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Abstract: This paper studies the limitations of binocular vision technology in monitoring accuracy.
The factors affecting the surface displacement monitoring of the slope are analyzed mainly from system
structure parameters and environment parameters. Based on the error analysis theory, the functional
relationship between the structure parameters and the monitoring error is studied. The error
distribution curve is obtained through laboratory testing and sensitivity analysis, and parameter
selection criteria are proposed. Corresponding image optimization methods are designed according
to the error distribution curve of the environment parameters, and a large number of tests proved
that the methods effectively improved the measurement accuracy of slope deformation monitoring.
Finally, the reliability and accuracy of the proposed system and method are verified by displacement
measurement of a slope on site.

Keywords: binocular vision; accuracy analysis; slope deformation monitoring; structure parameters;
environment parameters

1. Introduction

Landslides are among the most common and catastrophic natural hazards, causing numerous
casualties and fatalities every year [1]. Extracting the slope deforming information can effectively
predict and warn of landslides early [2]. Historically, various monitoring methods have been employed
to measure the slope deformation, including geodesy [3], GPS [4], INSAR [5], 3D laser scanning [6]
and digital photogrammetry [7,8]. However, the construction industry seeks a more intelligent but
low-cost technology to achieve dynamic and high-accuracy monitoring. Binocular vision technology is
a promising new approach to deal with slope deformation monitoring [9] which has been widely and
increasingly used in bridge vibration [10], multipoint displacement measurement [11], materials strain
detection [12], depth estimation [13], and target tracking [14].

The accuracy of binocular vision technology is limited by the camera calibration parameters [15],
system structure parameters [16], and environment parameters [17,18]. In order to eliminate the
influence of camera calibration parameters on the monitoring, Li et al. [19] proposed a high-precision
camera calibration method based on a multiview template and alternative bundle adjustment.
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Liu et al. [20] devoted to minimize the error between the geometric relation of 3D reconstructed
feature points and the ground truth. Jin et al. [21] improved the calibration accuracy of the camera
through distortion correction. Yang et al. [22] studied the influence of camera distortion, number of
calibration images, number of targets and position of calibration board on the calibration accuracy. For
system structure parameters, it mainly includes the angle between the camera optical axis and the
baseline, baseline distance and monitoring distance [22–24]. Lu et al. [25] built the relationship between
structure parameters (baseline, focal length and object distance) and distance measurement errors.
Deng et al. [26] have studied the effect of vision measurement parameters on the accuracy of binocular
reconstruction at high temperatures. Xu et al. [27] determined the optimal configuration of the system
by comprehensively analyzing the baseline distance and measurement distance. Tang et al. [28]
analyzed the relationship between the depth errors, the field of views and the distances through
measurement tests, and obtained the error correction curves. Xu et al. [29] deduced the best relationship
that the virtual baseline distance is 1–1.5 times of measurement distance for the double reflection system.

The camera calibration and system structure parameters are artificially adjustable. In contrast,
the influence of environment parameters only can be optimized by image processing technologies based
on monitoring data. The most popular image sharpening technology can be divided into two categories:
image enhancement technology based on image processing and image restoration technology based
on a physical model. Image enhancement technology [30] directly processes the pixel points of the
image without considering the reasons of image quality deterioration so as to improve the vision effect
of the image, such as histogram equalization [31], curvelet transform [32], and homomorphic filtering
algorithm [33]. Image restoration technology [34] employs some prior knowledge of the degradation
phenomenon to realize the process of establishing and inversely deducing degraded images so as to
restore the original appearance of images, such as a physical model of atmospheric scattering [35],
guided filtering [36] and improved mean filtering algorithm [37]. However, there is very little research
into the above parameters of the binocular vision technology for slope deformation monitoring.

The main purpose of this study aims to investigate structure parameters and environment
parameters for improving the accuracy of the binocular vision measurement system for slope
deformation monitoring. The error distribution curves were obtained through laboratory tests.
The sensitivity of structure parameters was analyzed, and parameter selection criteria were proposed.
In addition, the environmental influences were optimized by image processing technology. Furthermore,
field tests were conducted to verify the reliability and accuracy of the proposed system and method.

2. Binocular Vision Measurement System

2.1. Laser Rangefinder-Camera Station

Figure 1 shows the binocular vision measurement system (BVMS) for slope deformation monitoring.
In order to complete the site layout of the BVMS accurately and quickly in engineering monitoring,
we design a simple laser rangefinder-camera station. It consists of tripod, laser rangefinders, camera,
and angle measuring ruler. Laser rangefinders and the angle-measuring ruler are installed between the
camera and the tripod. The laser rangefinder is fixed on the angle-measuring ruler, which is convenient
for measuring the baseline distance and monitoring distance. One end of angle measuring ruler can be
hinged according to the specific field of view. In order to make the layout system universal, the base of
the design can be connected to the tripod through screws and the lower tray fixed the angle measuring
ruler and the laser rangefinders. The camera can be connected to the tray using screws, and the camera
direction can be flexibly rotated according to requirements. The connection is equipped with horizontal
bubbles, which can be leveled during monitoring.
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Figure 1. Binocular vision measurement system: (a) image of 3D simulation; (b) site layout diagram. 
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Step 1: Site layout. The laser rangefinder-camera station hardware system is built according to 

the system structure parameters, and then the target points are reasonably arranged in the 

monitoring area based on the field of view.  

Step 2: Camera calibration. The improved Zhang’s calibration method [38] is used to obtain 

camera parameters and achieve distortion correction of the camera. It should be noted that during 

the subsequent tests, refocusing the camera has been avoided.  

Step 3: Image preprocessing. The frequency of image capture can be set according to 

monitoring requirements, such as acquiring images every half an hour. Multiple (≥5) images should 

be taken continuously within one second for each acquisition, which can effectively reduce random 

errors during subsequent processing of the data. Then the environmental factors in the images are 

identified through human intervention. Finally, the preprocessing system designed in this paper is 

used to optimize the images.  

Step 4: Spatial displacement quantization. Feature points are extracted from the optimized 

images [39]. Three-dimensional information of the target points is converted by stereo matching 

with the Speeded-Up Robust Features (SURF) algorithm [40]. Then the displacement is calculated. 

Figure 1. Binocular vision measurement system: (a) image of 3D simulation; (b) site layout diagram.

2.2. Slope Deformation Monitoring Based on BVMS

Figure 2 illustrates the process of slope deformation monitoring based on BVMS. Specific steps
are as follows:

Step 1: Site layout. The laser rangefinder-camera station hardware system is built according to
the system structure parameters, and then the target points are reasonably arranged in the monitoring
area based on the field of view.

Step 2: Camera calibration. The improved Zhang’s calibration method [38] is used to obtain
camera parameters and achieve distortion correction of the camera. It should be noted that during the
subsequent tests, refocusing the camera has been avoided.

Step 3: Image preprocessing. The frequency of image capture can be set according to monitoring
requirements, such as acquiring images every half an hour. Multiple (≥5) images should be taken
continuously within one second for each acquisition, which can effectively reduce random errors
during subsequent processing of the data. Then the environmental factors in the images are identified
through human intervention. Finally, the preprocessing system designed in this paper is used to
optimize the images.

Step 4: Spatial displacement quantization. Feature points are extracted from the optimized
images [39]. Three-dimensional information of the target points is converted by stereo matching with
the Speeded-Up Robust Features (SURF) algorithm [40]. Then the displacement is calculated.
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Figure 2. Slope deformation monitoring process based on binocular vision measurement system.

3. Accuracy Analysis of System Structure Parameters

3.1. System Monitoring Model

Figure 3 presents the space geometry model of the BVMS [41]. CL and CR are the imaging planes
of the left and right cameras. The image coordinate system of the left camera is X1O1Y1, and the right
one is X2O2Y2. P1(X1, Y1) and P2(X2, Y2) are the image coordinates of target point P. α1 and α2 are
the angles between the baseline and the optical axis of the left and right camera, respectively. The focal
length is f . The projection geometry of the target point P on the left and right cameras is described by
the horizontal field of view angle ω1 and ω2, and the vertical field of view angle Φ1 and Φ2. If the
two cameras are placed horizontally and the coordinate system of the left camera is considered as
the reference coordinate system, the coordinates of target point P(x, y, z) in the reference coordinate
system can be calculated by Equation (1):

x =
B cot(ω1+α1)

cot(ω1+α1)+cot(ω2+α2)
,

y = Y1
Z sinω1

f1 sin(ω1+α1)
= Y2

Z sinω2
f2 sin(ω2+α2)

,

z = B
cot(ω1+α1)+cot(ω2+α2)

,

(1)
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where tan Φ1 = Y1
f1

cosω1, tan Φ2 = Y2
f2

cosω2, tanω1 = X1
f1

, tanω2 = X2
f2
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Figure 3. The monitoring model of binocular vision measurement.

Therefore, the position information of the target point P in the world coordinate system depends
on the system structure parameters, including the monitoring distance Z, the baseline distance B,
the angle α between the optical axis and the baseline, and the focal length f of camera. Equation (1)
can be expressed into the vector function relationship, as shown in Equation (2):

P(x, y, z) = F(B,α, f , X1, Y1, X2, Y2, Z), (2)

According to the error analysis theory [42], the position information error of monitoring target
point P in the world coordinate system:

∆x =
∑

k

∂Fx

∂k
δk; ∆y =

∑
k

∂Fy

∂k
δk; ∆z =

∑
k

∂Fz

∂k
δk, (3)

where δk is the error generated by each influencing parameter, k represents one of parameters with
B,α, f , X1, Y1, X2, Y2, Z. By synthesizing the errors ∆x, ∆y and ∆z in three directions, the comprehensive
monitoring error ∆ of position information can be obtained as:

∆ =

√
(∆x)2 + (∆y)2 + (∆z)2 =

√∑
i

∑
k

(
∂Fi
∂k
δk

)2

, (4)

where i stands for the direction of x, y, z. The error transfer function is introduced to rewrite Equation (4)
as:

∆ =

√∑
k(ψkδk)

2
, (5)

where ψk represents the error transfer function of each parameter and is defined as:

ψk =

√∑
i

(
∂Fi
∂k

)2

, (6)

According to Equations (1)–(6), the error transfer function of space coordinates of the target point
P can be shown as Equations (7)–(10):

∂x
∂X1

= −
Z2 cot(ω2+α2) cos2 ω1

B f1 sin2(ω1+α1)

∂x
∂X2

= −
Z2 cot(ω1+α1) cos2 ω2

B f2 sin2(ω2+α2)

, (7)



Sensors 2020, 20, 1994 6 of 19


∂z
∂X1

= Z2 cos2 ω1
B f1 sin2(ω1+α1)

∂z
∂X2

= Z2 cos2 ω2
B f2 sin2(ω2+α2)

, (8)


∂y
∂X1

= Y1Z cos2 ω1
B f1 sin2(ω1+α1)

∂y
∂X2

= Y2Z cos2 ω2
B f2 sin2(ω2+α2)

, (9)


∂y
∂Y1

= Z sinω1
f1 sin(ω1+α1)

∂y
∂Y2

= Z sinω2
f2 sin(ω2+α2)

, (10)

3.2. Model Verification

A simulation test of slope slide was designed to verify the feasibility of the proposed system
and further to analyze the influence of the structure parameters described above on the binocular
system monitoring.

We used the laser rangefinder-camera station mentioned above, where the camera is a Nikon
D3100 digital camera with resolution of 4608 × 3072 and 14.2 million pixels. The homemade calibration
board is a chessboard with 14 × 13 blocks, where each block is 30 mm × 30 mm. Considering that
displacement errors may be caused by manually moving it, we printed two identical targets with
a diameter of 200 mm on A2 paper to simulate displacement deformation. Their center distance is
250 mm, that is, the true value of the displacement is 250 mm. To facilitate movement, we pasted
the targets on the removable platform, as shown in Figure 4. During the tests, the camera had to be
recalibrated for every set of structure parameters changed. At each position, five images of the targets
were collected in succession to calculate the distance between the two targets.Sensors 2019, 19, x FOR PEER REVIEW 7 of 19 
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The central location was performed on the targets in each image to obtain their pixel coordinates.
Then the camera parameters were calibrated to convert the three-dimensional space coordinates.
The center distance of the two targets was calculated according to Equation (11). Under each set of
structure parameter combinations, there are five measured displacement values, as shown in Figure 5,
which are d1, d2, d3, d4 and d5.

di =

√
(xli − xri)

2 + (yli − yri)
2 + (zli − zri)

2, (11)

where di is the measured displacement value; (xl, yl, zl) and (xr, yr, zr) are the three-dimensional
coordinates of the center of left and right targets in the same image, respectively.Sensors 2019, 19, x FOR PEER REVIEW 8 of 19 
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Figure 5. The total displacements measured by binocular vision measurement system with different
structure parameters: (a) the angle α between optical axis and baseline; (b) focal length f ; (c) baseline
distance B; (d) monitoring distance Z.

Ideally, the five points corresponding to the same abscissa should coincide, that is, the displacement
values measured at the same position should be the same. However, it can be seen from Figure 5 that
some groups of data showed a large deviation. This was due to other effects during the monitoring
process, such as imperfect instrument structures and improper camera shutter operation. Therefore,
in the subsequent analysis of the error distribution curve, we filtered out the images with larger relative
error data. Finally, Equation (12) was used to calculate the root mean square error (RMSE) of each
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group of data to evaluate the deviation between the observed value and the true value, and the error
distribution curve was obtained as shown in Figure 6.

E =

√√
1
n

n∑
i=1

(di − dt)
2, (12)

where dt is the true displacement value; n is the amount of valid data measured for each group.Sensors 2019, 19, x FOR PEER REVIEW 9 of 19 
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α between optical axis and baseline; (b) focal length f ; (c) baseline distance B; (d) monitoring distance Z.

Figure 6a expounds the variation of error with different angles between the optical axis and
baseline. Between 35◦ and 80◦, the general variation trend of error increased with the increase of
angles. At 45 ◦, the error reached a minimum. It could be considered that the proposed BVMS was
more reliable for monitoring when the angle is less than 50◦. It can be apparently seen from Figure 6b
that the focal length was inversely proportional to the monitoring error. As the focal length increased,
the field of view narrowed, so there is relatively little interference information in the image. Therefore,
the camera lens with large focal length as far as possible should be arranged in practical applications.
The third group focused on the effect of the baseline distance on the error. In BVMS, the baseline
distance is an important parameter and is often considered in conjunction with the monitoring distance.
As shown in Figure 6c, the overall trend of error decreased first and then increased. When the ratio of
the baseline distance to the monitoring distance was between 0.9 and 1.2, the error got a smaller value
and the result seemed to be acceptable. Figure 6d illustrates the relationship between the monitoring
distance and the error. As the monitoring distance increased, we can clearly see that the error also
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increased. Although the measured displacement error may break through 8 mm when the monitoring
distance exceeds 50 m, it is believed that with the development of vision sensors, the monitoring
distance of the BVMS will be more and more optimized, and remote, high-precision monitoring will
be realized.

3.3. Sensitivity Analysis and Optimization Design

The influence degree of different system structure parameters on binocular measurement results
was different. If the sensitivity of each parameter can be determined, the high-sensitivity parameter
can be quickly and effectively suppressed and the monitoring accuracy can be improved.

For sensitivity analysis, the parameter combination set should be established first, as listed in
Table 1. The value range of each parameter was determined according to the previous analysis and the
tests. In addition, since different structure parameters have different units of physical quantities, it
was difficult to rank the sensitivity degree, so the sensitivity factors of each parameter needed to be
normalized dimensionless [43], as shown in Equation (13).

S(ak) = max


 f (ak)max − f

(
a∗k

)
f
(
a∗k

) ,
 f

(
a∗k

)
− f (ak)min

f
(
a∗k

) 
, (13)

where S(ak) is the normalized sensitivity factor of the evaluation parameter ak; f
(
a∗k

)
corresponds

to the reference value of system accuracy; f (ak)max and f (ak)min are respectively the maximum and
minimum values of the corresponding accuracy within the value range of system parameter ak.

Table 1. The structure parameters combination set for sensitivity analysis.

Parameters Focal Length f
(mm)

Monitoring
Distance Z (m)

Baseline Distance
B (m)

The Angle α Between
Optical Axis and

Baseline (◦)

Reference value 100 40 40 45
Value range 50–300 20–100 32–48 30–50
Step length 50 20 4 5

According to the error synthesis theory [42], the value of function f (ak) is equal to the sum of
errors caused by each parameter. The error range caused by baseline distance and the angle between
optical axis and baseline could be deduced from Equations (7)–(10). Focal length and monitoring
distance affect the system accuracy by affecting the actual physical size represented by the pixel points,
and the generated error ∆ f Z could be calculated by Equation (14) [44]. Finally, the sensitivity coefficient
of each parameter could be obtained, as shown in Figure 7.

∆ f Z =
ZC

f
, (14)

where C represents the size of pixel points, which was set as 6.25 µm in our experiment.
Figure 7 shows that the sensitivity coefficients of two parameters, the monitoring distance Z and

the camera focal length f , were significantly higher than the other parameters, which means these
two parameters had a larger influence degree on the total monitoring error than the other parameters.
Therefore, in the application of BVMS, the two parameters should be efficiently configured according
to the specific situation to reduce the monitoring error.

In order to facilitate the application of engineering monitoring, we designed the corresponding
binocular system structure parameters combinations according to the former analysis, as listed in
Table 2. In engineering applications, appropriate cameras and structure parameters combination can
be selected according to specific precision requirements, monitoring scene and project budget.
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Table 2. Recommendation of structure parameters combination using the binocular vision
measurement system.

Error (mm) Focal Length f
(mm)

Monitoring
Distance Z (m)

Baseline Distance
B (m)

Angle α Between
Optical Axis and

Baseline (◦)

4.8–7.7 50 20 16–24 30–50
3.55–6.45 100 20 16–24 30–50
3.13–6.03 150 20 16–24 30–50
2.92–5.82 200 20 16–24 30–50
2.72–5.62 300 20 16–24 30–50

7.29–10.19 50 40 32–48 30–50
4.8–7.7 100 40 32–48 30–50

3.96–6.86 150 40 32–48 30–50
3.55–6.45 200 40 32–48 30–50
3.13–6.03 300 40 32–48 30–50

9.79–12.69 50 60 48–72 30–50
6.05–8.95 100 60 48–72 30–50

4.8–7.7 150 60 48–72 30–50
4.17–7.07 200 60 48–72 30–50
3.55–6.45 300 60 48–72 30–50

12.29–15.19 50 80 64–96 30–50
7.29–10.19 100 80 64–96 30–50
5.63–8.53 150 80 64–96 30–50

4.8–7.7 200 80 64–96 30–50
3.96–6.86 300 80 64–96 30–50

14.79–17.69 50 100 80–120 30–50
8.54–11.44 100 100 80–120 30–50
6.46–9.36 150 100 80–120 30–50
5.42–8.32 200 100 80–120 30–50
4.38–7.28 300 100 80–120 30–50

4. Accuracy Analysis of Environment Parameters

In the vision-based slope monitoring, the main work is to process the acquired slope images.
Landslides occur frequently in the rain, fog and other weather conditions, resulting in the images
containing complex environment parameters. If these interferences can be filtered rapidly and



Sensors 2020, 20, 1994 11 of 19

effectively, it would be helpful for extracting objects and image matching and positioning, and then
improve the accuracy and efficiency of slope deformation monitoring.

4.1. The Influence of Each Parameters

Simulation tests were designed in this section to study the influence of four common environmental
factors on the image center positioning results. The interference of each environment parameter was
simulated by adding filters, adjusting color levels, modifying layer modes and other basic operations
in Photoshop. The center point positioning result of the disturbed image was compared with that of
the original image, and the error distribution curve was obtained, as shown in Figure 8. The size of all
images was 1095 × 956 pixels, and the central coordinate of the original image was (466.977, 565.527).Sensors 2019, 19, x FOR PEER REVIEW 13 of 19 

 

 

Figure 8. The influence of environment parameters on image center positioning results: (a) fog; (b) 

rain; (c) low illumination; (d) noise. 

4.2. Optimization Design 

From the previous analysis, it can be seen that the interference of environment parameters will 

cause deviations in image positioning. If the image cannot accurately reflect the actual situation of 

the slope measurement points, it is difficult to quantify the deformation. Therefore, this paper 

designed the corresponding image processing technology for the monitoring images under the 

above four types of environmental interferences to achieve image optimization (see Figure 9). 

 

Figure 8. The influence of environment parameters on image center positioning results: (a) fog; (b) rain;
(c) low illumination; (d) noise.

For the simulation of fog, we changed the intensity of fog by adjusting the filling amount of fog in
the image. As can be seen from Figure 8a, the larger the fog, the greater the image positioning error.
In foggy environments, the fog and dust permeated in the air will blur vision, and the image obtained
under foggy conditions is significantly degraded, and the features such as the contrast and color of the
target are attenuated, thus reducing the accuracy of target positioning.

Similarly, the simulation of rain with different intensity was realized by changing the filling
amount of rain. Figure 8b presents that the error is positively correlated with the amount of rain.
The impact of rain on the imaging quality was mainly concentrated in three aspects. One was that
the raindrops blocked the target to a certain extent, making it difficult to accurately locate the target
in the image. The second was that the existence of rain lines caused errors in the detection of target
edges. Third, the image became blurred, which reduced the robustness and adaptability of the vision
monitoring system, and was not conducive to subsequent target positioning and calculation.

The simulation of low illumination was relatively simple; we just changed the brightness value of
the image directly. Figure 8c shows that although the error distribution curve fluctuates, the general
trend is that the error increases with the decrease of brightness. In the case of poor lighting conditions,
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such as dusk and dawn, the imaging quality was severely deteriorated, mainly due to the large dark
area of the image, blurred content and loss of details. Therefore, it is difficult to meet the needs of
monitoring systems.

Noise simulation was achieved by adding filters, and the intensity of the added noise could be set.
Through a large number of experiments, we found that the effect of noise on image positioning was
the greatest. Figure 8d illustrates the relationship between noise intensity and positioning error: the
higher the noise intensity, the more unnecessary or redundant interference information in the image
data. In the field of monitoring, the error caused by noise will be amplified in subsequent processing,
and with the transmission of errors, the results will show a non-negligible error.

4.2. Optimization Design

From the previous analysis, it can be seen that the interference of environment parameters will
cause deviations in image positioning. If the image cannot accurately reflect the actual situation of the
slope measurement points, it is difficult to quantify the deformation. Therefore, this paper designed
the corresponding image processing technology for the monitoring images under the above four types
of environmental interferences to achieve image optimization (see Figure 9).
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(1) Fog

Fog degrades the collected images, affects the positioning accuracy and even loses the target
points. Therefore, the dark channel prior technology [45] was adopted to remove haze from images.
On this basis, the guided filtering [36] was used to refine the transmittance, so as to achieve image
defogging.

(2) Rain

Rainfall decreases the image contrast and blurs the target. On the account of deep learning [46],
a neural network model [47] was employed to remove the rain streaks.
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(3) Low illumination

Insufficient light will cause the captured image to have a large area of dark areas, which is
difficult to meet the requirements of subsequent processing. In this paper, image main structures
extraction technology [48] and low-illumination image degradation model [49] were used to enhance
low light images.

(4) Noise

Interference of various factors induces noise in the image process of capture and transmission.
In succession, the noise error will be continuously amplified in the subsequent processing.
The Block-Matching and 3D filtering (BM3D) algorithm [50] was adopted to reduce image noise. Based
on the self-similarity of images, the algorithm evaluated the similarity between blocks of images at
different positions, so as to estimate and restore the original gray level of image pixels.

4.3. Performance Verification

This section describes two tests to verify the image optimization method proposed in this study.

(1) Interference of single environment parameter

In the previous study of the influence of each environment parameters on the center positioning
results, images were obtained under each environment interference. The corresponding optimization
methods were used for processing, and the optimized image center positioning results were compared
with the original image to obtain a processed error distribution curve, as shown by a red curve in
Figure 10. The black curve is the error distribution curve before processing.
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Figure 10. Target center positioning errors under single environment parameter interference before
and after processing: (a) fog; (b) rain; (c) low illumination; (d) noise.

It can be clearly seen from the Figure 10 that the interference of the four environment parameters
leads to the positioning deviation. However, for the effects of fog, rain and low illumination,
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the maximum error of the positioning results before processing did not exceed 0.4 pixels, indicating
that the proposed BVMS has good robustness. Although the error was relatively large when the noise
intensity was high, the positioning accuracy was significantly improved after optimization. On the
whole, the maximum error of the optimized positioning result was 0.146 pixels, and only one group
of pixel errors exceeded 0.1. It shows that the designed image optimization methods can effectively
improve the influence of environmental parameters on the monitoring images.

(2) Interference of combined environment parameters

Actually, the images were often affected by more than one types of environment interference, so it
is of great significance to study the interference of multi-environment parameters. The following five
sets of simulation tests are designed for slope monitoring. Figure 11 shows images before and after
processing. It is worth noting that the interference intensity of identical environment parameters was
the same during the testing of different combinations. That was achieved by keeping the parameters
involved in the simulation consistent in Photoshop. The center point positioning was also performed
on the images before and after optimization. The error results are listed in Table 3.
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Figure 11. The simulated images before and after processing under the combined interference of
multi-environment parameters.

Table 3. The positioning results of target center before and after image processing.

Number Types of Environment Parameter
Error before Processing (pixels) Error after Processing (pixels)

x y x y

1 Fog + Rain 0.17 0.075 0.049 0.066
2 Fog + Low Illumination 0.092 0.027 0.012 0.029
3 Rain + Low Illumination 0.011 0.056 0.08 0.025
4 Fog + Rain + Low Illumination 0.183 0.085 0.038 0.006
5 Fog + Rain + Low Illumination + Noise 0.515 0.721 0.11 0.042

As shown in Figure 11, under the interference of combined environment parameters, the image
quality seriously degraded, and the target area was easy to blur. This is likely to result in positioning
failure. Judging from the location results before processing (see Table 3), in general, the more
environment parameter interferences contained in the image, the greater the positioning error.
When optimizing, low illumination handling was the most challenging. Different optimization
parameters had to be set for processing, and the best-performing images were selected for subsequent
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analysis. In addition, by comparing a large number of test data, we found that different processing
orders lead to different positioning results. Optimizing the factors that are easy to identify first,
and then processing the factors that are difficult to discern, can make the unrecognized images
get better positioning. In short, the optimized positioning error was no more than 0.11 pixels,
which indicates that the optimization methods proposed in this paper can be well used for processing
slope-monitoring images.

5. Field Tests

After optimizing the binocular measurement system and realizing the deformation monitoring of
the target, we conducted further field tests. The deformation of the slope surface was simulated in
the field and the applicability and accuracy of the method proposed in this paper was verified by the
comparative analysis of the monitoring data.

In total, eight target points were set randomly on the slope surface, as shown in Figure 12. In order
to verify the efficiency of the proposed BVMS, the surface deformation of the slope was simulated
by artificially moving these points and compared with the measurement results of the total station.
The combination of structure parameters is listed in Table 4. The influence of environment parameters
was optimized before calculation.
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Figure 12. General arrangement of field tests.

Table 4. The designed combination of structure parameters.

Focal Length f
(mm)

The Angle α Between
Optical Axis and

Baseline (◦)

Monitoring
Distance Z (m)

Baseline
Distance B (m)

Ratio k of Baseline
Distance to

Monitoring Distance

100 45

20 24

1.2
40 48
60 72
80 96

Comparing the measurement results of the total station and BVMS, the root mean square errors of
the eight targets in the X, Y, and Z directions and the total deformation were obtained, as shown in
Table 5.
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Table 5. The displacement error results measured by binocular vision measurement system.

Monitoring
Distance Z (m)

X Direction Error
(mm)

Y Direction Error
(mm)

Z Direction Error
(mm) Total Error (mm)

20 2.04 1.82 3.21 4.15
40 4.20 3.76 3.18 6.47
60 4.81 4.82 4.77 8.31
80 7.13 5.97 7.04 11.67

We can conclude from Table 5 that the BVMS and method proposed in this paper can be
well applied to structural deformation monitoring. The final measured error is within the range of
theoretical error, which also verifies the practicability of the proposed structure parameters combination
recommendation table (see Table 2). Although the current results show that the monitoring distance is
best controlled within 60m, it can already be used for monitoring of small slopes and small foundation
pit engineering. In addition, with the development of binocular vision technology, its application
range and monitoring distance will be more improved.

6. Conclusions

In this paper, the factors influencing the accuracy of the BVMS in slope monitoring are analyzed
systematically. The conclusions can be drawn as follows:

(1) By combining the principle of binocular vision technology and the error analysis theory,
the functional relationship between structure parameters and monitoring results was studied.
Further laboratory tests were performed, and the error distribution curves under the influence
of the angle between optical axis and baseline, focal length, baseline distance, and monitoring
distance were obtained, respectively. Furthermore, the recommendation of structure parameters
combination using the BVMS was also proposed.

(2) Through the environmental interference simulation tests, the error distribution curves under the
influence of fog, rain, low illumination and noise were obtained. Therefore, image optimization
methods are designed to deal with the interference of these four environment parameters. It relies
on modifying the pixel distribution of the image to improve the contrast of the target, so as to
further improve the environmental adaptability of the proposed system.

(3) Finally, the slope movement is simulated on site, and the deformation is monitored employing the
proposed method. The results not only verify the validity of the structure parameters combination
recommendation table, but also reflect the application potentials of the BVMS for cost-effective
slope health monitoring. However, its applied range and monitoring distance still need to
be improved.
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