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Background: Ovarian cancer is one of the rarest lethal oncologic diseases that have hardly any specific
biomarkers. The availability of high-throughput genomic data and advancement in bioinformatics tools
allow us to predict gene biomarkers and apply systems biology approaches to get better diagnosis, and
prognosis of the disease with a tentative drug that may be repurposed.
Objective: To perform genome-wide association studies using microarray gene expression of ovarian can-
cer and identify gene biomarkers, construction and analyze networks, perform survival analysis, and drug
interaction studies for better diagnosis, prognosis, and treatment of ovarian cancer.
Method: The gene expression profiles of both healthy and serous ovarian cancer epithelial samples were
considered. We applied a series of bioinformatics methods and tools, including fold-change statistics for
differential expression analysis, DisGeNET and NCBI-Gene databases for gene-disease association map-
ping, DAVID 6.8 for GO enrichment analysis, GeneMANIA for network construction, Cytoscape 3.8 with
its plugins for network visualization, analysis, and module detection, the UALCAN for patient survival
analysis, and PubChem, DrugBank and DGIdb for gene-drug interaction.
Results: We identified 8 seed genes that were subjected for drug-gene interaction studies. Because of
over-expression in all the four stages of ovarian cancer, we discern that genes HMGA1 and PSAT1 are
potential therapeutic biomarkers for its diagnosis at an early stage (stage I). Our analysis suggests that
there are 11 drugs common in the seed genes. However, hypermethylated seed genes HMGA1 and
PSAT1 showcased a good interaction affinity with drugs cisplatin, cyclosporin, bisphenol A, progesterone,
and sunitinib, and are crucial in the proliferation of ovarian cancer.
Conclusion: Our study reveals that HMGA1 and PSAT1 can be deployed for initial screening of ovarian
cancer and drugs cisplatin, bisphenol A, cyclosporin, progesterone, and sunitinib are effective in curbing
the epigenetic alteration.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ovarian cancer is one of the lethal gynaecological diseases
endured by most women around the globe. It is discerned that
‘‘Ovarian cancer is more than a woman’s disease”. A 2018 GLOBOCAN
prediction report reveals that by the year 2040, the incidence and
mortality of ovarian cancer may go up to 150,000 cases making the
disease a big reason to worry about (https://gco.iarc.fr/tomorrow/).
The symptomatic signs are vague and can be misinterpreted for
other diseases. According to the National Ovarian Cancer Coalition
(NOCC) and Cancer Treatment Centres of America, there are more
than 30 different types of ovarian cancer, usually classified by orig-
inating cell-type (http://ovarian.org/). It commonly originates from
three common cell-types, namely surface epithelium cells, germ
cells, and stromal cells. However, epithelial ovarian cancers, devel-
oped from the cells of the outer surface of the ovary, are more
prevalent and account for 85–90% of all ovarian cancers (Romero
and Bast, 2012). Unfortunately, ~70% of the patients having epithe-
lial ovarian cancers remain undiagnosed until it reaches an
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advanced stage. The major subtypes of epithelial ovarian cancer
are namely - a) High-grade serous ovarian cancer (HGSOC), b)
low-grade serous ovarian cancer (LGSOC), c) clear cell tumors, d)
mucinous, and e) endometrioid (Qazi, 2018; Qazi et al., 2021).

The median age of women getting ovarian cancer diagnosed is
63, while the calculated median age of death is 70 (Jemal and
Bray, 2011; Howlader and Noore, 2017). Ovarian cancer is
disease-laden with paradigms, and it is a serious health problem.
To know about its source of origin, tracking the natural history of
the disease becomes mandatory, which is very difficult and chal-
lenging for oncologists. Ovarian cancer tends to metastasize in a
very unique manner, wherein cells are exfoliated from the primary
tumor as a single cell or many cell aggregates circulating via the
peritoneal fluid. Since the past decade, a drastic paradigm shift in
ovarian cancer was observed from being a singular disease to a
nest of diseases. Another biggest risk factor apart from age is the
‘‘family history”. Even though germline mutations that indoctrinate
ovarian cancer are janitors for 10–20% of cases. Genes responsible
for inheriting the chances of enduring ovarian cancer in families
are mainly – BRCA1 and BRACA2 (Assis and Pereira, 2018). There-
fore, the major factors leading to the progression of ovarian cancer
are mainly- a) age, b) family history, c) infertility issues, d) obesity,
e) sedentary lifestyle, f) hormonal replacement therapy (HRT), g)
in vitro fertilization (IVF), and h) endometriosis (https://www.
mskcc.org/). These factors are mainly categorized as, a) genetic fac-
tors, and b) environmental factors. A 2009 study performed by
Bowen and his colleagues suggest that epithelial ovarian cells in
humans are dominant and may serve as the leading factor for the
proliferation of ovarian adenocarcinoma (Bowen et al., 2009).

As per the National Cancer Institute (NCI) Surveillance, Epi-
demiology and End Results Program (SEER) reports, as of 2020
there are 21,750 (1.2%) incidence cases registered with ovarian
cancer while the estimated number of mortalities is 13,940
(2.3%). The five-year survival rate (2010–2016) is 48.6% (https://
seer.cancer.gov/statfacts/html/ovary.html). Fig. 1 represents ovar-
ian cancer estimated statistics.

There are mainly four stages of cancer that describe to what
extent the cancer is present in the body, thus, determines the
specific treatment strategy and survival duration. Treatment of
ovarian cancer in its initial stages is much easier and the patient
Fig 1. Estimated ovarian cancer cases reported
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survival is much longer when compared to advanced stages. Stage
1 or simply known as ‘‘localized” is when the cancer is found in a
restricted region of the body. Stage 2 is referred to as ‘‘regional”
as cancer gets spread to surrounding regions from its source, while
advanced stages (stages 3 & 4) are distant and unknown and are a
condition where the cancer cells get metastasized in the entire
body. As far as ovarian cancer is concerned, 15.7% are diagnosed
at the local stage. The 5-year relative survival for localized ovarian
cancer is 92.6% (https://seer.cancer.gov/statfacts/html/ovary.html).
Fig. 2 represents the stage-wise survival percentages in the case of
ovarian cancer.

The common diagnostic practices for the screening of ovarian
cancer are mainly categorized into two approaches, a) Blood-
based approaches encapsulating carbohydrate antigen-125 (CA-
125) and human epididymis-4 (HE-4), and b) Imaging investigations
which comprise of transvaginal sonography (TVS), Doppler ultra-
sonography, computerized tomography (CT) scans and ultrasounds
(Kurjak et al., 1991). These approaches calculate the risk of malig-
nancy index (RMI) in ovarian cancer patients which is composed of
a score given to the transvaginal ultrasound outcomes, menopausal
condition, and CA-125 level. The RMI value higher than 200 indi-
cates a greater risk of malignancy (Jayson et al., 2014). HE-4 is uti-
lized for ovarian cancer diagnosis as its expression is observed in
many organs but not in the ovary. Higher levels of HE-4 are seen
in serous and endometrioid subtypes of ovarian cancer which
makes it very crucial and sensitive in its diagnosis. HE-4 is not
increased in benign forms, as it is in the case of CA-125, making
it a specific prognostic indicator for lethal ovarian cancer. With
this, we know that CA-125 has a higher sensitivity while HE-4
has a high specificity, and these two studies are amalgamated
and implied as a mathematical formula named the Risk of Malig-
nancy Algorithm (ROMA). ROMA has been successful in achieving
better screening tests for ovarian cancer. The FDA in 2009 ascer-
tained the usage of the serum OVA-1 for analyzing these prognos-
tic indicators: CA-125, II-microglobulin, apolipoprotein A1,
prealbumin, and transferrin. ROMA takes in the biomarker esti-
mate levels to give output between 0 and 10 for menopausal
patients. Patients with greater scores refer to the complexity of
the malignancy and thus, are assessed by the gynaecologist or
oncologist. Currently, there are not many comparative studies of
in 2020 with five year survival percentage.
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Fig 2. Relative survival by stages at diagnosis in ovarian cancer.
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ROMA and OVA-1 (Novak and Lukasz, 2015). Imaging investiga-
tions for ovarian cancer are mainly Trans Vaginal Sonography
(TVS), Doppler Ultrasonography, CT Scan, and Biopsy (Kobayashi,
et al., 2012; McFarlane et al., 1956; Oglat et al., 2018). Initially,
trans-abdominal ultrasonography was majorly used for screening
of the disease, which was later, replaced by TVS that gives more
accurate, and lucid images of the ovary (Bourne et al., 1993).

Previous gene expression studies on ovarian cancer have identi-
fied various genes that are overexpressed such as - CLDN3, WFDC2,
FOLR1, COL18A1, CCND1, FLJ12988, group 3 POTEs especially - C, E,
and F, CLASP1, IGFBP2, and TRAIL (Peters and Kudla, 2005; Sharma
et al., 2019; Barger et al., 2018; Lisowska et al., 2014; Lancaster
et al., 2004; Qazi and Raza, 2021). However, the majority of these
studies were executed using microarrays. Since ovarian cancer
expression datasets are humongous in size and the network biol-
ogy of the disease is also complex, expression analysis must be per-
formed using high-throughput techniques.

In this proposed study, we aim to identify potential gene
biomarkers using microarray gene expression profiles, apply sys-
tems biology approaches to construct regulatory networks, and
perform its topological and other interaction analysis, detect mod-
ules in the network, and perform survival analysis of identified
seed genes. Further, we also perform a drug-gene interaction anal-
ysis of the identified seed genes. Our in silico analysis results will
help to get better disease insights, diagnosis, and prognosis of
the disease with a tentative drug that can be repurposed, thus pav-
ing a way for person-centric healthcare management for ovarian
cancer.

2. Materials and method

2.1. Datasets

We considered the gene expression profile of healthy epithelial
samples (control) and samples of ovarian cancer patients (case). A
dataset of 24 samples was considered, including 12 healthy ovar-
ian surface epithelial and 12 laser capture micro-dissected serous
ovarian cancer epithelial samples available at GEO with Accession
No. GSE14407 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE14407).

2.2. Methods & tools

The complete methodological pipeline used in this study is
shown in Fig. 3, and explained as follows:

2.2.1. Gene biomarkers identification
Gene expression profiling was carried out on the GSE14407

dataset to identify the crucial genes indulged in epithelial ovarian
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cancer. The obtained dataset was pre-processed and log normal-
ized using the GEO2R web-based tool of NCBI-GEO (https://www.
ncbi.nlm.nih.gov/geo/geo2r/). To identify key regulators having dif-
ferential expression, fold change (FC) statistics and p-value mea-
sures were considered. The FC, one of the widely used methods
used for differential expression analysis, is a statistical measure
that describes how much the level of expression of a gene changes
over the two different conditions such as epithelial ovarian cancer
and control samples (i.e., case-control analysis) (Raza and Hasan,
2015; Raza, 2014). The FC is calculated as a ratio of averages from
control and disease samples (Raza, 2016), and quantified as a log of
FC (logFC). Usually, logFC � �1.0 is considered as down-regulated,
while logFC� 1.0 is treated as up-regulated (Raza, 2014). The list of
short-listed genes as DEGs is forwarded for further down-stream
analysis.

2.2.2. Gene Ontology enrichment analysis
Gene Ontology (GO) enrichment analysis is a method to inter-

pret a set of genes and assign them to a set of predefined classes
based on their functional characteristics. Given a set of genes that
are either up-regulated or down-regulated under some conditions,
GO enrichment analysis will answer which GO terms are overrep-
resented or underrepresented based on pre-defined and pre-stored
annotations (Raza, 2016). Some of the GO enrichment analysis
tools are DAVID (Huang et al., 2009), PANTHER (Mi et al., 2019);
BiNGO (Maere et al., 2005); GeneWeaver (Bubier et al., 2015),
and so on. In this study, we used the recent version of DAVID 6.8.

2.2.3. Reconstruction and analysis of network
Reconstruction of gene regulatory networks (GRNs) is impor-

tant to further perform topological analysis, network module iden-
tification, and highly influential gene identification (seed genes)
that can be further utilized for drug target identification. For the
reconstruction of GRNs, we utilized GeneMANIA (Warde-Farley
et al., 2010; Franz et al., 2018) database. GeneMANIA is a regularly
updated, publicly available database that stores genetic interaction
data such as protein-protein, protein-DNA, pathways, etc. It stores
interaction data which includes physical interactions, genetic
interactions, co-expression, shared protein domains, co-
localization, pathway, and computationally predicted. To retrieve
the interactions, we uploaded the list of identified gene biomarkers
(DEGs) to the GeneMANIA and considered all the default parameter
settings.

Once the interaction network is retrieved from the GeneMANIA,
we used the Cytoscape 3.8 software tool (Shannon, 2003; Smoot
et al., 2011) for network visualization and topological analysis.
We used the NetworkAnalyzer (Assenov et al., 2008) plugin of
Cytoscape to compute various topological properties of the con-
structed network.

2.2.4. Network module identification and survival analysis
A key problem in a complex and large biological network is the

identification of functional units, called network modules or biolog-
ical pathways. In other words, biological networks are generally
very complex and large to be examined as a whole, therefore, mod-
ule identification is an important step towards understanding the
biological insight. Module identification is also known as commu-
nity detection or graph clustering. A plethora of software tools and
packages are available for module identification in a given net-
work. We utilize a widely used and highly cited network clustering
algorithm, called Molecular Complex Detection (MCODE) (Bader
and Hogue, 2003) which is available as a plugin in Cytoscape soft-
ware. We identified highly interconnected regions in the network
(clusters or modules), which are often protein complexes and parts
of pathways. To identify modules in a given network, MCODE uses
a vertex-weighting approach based on the clustering coefficient
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Fig. 3. Methodological pipeline.
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Ci = 2n/ki(ki � 1), where ki is the vertex size of the neighborhood of
vertex i and n represent the number of edges in the neighborhood.

To analyze the roles of identified ovarian cancer gene biomark-
ers on patient survival, we used the UALCAN (Chandrashekar et al.,
2017) tool to generate Kaplan-Meier (KM) survival plots. The UAL-
CAN tool is based on genomics data from The Cancer Genome Atlas
(TCGA). The TCGA (Tomczak et al., 2015) project makes available a
large number of samples of various cancer types, allowing us to
perform comprehensive molecular characterization and answer
the questions related to tumor heterogeneity. The UALCAN utilized
TCGA level-3 RNA-seq and clinical data from more than 30 differ-
ent cancer types along with samples of various cancer stages,
tumor grades, and other clinico-pathological features. It is publicly
available at http://ualcan.path.uab.edu.
Fig. 4. Boxplot of gene expression samples (normal and ovarian adenocarcinoma
samples).
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2.2.5. Gene-Drug interaction analysis
To understand the mechanism of how oncologic medications

function when treated on cancers, it is important to check for the
interaction affinity of the drugs being used to treat the disease
and the target genes of ovarian cancer network biology. In our case,
once the seed genes were identified using the previously men-
tioned methodologies, major synthetic drugs were identified using
various Bioinformatics repositories and databases namely - Pub-
Chem (https://pubchem.ncbi.nlm.nih.gov/), DrugBank (Wishart
et al., 2008) and DGIdb (Cotto et al., 2018) that either increase or
decrease the genetic expression of these seed genes in the ovarian
cancer network dynamics. The preliminary criteria were to search
for drugs that a) have a strong interaction with the target seed
genes, b) the interaction score should be >=5.0, and c) these drugs
must be reported as a treatment for ovarian cancer in the litera-
ture. This was executed in a keyword-based strategy modus oper-
andi, wherein each of the identified seed genes was separately
searched in PubChem, DrugBank, and DBIdb databases.
Fig. 5. Scatter-plot of logFC of all the genes.
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Table 1
Gene-disease association (GAD) enrichment results.

Term Gene-count % P-Value Fold Enrichment Bonferroni Benjamini FDR

Breast cancer 25 17.0 0.0000 4.2364 0.0000 0.0000 0.0000
Ovarian cancer 24 16.32 0.0000 5.4776 0.0000 0.0000 0.0000
Breast cancer 20 13.60 0.0000 3.9125 0.0008 0.0002 0.0011
Colorectal cancer 19 12.92 0.0000 4.5196 0.0002 0.0001 0.0003
Lung cancer 19 12.92 0.0000 3.7313 0.0032 0.0005 0.0044
Bladder cancer 17 11.56 0.0001 3.2565 0.0673 0.0077 0.0935
Prostate cancer 16 10.88 0.0001 3.1791 0.1515 0.0163 0.2204

Table 2
KEGG pathways enrichment analysis results.

Term Gene count % P-value Fold Enrichment Bonferroni Benjamini FDR

hsa05200:Pathways in cancer 21 14.09 0.0000 4.8365 0.0000 0.0000 0.0000
hsa04151:PI3K-Akt signaling pathway 11 7.38 0.0040 2.8859 0.4505 0.0950 4.6553
hsa04014:Ras signaling pathway 9 6.04 0.0030 3.6045 0.3664 0.0872 3.5673
hsa04110:Cell cycle 8 5.37 0.0004 5.8395 0.0547 0.0277 0.4470
hsa04310:Wnt signaling pathway 8 5.37 0.0007 5.2471 0.1017 0.0351 0.8506
hsa04015:Rap1 signaling pathway 8 5.37 0.0077 3.4481 0.6840 0.1517 8.7631
hsa05166:HTLV-I infection 8 5.37 0.0202 2.8508 0.9531 0.3178 21.6204
hsa05206:MicroRNAs in cancer 7 4.70 0.0908 2.2153 1.0000 0.6140 67.9138
hsa05218:Melanoma 6 4.03 0.0010 7.6489 0.1395 0.0369 1.1893
hsa05205:Proteoglycans in cancer 6 4.03 0.0665 2.7153 1.0000 0.5479 56.0270
hsa04114:Oocyte meiosis 5 3.36 0.0325 4.0771 0.9930 0.3911 32.6281
hsa04390:Hippo signaling pathway 5 3.36 0.0821 2.9971 1.0000 0.6006 64.0428
hsa05217:Basal cell carcinoma 4 2.68 0.0207 6.7046 0.9569 0.2949 22.1504
hsa04115:p53 signaling pathway 4 2.68 0.0363 5.4037 0.9961 0.3957 35.6682

Table 3
Tissue enrichment analysis results.

Term Gene count % P-value Fold Enrichment Bonferroni Benjamini FDR

Epithelium 34 22.8187 0.0048 1.6080 0.4639 0.1876 5.4309
Colon 18 12.0805 0.0151 1.8656 0.8621 0.3271 16.2602
Plasma 10 6.7114 0.0004 4.4843 0.0500 0.0253 0.4584
Mammary carcinoma 5 3.3557 0.0132 5.4583 0.8225 0.3509 14.3465
Pancreatic carcinoma 4 2.6845 0.0003 31.3372 0.0327 0.0327 0.2972
Aorta endothelial cell 4 2.6845 0.0242 6.4185 0.9585 0.4115 24.7947
Lymphocyte 4 2.6845 0.0324 5.7283 0.9861 0.4572 31.8300
Umbilical vein endothelial cell 3 2.0134 0.0461 8.6859 0.9978 0.5359 42.3169
Fetal lung 3 2.0134 0.0915 5.8757 1.0000 0.7499 67.2844

Table 4
Various topological properties of the reconstruc-
tion network.

Topological parameters Value

Cluster coefficient 0.386
Network diameter 3
Network centralization 0.223
Characteristics path length 1.825
Average number of neighbors 34.873
Network density 0.213
Network heterogeneity 0.427
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3. Results

In this study, gene expression profiles of 12 healthy ovarian sur-
face epithelial samples and 12 laser capture micro-dissected serous
ovarian cancer epithelial samples are considered, whose boxplot is
depicted in Fig. 4. It is observed from the boxplot (Fig. 4) that the
median of Ovarian adenocarcinoma samples is greater than those
of healthy ovarian surface epithelial samples. Although, quartile
Q1 are almost similar in both the sample types, but their quartile
Q3 and maximum range greatly vary. Further, healthy ovarian sur-
face epithelial samples data are more skewed than that of ovarian
adenocarcinoma samples. Hence, these expression profile statistics
4073
indicate that there are a significant number of genes that must be
differentially expressed over the two sample types.
3.1. Gene biomarkers

To identify gene biomarkers (i.e., differentially expressed genes
(DEGs)), we executed the NCBI-GEO2R tool and computed fold-
change (FC) statistics between the two groups of samples at
genome-scale, which is usually converted to the log of FC (logFC).
To control the false discovery rate (FDR) in the tests, we applied
Benjamini & Hochberg procedure and FDR is set to 0.05. The
scatter-plot of logFC of all the genes is depicted in Fig. 5. It is
observed that more than a thousand genes are differentially
expressed over the two sample types having score
�2.0 � logFC � 2.0 with p-value � 0.05, most of them are up-
regulated while few as down-regulated genes.

To narrow-down our analysis to potential gene biomarkers, we
considered the top 500 genes having the best logFC scores and les-
ser p-value, which is mapped to gene-disease association data-
bases DisGeNET and NCBI-Gene (with query string=’(‘‘ovarian
cancer”) AND biomarker)’. For further down-stream analysis, we
considered only those genes which have an association with ovar-
ian cancer, as reported in DisGeNET and obtained in the NCBI-Gene
database after executing the said query. In this way, we obtained a



Fig. 6. Topological properties of the reconstructed network. The red line fits the power law.
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list of 149 significant genes that may have a potential role in ovar-
ian cancer. The list of identified 149 significant genes with their
statistical scores such as adjusted p-value, p-value, moderated t-
statistics, B-statistics, logFC, etc. is available in the supplementary
Table S1.

3.2. GO enrichment analysis

We performed a GO enrichment analysis of the identified
potential gene biomarkers of ovarian cancer for its enrichment
with the disease term (GAD-Disease), pathways (KEGG-pathway),
and tissue enrichment. It is observed that the set of supplied genes
are significantly enriched in various cancer diseases (including
ovarian cancer), significantly enriched in KEGG pathways, and var-
4074
ious tissues, a snapshot of these results with higher gene-count
and lesser FDR are presented in Table 1, Table 2 and Table 3,
respectively.

Table 1 represents the gene-disease association (GAD) results
for different cancers namely, breast cancer, ovarian cancer, colorec-
tal cancer, lung cancer, prostate cancer, and bladder cancer. The
gene-disease association analysis yielded many significant signals
with a p-value of 0.00 for disease breast cancer that had a gene-
count of 25 and 20 significant genes, ovarian cancer had 24 promi-
nent genes while colorectal cancer and lung cancer with both had
19 significant genes. After applying FDR control on the p-values
from the gene-disease association analysis, only ovarian cancer
achieved a significant level with 5.4776-fold enrichment and 0.00
Bonferroni and Benjamini FDR control.



Fig. 7. Identified modules in the ovarian cancer network (yellow color node represents the seed genes).
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3.3. Reconstruction and analysis of cancer network

For the reconstruction of the regulatory network, we utilized
the GeneMania interactome database (Warde-Farley et al., 2010;
Franz et al., 2018). All the interactions of the identified 149 gene
biomarkers were retrieved from the GeneMania database by sup-
plying their gene IDs and saved to a CSV file for further visualiza-
4075
tion and network analysis. We found around 8,987 interactions
among 149 genes without any self-loop. Further, we used the
Cytoscape software tool (Shannon, 2003) for network visualization
and its topological analysis. Various topological properties of the
reconstructed network, as computed by the NetworkAnalyzer
(Assenov et al., 2008) plugin of Cytoscape, are depicted in Table 4.



Fig. 8. Heatmap diagram showing expression pattern of seed genes in ovarian serous cystadenocarcinoma. The expression pattern is represented in the log2 transform of
total transcript per million (TPM) [log2(TPM + 1)] in the TCGA samples.
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The other topological properties of the reconstructed network
such as node degree distribution, shared neighbor distribution,
average clustering coefficient distribution, topological coefficient,
and betweenness and closeness centralities are depicted in Fig. 6.
The node degree distribution provides us the structure of the net-
work and hubs of the network. The degree of most of the genes lies
between 10 and 100, while few genes are having a degree between
300 and 500 (see Fig. 6(A)). The shared neighbor distribution pro-
vides the number of node partners shared between the nodes
which may help us to detect network motifs in the network if
any (see Fig. 6(B)). In Fig. 6(C), as the number of neighbors is
increased, its average clustering coefficients are also increased,
stating that the network has a modular structure. The topological
coefficient, a relative measure to assess the extent to which a gene
shares its neighbors with other genes, shows an increasing trend as
neighbors are increased (see Fig. 6(D)). The betweenness centrality,
a measure of relevance of a gene as functionally capable of holding
together interacting genes, shows an increasing trend indicating
that genes are functionally capable of holding together interacting
genes (see Fig. 6(E)). Fig. 6(F) depicts the closeness centrality which
measures how fast information spreads from a given gene to other
reachable genes within the network. It shows an increasing trend
in closeness centrality, varying from 0.425 to 0.64.
3.4. Module identification and survival analysis

We executed the MCODE (Bader and Hogue, 2003) network
clustering algorithm on the reconstructed ovarian cancer network
with its default parameters (degree cutoff = 2, node score cut-
off = 0.2, haircut = true, fluff = false, k-core = 2, max. depth from
seed = 100), and found a total of eight clusters with one seed gene
per cluster, as shown in Fig. 7. The seed genes identified in these
eight clusters are NDC80 (MCODE Score = 38.85), PDGFD (MCODE
Score = 3.66), SNCA (MCODE Score = 2.91), AGR2 (MCODE
Score = 6.15), PSAT1 (MCODE Score = 4.61), EFEMP1 (MCODE
Score = 5.16), HOXD8 (MCODE Score = 2.32), and HMGA1 (MCODE
Score = 30.94), respectively shown as yellow color nodes in Fig. 7.
The seed genes are the highest scoring node and most influential
node in the cluster from which the cluster was derived.

The list of seed genes identified by module detection algorithms
is then subjected for expression pattern analysis (Fig. 8), cancer
stage expression analysis (Fig. 9), and survival analysis (Fig. 10)
using the UALCAN (Chandrashekar et al., 2017) resource and anal-
ysis tool. It can be discerned from Fig. 8 that the expression pattern
of the seed genes, including HMGA1, PSAT1, HOXD8, AGR2, and
EFEMP1, are higher in Ovarian serous cystadenocarcinoma. Fur-
ther, Fig. 9 states that these seed genes are either over-expressed
or under-expressed in various stages of ovarian cancer.
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The list of seed genes is considered to further perform survival
analysis. Survival analysis results for each of the seed genes are
depicted in Fig. 10 with the survival probability of patients over
a period of 15 years against the abnormal expression of the gene
of interest. In Fig. 10, the survival probability of the patients grad-
ually drops over time, and over a period of 10–15 years, the sur-
vival probability drops to less than 0.10.

3.5. Gene-Drug interaction analysis

We have identified 8 seed genes that are highly influential in
the reconstructed network of ovarian cancer that includes
NDC80, PDGFD, SNCA, AGR2, PSAT1, EFEMP1, HOXD8, and HMGA1.
These high influential gene biomarkers of ovarian cancer were
taken for further gene-drug interaction analysis for the drug
repurposing.

When each of the genes was searched in DGIdb, no significant
or common interactions were identified. It retrieved interactions
for only three genes namely - a) PSAT1 with two drugs pyridoxal
phosphate, which acts as a co-factor, and L-glutamate whose inter-
action type was not available; b) PDGFDwith sunitinib, which inhi-
bits the expression of the gene and tandutinib interaction was not
mentioned and c) SNCA with cinpanemab, wherein it acts as an
inhibitor for SNCA gene (Fig. 11). There were no drug interactors
available in DGIdb for the remaining five genes - HMGA1,
NDC80, AGR2, EFEMP1, and HOXD8. However, PubChem and Drug-
Bank on the other hand provided drug interactors for all the genes.
There were more than 30 drug interactions provided for the 8 seed
genes, but common drug interactions were only 11. These common
drugs are: a) Sunitinib, b) Cisplatin, c) Cyclosporin, d), Copper Sulfate,
e) Bisphenol A, f) Estradiol, g) Valproic Acid, h) Progesterone, i) Dex-
amethasone, and j) Benzo(a)pyrene (Table 5). The pharmacokinetics
(PK), pharmacodynamics (PD) and physicochemical properties of
these drugs are available in Supplementary Table S2.
4. Discussion

Our in silico analysis identified a list of 149 significant genes
that may have a potential role in ovarian cancer. The KEGG path-
ways and tissue enrichment suggests that there are 110 DEGs that
are involved in the oncologic pathways and are mainly found in the
epithelium cells with a gene presence percentage of 22.8%, fol-
lowed by a colon with 18 genes (12.0%), and 10 genes in the plasma
(6.71%). A scanty number of genes with low gene presence percent-
age (>5.0%) were also recorded to be present in mammary and pan-
creatic carcinoma, endothelial cells, fetal lung cells, and
lymphocytes (refer Table 3). The bifurcation of the DEGs as
observed in GO analysis is as follows (refer to Table 2). A total of



Fig. 9. Box-whisker plots showing the expression of seed genes in different stages of ovarian serous cystadenocarcinoma in TCGA samples.
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21 genes (hsa05200) play a pivotal role in cancer pathways which
is evident as it holds a 4.8365-fold enrichment with 0.00p-value.
The other 89 genes are crucial in cancer proliferation and progres-
sion dynamics. Out of these genes, there were 8 genes (hsa04110)
involved in the cell cycle that had a prominent fold change of
5.8395, 8 genes (hsa04310) were engaged in the Wnt signaling
pathway with a fold change of 5.2471. Six genes were found to
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be imperative for melanoma (hsa05218) with a fold change of
7.6489. Four genes are significant for basal cell carcinoma forma-
tion (hsa05217) with a fold change of 6.7046, while four genes
with a fold change of 5.4037 are crucial in the p53 signaling path-
way (hsa04115).

The module detection algorithm, expression pattern analysis,
cancer stage expression analysis, and survival analysis identifies



Fig. 10. Kaplan–Meier plots showing the association of identified seed genes expression in the survival of ovarian serous cystadenocarcinoma.
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DNA methylation as a pivotal player in the formation and progres-
sion of ovarian cancer and in several studies, many tumor suppres-
sor genes have been shown to be hypermethylated (Hentze et al.,
2019). It is evident that genes HMGA1 and PSAT1 are majorly
hypermethylated referring to the fact that there is an increase in
the epigenetic methylation of cytosine and adenosine residues,
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indicating their crucial role in the proliferation of ovarian cancer.
Genes EFEMP1, AGR2, HOXD8, and NDC80 are partially hyperme-
thylated. This suggests that hypermethylated genes are ubiquitous
in all subtypes of ovarian cancers irrespective of the type and stage
of cancer. Hypomethylation, on the other hand, is not prominently
observed in ovarian cancer. PDGFD and SNCA genes show clear



Fig. 11. Drug interactions with hypermethylated and hypomethylated seed genes.
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signs of hypomethylation, referring to the detachment of methyl
groups in the 5-methylcytosine nucleotide. Hypomethylation of
genes leads to abnormal functioning of the DNA that further turns
into incremented alterations and cancer development. This is
mainly because of decreased methylation in regulatory regions of
oncogenes that directly hampers the transcription leading to its
greater processing. Out of 8 seeds genes, six genes (HMGA1, PSAT1,
EFEMP1, AGR2, HOXD8, and NDC80) showcased hypermethylation
and two (PDGFD and SNCA) displayed hypomethylation were fur-
ther bifurcated to cross-validate their expression according to the
four stages of ovarian cancer (OC). The HMGA1 gene is over-
expressed and further increases its expression as the cancer shifts
from the local region to other regions of the body (metastasis). In
stage I, HMGA1 expresses itself at 500 transcripts per million
(TPM) while, at stage II, it extends itself and expresses at 750
TPM. In stages III and IV (advanced stages), it can reach up to
1200 TPM. This validates that HMGA1 expression is higher in ovar-
ian cancer than other significant genes identified. Besides, gene
PSAT1 that also showcased an extreme overexpression in ovarian
cancer expresses over the threshold value of 150 TPM in stage I.
In stage II, it jumps over to 300 TPM and ranges more or less the
same in advanced stages (stage III and IV). Apart from these,
AGR2 significantly expressed at a range of 85–90 TPM in stage II,
however, declined to 40 TPM in stage III and 60 TPM in stage IV,
respectively. The remaining partially hypermethylated genes
namely - HOXD8, expressed itself at a satisfactory level of 45–80
TPM in stages I to IV; EFEMP1 expressed itself at 10–60 TPM while
NDC80 expressed itself in between 25 and 45 TPM in all the four
stages. As far as hypermethylated genes are concerned, only two
genes HMGA1 and PSAT1 overpower their expression in ovarian
cancer (OC). Hypomethylated genes PDGFD displayed a compara-
tively low expression of 20–25 TPM in advanced stages III and IV
while 45 TPM in stage II. It can be discerned that PDGFD is up-
regulated in the localized stage (stage II) however, it becomes
down-regulated in metastasis stages of III-IV. SNCA gene, on the
other hand, displays a very low expression in all the four stages
of ovarian cancer (I-IV). These findings suggest that HMGA1 and
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PSAT1 are up-regulated (overexpressed) in all the four stages of
cancer and that they definitely can be deployed as specific
biomarkers and as a potential therapeutic for ovarian cancer as
they express themselves at an outrageously higher value in stages
I itself.

The identified 8 seed genes which are highly influential in the
reconstructed network of ovarian cancer that includes NDC80,
PDGFD, SNCA, AGR2, PSAT1, EFEMP1, HOXD8, and HMGA1. These
high influential gene biomarkers of ovarian cancer were taken
for further gene-drug interaction analysis for the drug repurpos-
ing. The hypermethylated seed genes namely - HMGA1 and
PSAT1 showcased a good interaction affinity with drugs cisplatin,
cyclosporin, bisphenol A, progesterone, and sunitinib where their
mRNA expression levels are increased when they are treated
with these five drugs respectively, while hypomethylated seed
genes - SNCA and PDGFD showcased an inhibited expression
with drugs cinpanemab and sunitinib. Our results are further
backed up by other essential findings wherein it has been dis-
cerned that HMGA1 and PSAT1 can be used as therapeutic
biomarkers for ovarian cancer. A study by Kim et al. (Kim
et al., 2016) showcased that HMGA1 is an important regulator
for monitoring CSC-like features in ovarian cancer, thus can be
deployed as a novel therapeutic marker for highly metastatic
and drug resistant ovarian cancer (Kim et al., 2016). Also, in a
recent study, researchers claim that their data shows that mea-
suring urine HMGA1 can be employed as diagnostic tool for
assessment of ovarian cancer patients (Zhou et al., 2015).
Another study (Dai et al., 2019) suggests that PSAT1 is expressed
in greater amount in ovarian cancer tissues than in adjacent nor-
mal tissues, thus hinting at it being used as a biomarker for the
same. Similarly, another study indicates PSAT1 inhibitors as ther-
apeutic biomarker option for patients with epithelial ovarian
cancer (Zhang and Li, 2020). The partially hypermethylated
drugs showcased an ambivert interaction with these 11 common
drugs. This lucidly indicates that cisplatin; cyclosporin, bisphenol
A, progesterone, and sunitinib are effective in preventing the
hypermethylation of these seed genes in ovarian cancer.



Table 5
Highest scoring and prominent gene-drug associations.

Seed
gene

Drug Interaction PMID(s)/ChEMBL Id

HMGA1 Cyclosporin Decreased expression of TSPAN14 mRNA 25562108|27989131
Sunitinib Increased expression of ABCC5 mRNA and FZD9 mRNA 31533062|31533062
Cisplatin Increased expression of MIR188 mRNA 24,880,025
Progesterone Increased expression of OSR2 mRNA 20,106,945
Valproic Acid Increased expression of KLKB1 mRNA 23179753|24383497|24935251|26272509|28001369
Estradiol Decreased expression of GLYAT mRNA 20,106,945
Bisphenol A Increased expression of JADE3 mRNA 29,275,510

AGR2 Cyclosporin Increased expression of TBC1D15 mRNA 20106945|25562108|27989131
Doxorubicin Decreased expression of phosphorylation of BAD protein 20,884,855
Estradiol Increased expression of EGFR mRNA 18,692,832
Dexamethasone Increased expression of NFIKBIB mRNA 28,628,672
Benzo(a)pyrene Decreased expression of FUOM, FURIN and FUS mRNA 20106945|22316170|20106945|21632981

EFEMP1 Cyclosporin Increased expression of TNC mRNA 20,106,945
Sunitinib Increased expression of AHCYL2 mRNA 31,533,062
Cisplatin Co-treated with Jinfukang results in increased expression of TMCC1-AS1

mRNA
27,392,435

Copper Sulfate Decreased and increased expression of FOXRED1 mRNA 19,549,813
Doxorubicin Decreased expression of MAP4 mRNA 29,803,840
Bisphenol A Increased expression of CSRNP3 mRNA 29,275,510
Estradiol Decreased expression of AKT1 mRNA; Increased expression of TLL2 mRNA 23373633|23019147
Valproic Acid Increased and decreased expression of MXRA5 mRNA 23179753|24383497|26272509
Dexamethasone Decreased expression of PRPS1L1 mRNA 28,628,672
Progesterone Increased expression of MAPK3 protein 15358673|16175315

HOXD8 Valproic Acid Increased methylation of HOXD8 gene 29,154,799
Copper Sulfate Decreased expression of HOXD8 mRNA 19,549,813
Bisphenol A Increased expression of HOXD8 mRNA 30,951,980
Benzo(a)pyrene Decreased expression of HOXD8 mRNA 22,228,805

NDC80 Cyclosporin Decreased expression of NDC80 mRNA 20106945|21632981|25562108
Sunitinib Decreased expression of NDC80 mRNA 31,533,062
Cisplatin Increased expression of NDC80 mRNA 27,594,783
Copper Sulfate Decreased expression of NDC80 mRNA 19,549,813
Doxorubicin Decreased expression of NDC80 mRNA 30,031,762
Bisphenol A Increased and decreased expression of NDC80 mRNA 16474171|15223131|27685785|29275510
Estradiol Increased expression of NDC80 mRNA 16474171|18310284|19167446|20106945
Dexamethasone Decreased expression of NDC80 mRNA 28,628,672
Valproic Acid Decreased expression of NDC80 mRNA 19101580|23179753|27188386|28001369
Progesterone Increased expression of NDC80 mRNA 18,070,364
Benzo(a)pyrene Decreased expression of NDC80 mRNA 20064835|22316170|22579512

PSAT1 Cyclosporin Increased and decreased expression of PSAT1 mRNA 20106945|21632981|22147139|25596134|27989131|
25562108

Benzo(a)pyrene Increased expression of PSAT1 mRNA 20,106,945
Progesterone Increased expression of PSAT1 mRNA 18,037,150
Bisphenol A Increased and decreased expression of PSAT1 mRNA 29275510|20678512
Copper Sulfate Increased expression of PSAT1 mRNA 19,549,813
Doxorubicin Decreased expression of PSAT1 mRNA 29,803,840
Cisplatin Increased expression of PSAT1 mRNA 25596134|27392435|27594783
Sunitinib Increased expression of PSAT1 mRNA 31,533,062

SNCA Cinpanemab Decreased expression of SNCA mRNA CHEMBL3833330
PDGFD Sunitinib Decreased expression of PDGFD mRNA CHEMBL535
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5. Conclusion

Because of the over-expression in all the four stages of ovarian
cancer, therefore, we can discern that genes HMGA1 and PSAT1 are
potential therapeutic biomarkers for diagnosing ovarian cancer at
an early stage (stage I). Hypermethylated seed genes, HMGA1,
and PSAT1 are crucial in the proliferation of ovarian cancer, and
when treated with drugs cisplatin, cyclosporin, bisphenol A, proges-
terone, and sunitinib, the mRNA expression levels of these genes
increments which in turn helps in stabilizing the epigenetic
methylation profiles in ovarian cancer subjects. Hypomethylated
genes such as SNCA and PDGFD are not so common in the ovarian
cancer network, however, when drugs cinpanemab and sunitinib
are deployed, their expression levels are drastically decreased
resulting in the alteration of de-methylation status in ovarian can-
cer network biology. Thus, our study reveals that HMGA1 and
PSAT1 can be deployed for initial screening of ovarian cancer and
4080
drugs cisplatin, bisphenol A, cyclosporin, progesterone, and sunitinib
are effective in curbing the epigenetic alteration of these genes in
case of ovarian cancer.
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