-2-en-1-one (1d). Mp: 94–95 °C; IR (KBr) ν: 2927, 2898, 

2809, 1636, 1554, 1427, 1291, 1253, 1189, 1111, 1045, 909, 863, 826, 781, 759 cm−1; 1H-NMR  

(400 MHz, CDCl3) δ (ppm) 2.91 (s, 3H, NCH3), 3.09 (s, 3H, NCH3), 5.85 (d, J = 12.4 Hz, 1H, CH),  

7.46–7.53 (m, 2H, ArH), 7.82–7.87 (m, 3H, ArH), 7.92 (t, J = 6.8 Hz, 1H, CH), 8.00–8.03 (m, 1H, 

ArH), 8.40 (s, 1H, ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 37.3, 45.0, 92.4, 124.7, 126.2, 127.2, 

127.7, 127.8, 129.2, 132.8, 134.7, 137.9, 154.3, 188.4; HRMS calcd. for C15H15NO [M+H]+: 226.1232; 

found: 226.1234. 

3-(Dimethylamino)-1-phenylbut-2-en-1-one (1e). Oil; IR (KBr) ν: 2911, 1650, 1555, 1500, 1450, 1357, 

1310, 1267, 1027, 1067, 1000, 900, 857, 775, 761, 673 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 

2.64 (s, 3H, CH3), 3.03 (s, 6H, N(CH3)2), 5.69 (s, 1H, CH), 7.13 (s, 1H, ArH), 7.41 (t, J = 6.4 Hz, 2H, 

ArH), 7.82 (d, J = 7.6 Hz, 2H, ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 19.5, 42.7, 52.4, 117.3, 

128.2, 130.0, 130.5, 133.9, 151.6, 166.1, 172.3; HRMS calcd. for C12H15NO [M+H]+: 190.1232; found: 

190.1245. 

3-(Dimethylamino)-1-(4-methoxyphenyl)but-2-en-1-one (1f). Mp: 134–136 °C; IR (KBr) ν: 2961, 2835, 

1671, 1574, 1460, 1307, 1167, 1081, 1025, 917, 865, 782, 746, 694 cm−1; 1H-NMR (400 MHz, CDCl3) 

δ (ppm) 2.62 (s, 3H, CH3), 3.02 (s, 6H, N(CH3)2), 3.81 (s, 3H, CH3O), 5.64 (s, 1H, CH), 6.86 (d,  

J = 8.4 Hz, 2H, ArH), 7.84 (d, J = 8.4 Hz, 2H, ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 16.3, 39.9, 

55.2, 92.1, 113.0, 129.0, 135.5, 161.3, 163.3, 187.1; HRMS calcd. for C13H18NO2 [M+H]+: 220.1338; 

found: 220.1341. 

3-(Dimethylamino)-1-(-4-methylphenyl)but-2-en-1-one (1g). Mp: 94–96 °C; IR (KBr) ν: 2913, 2808, 

1660, 1577, 1561, 1450, 1357, 1300, 1277, 1122, 1066, 1000, 899, 847, 775, 760, 673 cm−1; 1H-NMR 

(400 MHz, CDCl3) δ (ppm) 2.37 (s, 3H, CH3), 2.65 (s, 3H, CH3), 3.06 (s, 6H, N(CH3)2), 5.67 (s, 1H, 

CH), 7.18 (d, J = 7.6 Hz, 2H, ArH), 7.77 (d, J = 8.0 Hz, 2H, ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 

16.4, 21.4, 40.0, 92.6, 127.3, 128.7, 140.3, 140.5, 163.6, 188.1; HRMS calcd. for C13H17NO [M+H]+: 

204.1388; found: 204.1386. 

1-(4-Bromophenyl)-3-(dimethylamino)but-2-en-1-one (1h). Mp: 88–92 °C; IR (KBr) ν: 2931, 1721, 

1616, 1500, 1420, 1385, 1354, 1220, 1161, 1069, 1030, 1007, 849, 769, 680, 627 cm−1; 1H-NMR (400 

MHz, CDCl3) δ (ppm) 2.63 (s, 3H, CH3), 3.06 (s, 6H, N(CH3)2), 5.58 (s, 1H, CH), 7.49 (d, J = 8.4 Hz, 

2H, ArH), 7.70 (d, J = 8.4 Hz, 2H, ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 16.5, 40.1, 92.0, 124.6, 
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128.4, 128.9, 131.1, 131.8, 141.8, 186.7; HRMS calcd. for C12H14BrNO [M+H]+: 267.0259;  

found: 267.0256. 

1-(4-Chlorophenyl)-3-(dimethylamino)but-2-en-1-one (1i). Mp: 82–84 °C; IR (KBr) ν: 3039, 2961, 

2804, 1676, 1620, 1537, 1411, 1379, 1351, 1278, 1224, 1166, 1089, 1024, 1010, 921, 862, 772, 739, 

712, 678 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 2.62 (s, 3H, CH3), 3.04 (s, 6H, N(CH3)2), 5.57 (s, 1H, 

CH), 7.31 (d, J = 8.4 Hz, 2H, ArH), 7.76 (d, J = 8.4 Hz, 2H, ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 

16.4, 40.1, 92.0, 128.0, 128.6, 136.0, 141.3, 164.3, 186.5; HRMS calcd. for C12H14ClNO [M+H]+: 

224.0842; found: 224.0861. 

Methyl 4-(3-dimethylamino)but-2-enoyl)benzoate (1j). Mp: 103–106 °C; IR (KBr) ν: 2951, 1720, 

1620,1600, 1569, 1434, 1282, 1217, 1110, 1037, 1011, 921, 868, 825, 759, 725 cm−1; 1H-NMR  

(400 MHz, CDCl3) δ (ppm) 2.64 (s, 3H, CH3), 3.06 (s, 6H, N(CH3)2), 3.89 (s, 3H, CH3), 5.61 (s, 1H, 

CH), 7.85 (d, J = 8.0 Hz, 2H, ArH), 8.01 (d, J = 8 Hz, 2H, ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 

16.5, 40.1, 52.1, 92.5, 127.1, 129.3, 131.2, 147.0, 164.6, 166.7, 186.9; HRMS calcd. for C14H17NO3 

[M+H]+: 248.1287; found: 248.1292. 

tert-Butyl (4-(3-dimethylamino)but-2-enoyl)phenyl)carbamate (1k). Mp: 218–220 °C; IR (KBr) ν: 3242, 

3087, 2963, 1721, 1615, 1482, 1361, 1310, 1269, 1245, 1152, 1085, 1050, 1022, 922, 866, 788, 690 cm−1; 
1H-NMR (400 MHz, CDCl3) δ (ppm) 1.50 (s, 9H, C(CH3)3), 2.62 (s, 3H, CH3), 3.04 (s, 6H, N(CH3)2), 

5.65 (s, 1H, CH), 6.83 (s, 1H, NH), 7.37 (d, J = 8.4 Hz, 2H, ArH), 7.81 (d, J = 8.8 Hz, 2H, ArH);  

13C-NMR (75 MHz, CDCl3) δ (ppm) 16.4, 28.3, 40.0, 80.6, 92.3, 117.3, 128.4, 137.4, 140.4, 152.5, 

163.5, 187.2; HRMS calcd. for C17H25N2O3 [M+H]+: 305.1865; found: 305.1866. 

3-(Dimethylamino)-1-(thiophen-2-yl)but-2-en-1-one (1l). Mp: 90–91 °C; IR (KBr) ν: 3078, 2919, 2815, 

1694, 1622, 1543, 1422, 1380, 1345, 1228, 1170, 1085, 1064, 1028, 906, 860, 837, 771, 723 cm−1;  
1H-NMR (400 MHz, CDCl3) δ (ppm) 2.59 (s, 3H, CH3), 3.01 (s, 6H, N(CH3)2), 5.60 (s, 1H, CH), 6.99 

(s, 1H, ArH), 7.37 (s, 1H, ArH), 7.51 (s, 1H, ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 16.5, 40.0, 91.6, 

127.2, 127.4, 129.4, 150.0, 163.8, 180.1; HRMS calcd. for C10H14NOS [M+H]+: 196.0796; found: 196.0807. 

3.2. General Procedure for the Synthesis of Isoxazole Derivatives 3a–l 

3-(Dimethylamino)-1-arylprop-2-en-1-one 1 (1 nmol), hydroxylamine hydrochloride 2 (1 nmol) and 

water (5 mL) were added to a 25-mL round-bottom flask. The mixture was then stirred at 50 °C for 2 h. 

After completion of the reaction, the mixture was then cooled to room temperature. The precipitate 

was collected by suction filtration to give products 3 without further purification. 

5-(4-Chlorophenyl)isoxazole (3a). Mp: 85–87 °C (lit. [19] 84–85 °C); IR (KBr) ν: 1601, 1447, 1264, 

1128, 1109, 1088, 802 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 6.52 (d, J = 2.0 Hz, 1H, C4-H), 7.45 

(d, J = 8.4 Hz, 2H, ArH), 7.73 (d, J = 8.4 Hz, 2H, ArH), 8.30 (d, J = 2.0 Hz, 1H, C3-H); 13C-NMR  

(75 MHz, CDCl3) δ (ppm) 98.9, 125.6, 127.0, 129.2, 136.1, 150.8, 168.1; HRMS calcd. for C9H7ClNO 

[M+H]+: 180.0216; found: 180.0215. 

5-(4-Methoxyphenyl)isoxazole (3b). Mp: 60–62 °C (lit. [19] 64–65 °C); IR (KBr) ν: 3002, 1605, 1510, 

1446, 1251, 1175, 1020, 906, 787, 675 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 3.86 (s, 3H, CH3O), 
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6.39 (d, J = 1.6 Hz, 1H, C4-H), 6.98 (d, J = 8.8 Hz, 2H, ArH), 7.73 (d, J = 8.8 Hz, 2H, ArH), 8.25 (d,  

J = 1.6 Hz, 1H, C3-H); 13C-NMR (75 MHz, CDCl3) δ (ppm) 55.3, 97.2, 114.3, 120.0, 127.3, 150.7, 

161.0, 169.2; HRMS calcd. for C10H10NO2 [M+H]+: 176.0712; found: 176.0718. 

5-(4-Bromophenyl)isoxazole (3c). Mp: 112–114 °C (lit. [19] 114–116 °C); IR (KBr) ν: 1629, 1427, 

1077, 1021, 846, 775 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 6.53 (d, J = 1.6 Hz, 1H, C4-H), 7.60 

(d, J = 8.4 Hz, 2H, ArH), 7.66 (d, J = 8.8 Hz, 2H, ArH), 8.30 (d, J = 1.6 Hz, 1H, C3-H); 13C-NMR  

(75 MHz, CDCl3) δ (ppm) 99.0, 124.5, 126.0, 127.2, 132.2, 150.9, 168.2; HRMS calcd. for C9H7BrNO 

[M+H]+: 223.9711; found: 223.9716. 

5-(Naphthalen-1-yl)isoxazole (3d). Mp: 90–92 °C; IR (KBr) ν: 3049, 1562, 1449, 1360, 1265, 1190, 

910, 808, 738 cm−1; 1H-NMR (300 MHz, CDCl3) δ (ppm) 6.63 (d, J = 1.6 Hz, 1H, C4-H), 7.53–7.56 

(m, 2H, ArH), 7.84–7.93 (m, 4H, ArH), 8.30–8.34 (m, 2H, C3-H and ArH); 13C-NMR (75 MHz, 

CDCl3) δ (ppm) 98.9, 122.8, 124.3, 125.5, 126.8, 127.2, 127.7, 128.5, 128.8, 132.9, 133.8, 150.8, 

169.3; HRMS calcd. for C13H10NO [M+H]+: 196.0762; found: 196.0768. 

3-Methyl-5-phenylisoxazole (3e). Mp: 67–69 °C (lit. [32] 67 °C); IR (KBr) ν: 3056, 2983, 1600, 1424, 

1258, 1039, 897, 766, 683 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 2.36 (s, 3H, CH3), 6.37 (s, 1H, C4-H), 

7.42–7.48 (m, 3H, ArH), 7.75–7.77 (m, 2H, ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 11.4, 100.1, 

125.6, 127.4, 128.8, 129.9, 160.2, 169.5; HRMS calcd. for C10H10NO [M+H]+: 160.0762; found: 160.0770. 

5-(4-Methoxyphenyl)-3-methylisoxazole (3f). Mp: 99–101 °C; IR (KBr) ν: 2936, 1612, 1510, 1430, 

1253, 1174, 1022, 787, 680 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 2.33 (s, 3H, CH3), 3.85 (s, 3H, 

CH3O), 6.24 (s, 1H, C4-H), 6.96 (d, J = 8.8 Hz, 2H, ArH), 7.69 (d, J = 8.8 Hz, 2H, ArH); 13C-NMR  

(75 MHz, CDCl3) δ (ppm) 11.4, 55.2, 98.7, 114.2, 120.3, 127.2, 160.2, 160.8, 169.5; HRMS calcd. for 

C11H12NO2 [M+H]+: 190.0868; found: 190.0862. 

3-Methyl-5-(4-methylphenyl)isoxazole (3g). Mp: 88–90 °C (lit. [33] 92 °C); IR (KBr) ν: 3063, 2961, 

1603, 1415, 1259, 1114, 1044, 956, 895, 792, 680 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 2.13 (s, 

3H, CH3), 2.18 (s, 3H, CH3), 6.09 (s, 1H, C4-H), 7.04 (d, J = 8.4 Hz, 2H, ArH), 7.43 (d, J = 8.0 Hz, 2H, 

ArH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 11.4, 21.3, 99.5, 124.8, 125.6, 129.5, 140.1, 160.2, 169.7; 

HRMS calcd. for C11H12NO [M+H]+: 174.0919; found: 174.0914. 

5-(4-Bromophenyl)-3-methylisoxazole (3h). Mp: 126–128 °C; IR (KBr) ν: 2978, 1598, 1467, 1404, 

1256, 1061, C4-H), 7.41 (d, J = 8.0 Hz, 2H, ArH), 7.67 (d, J = 8.0 Hz, 2H, ArH); 13C-NMR (75 MHz, 

CDCl3) δ (ppm) 11.4, 100.4, 125.9, 126.9, 129.1, 135.9, 160.4, 168.4; HRMS calcd. for C10H9ClNO 

[M+H]+: 194.0373; found: 194.0378. 

5-(4-Chlorophenyl)-3-methylisoxazole (3i). Mp: 88–89 °C (lit. [34] 90–91 °C); IR (KBr) ν: 1600, 1451, 

1400, 1249, 1092, 1053, 833cm-1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 2.34 (s, 3H, CH3), 6.34 (s, 1H, 

C4-H), 7.41 (d, J = 8.0 Hz, 2H, ArH), 7.67 (d, J = 8.0 Hz, 2H, ArH); 13C-NMR (75 MHz, CDCl3) δ 

(ppm) 11.4, 100.4, 125.9, 126.9, 129.1, 135.9, 160.4, 168.4; HRMS calcd. for C10H9ClNO [M+H]+: 

194.0373; found: 194.0378. 



Molecules 2013, 18 13651 

 

 

Methyl 4-(3-methylisoxazol-5-yl)benzoate (3j). Mp: 88–90 °C; IR (KBr) ν: 2945, 1720, 1601, 1419, 

1274, 1182, 1105, 950, 774 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 2.36 (s, 3H, CH3), 3.93 (s, 3H, 

CH3O), 6.46 (s, 1H, C4-H), 7.81 (d, J = 8.4 Hz, 2H, ArH), 8.10 (d, J = 8.4 Hz, 2H, ArH); 13C-NMR  

(75 MHz, CDCl3) δ (ppm) 11.4, 52.2, 101.6, 125.5, 130.1, 131.1, 131.2, 160.4, 166.2, 168.3; HRMS 

calcd. for C12H12NO3 [M+Na]+: 240.0637; found: 240.0650. 

tert-Butyl 4-(3-methylisoxazol-5-yl)phenylcarbamate (3k). Mp: 120–121 °C; IR (KBr) ν: 3363, 3005, 

2978, 1701, 1520, 1413, 1237, 1160, 835, 772 cm−1; 1H-NMR (400 MHz, CDCl3) δ (ppm) 1.48 (s, 9H, 

(CH3)3C), 2.25 (s, 3H, CH3), 6.71 (s, 1H, C4-H), 7.59 (d, J = 8.8 Hz, 2H, ArH), 7.71 (d, J = 8.4 Hz, 2H, 

ArH), 9.65 (s, 1H, NH); 13C-NMR (75 MHz, CDCl3) δ (ppm) 11.5, 28.2, 80.9, 99.2, 118.3, 122.1, 

126.6, 140.0, 152.4, 160.3, 169.3; HRMS calcd. for C15H19N2O3 [M+H]+: 275.1396; found: 275.1392. 

3-Methyl-5-(thiophen-2-yl)isoxazole (3l). Oil; IR (KBr) ν: 2933, 1605, 1422, 1033, 899, 792, 706 cm−1; 
1H-NMR (400 MHz, CDCl3) δ (ppm) 2.33 (s, 3H, CH3), 6.24 (s, 1H, C4-H), 7.11 (t, J = 4.4 Hz, 1H, 

ArH), 7.43 (d, J = 4.8 Hz, 1H, ArH), 7.48 (d, J = 3.6 Hz, 1H, ArH); 13C-NMR (75 MHz, CDCl3) δ 

(ppm) 11.4, 100.0, 126.7, 127.7, 128.0, 129.4, 160.3, 160.4; HRMS calcd. for C8H8NOS [M+H]+: 

166.0327; found: 166.0322. 

4. Conclusions 

In conclusion, we have developed an efficient synthesis of isoxazole derivatives via the reaction of 

3-(dimethylamino)-1-arylprop-2-en-1-ones with hydroxylamine hydrochloride in aqueous media 

without using any catalyst. This method has the advantages of an easier work-up, mild reaction 

conditions, high yields, and an environmentally benign procedure. 
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