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Deep learning has become an active research topic in the field of medical image analysis.

In particular, for the automatic segmentation of stomatological images, great advances

have been made in segmentation performance. In this paper, we systematically reviewed

the recent literature on segmentation methods for stomatological images based on deep

learning, and their clinical applications. We categorized them into different tasks and

analyze their advantages and disadvantages. The main categories that we explored

were the data sources, backbone network, and task formulation. We categorized data

sources into panoramic radiography, dental X-rays, cone-beam computed tomography,

multi-slice spiral computed tomography, and methods based on intraoral scan images.

For the backbone network, we distinguished methods based on convolutional neural

networks from those based on transformers. We divided task formulations into semantic

segmentation tasks and instance segmentation tasks. Toward the end of the paper,

we discussed the challenges and provide several directions for further research on the

automatic segmentation of stomatological images.

Keywords: deep learning, convolutional neural networks, transformer, automatic segmentation, stomatological

image

INTRODUCTION

Imaging examinations, intraoral scanning, and other technologies are often required to assist
diagnosis and treatment of diseases because of the complex structure of the oral and maxillofacial
region and various types of diseases. Imaging examinations use dental X-rays, panoramic
radiography, cone-beam computed tomography (CBCT), and multi-slice spiral computed
tomography (MSCT). These are widely used in stomatology and produce large amounts of medical
image data. Efficient and accurate processing of medical images is essential for the development
of stomatology. The key task is image segmentation, which can realize the localization and the
(qualitative and quantitative) analysis of lesions, help to design a treatment plan, and analyze the
efficacy of the treatment. The traditional manual segmentation method is time-consuming and
the segmentation effect depends on the experience of the doctor, leading to an unsatisfactory
result. Therefore, the application of modern image segmentation technology to stomatology is
very important.

Deep learning (DL) is a branch of machine learning and is a promising method of achieving
artificial intelligence. Owing to the availability of large-scale annotated data and powerful
computing resources, DL-based medical image segmentation algorithms have achieved excellent
performance. These methods have successfully assisted the accurate diagnosis and minimally
invasive treatment of brain tumors (1), retinal vessels (2), pulmonary nodules (3), cartilage, and

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/journals/medical-technology#editorial-board
https://www.frontiersin.org/journals/medical-technology#editorial-board
https://www.frontiersin.org/journals/medical-technology#editorial-board
https://www.frontiersin.org/journals/medical-technology#editorial-board
https://doi.org/10.3389/fmedt.2021.767836
http://crossmark.crossref.org/dialog/?doi=10.3389/fmedt.2021.767836&domain=pdf&date_stamp=2021-12-13
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mydrtw@vip.sina.com
https://doi.org/10.3389/fmedt.2021.767836
https://www.frontiersin.org/articles/10.3389/fmedt.2021.767836/full


Luo et al. Automatic Image Segmentation in Stomatology

bone (4). This paper reviews current DL-based medical image
segmentation methods and their applications in stomatology.
Existing automatic segmentation algorithms are classified
according to the data source, the form of the automatic
segmentation task, and the structure of the backbone network of
the algorithm. The feasibility, accuracy, and application prospects
of these algorithms are comprehensively analyzed, and their
future research prospects are discussed.

STOMATOLOGICAL IMAGING DATA
SOURCES AND COMPARISON

Common stomatological images can be categorized into five
types: panoramic radiography, dental X-rays, CBCT, MSCT,
and intraoral scanning (IOS). Each type is suitable for specific
clinical applications, according to its unique imaging principles.
Dental X-rays and panoramic radiography are mainly used for
dental caries, alveolar bone resorption, and impacted teeth.
CBCT is mainly used for the early diagnosis and comprehensive
analysis of cracked teeth, diseases after root canal treatment, jaw
lesions, and other diseases. CBCT can also assist the design of
implant guides, orthodontic treatment, and maxillofacial disease
treatment. MSCT is often conducted to assist the diagnosis,
treatment, and postoperative efficacy analysis of soft and hard
tissue lesions in the maxillofacial region. IOS is generally
employed in chair-side digital restoration, digital orthodontics,
and digital implant surgery. There is a structural overlap
between dental X-rays and panoramic radiography because both
produce 2D images. Without clinical experience in reading
films, missed diagnoses and misdiagnoses may easily occur.
Although CBCT andMSCT produce 3D images with clear layers,
traditional empirical reading could also lead to missed diagnoses
and misdiagnoses of early and minor lesions. Table 1 shows
the imaging characteristics, advantages, and disadvantages of

TABLE 1 | The imaging characteristics, advantages, and disadvantages of different data types and the prospects for clinical application of deep learning.

Data types Imaging

characteristics

Advantages Disadvantages Prospects for clinical application of deep learning

Dental X-rays,

panoramic

radiography

2D Easy to operate, low dose, fast

imaging

Lack of 3D information Assisting in diagnosing and screening diseases quickly

and accurately. Reducing missed diagnosis and

misdiagnosis.

CBCT 3D High spatial resolution, short

exposure time, low effective

radiation dose and small metal

artifacts

Low density resolution 1. Rapid and accurate segmentation of teeth or lesions

can assist early diagnosis and reduce missed diagnosis

and misdiagnosis.

2. Rapid and accurate dentition can meet the needs of

implant guide plate design and orthodontic treatment

design.

MSCT 3D High density resolution Low spatial resolution, long

exposure time, high effective

radiation dose and large metal

artifacts

1. Reducing the missed diagnosis and misdiagnosis.

2. Automatically segmenting lesions or normal

structures, can be used in intraoperative interaction,

registration, and treatment design.

IOS Surface 3D data Obtaining the 3D data of tooth and

soft and hard tissue surface in real

time

Lack of internal data within

soft and hard tissue

1. Pursing for segmenting tooth accurately.

2. Fast data-processing, obtaining results in a few

seconds.

different types of data, together with the clinical application
prospects of DL.

AUTOMATIC SEGMENTATION
ALGORITHMS FOR MEDICAL IMAGES

Image segmentation aims to simplify or change the
representation of images, making them easier to understand and
analyze. Image segmentation can be divided into the semantic
segmentation task and the instance segmentation task. The
semantic segmentation task focuses on differences between
categories, whereas the instance segmentation task focuses on
differences between individuals (Figure 1). In the semantic
segmentation task, it is required to separate the teeth, jaws,
and background, without distinguishing between individuals in
each category (“Tooth” or “Jaw).” Conversely, in the instance
segmentation task, both the category label and the instance label
(within the class) are required; that is, the individuals in each
category (“Tooth” or “Jaw)” must be distinguished.

Traditional image segmentation algorithms (5–7) cannot be
directly applied to complex scenes because of the limitations of
their manually designed features. The emergence of DL has made
it possible to segment medical images efficiently and effectively.
Segmentation algorithms based on convolutional neural
networks (CNNs) have already become the de facto standard in
image segmentation tasks. Their excellent segmentation ability
has been demonstrated experimentally and theoretically and
can be further applied to medical images. In addition to the
popularity of CNNs, the transformer structure (8), originating
from the field of natural language processing, has become an
active research topic in computer vision because of its excellent
long-term modeling ability. Therefore, according to these
different types of backbone networks, we divide automatic
image segmentation methods into CNN-based methods and
transformer-based methods.
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FIGURE 1 | Task definitions for automatic image segmentation. (A) The original image. (B) Semantic segmentation: it is required to segment the teeth, jaws, and

background, without the need to distinguish the individuals in the category “Tooth” or “Jaw.” (C) Instance segmentation: not only the category label is required, but

also the instance label among the same class is needed, i.e., separating the individuals in the category “Tooth” or “Jaw”.

We have collected and summarized about 30 articles on image
segmentation tasks. An overview of these methods is shown in
Figure 2, and their evolution over time is depicted in Figure 3.

Principles and Development of CNNs and
Transformers
CNNs
The main ingredients of a modern CNN are the convolution
layer, nonlinear activation layer, pooling layer, and fully
connected layer, of which the convolution layer is the core
component. The main principles of the convolution layer
are its local receptive fields and weights-sharing strategy; the
first refers to the limited range of data within a sliding
window, and the second refers to the shared parameters
of convolution kernels despite the sliding windows. The
pooling layer can reduce the resolution of extracted features,
to reduce the amount of calculation, and select the most
robust features to prevent overfitting. The fully connected
layer refers to the connection between all nodes in two
adjacent layers; such a layer can realize the integration and
mapping of input features and is usually used to output
classification results. The nonlinear activation layer provides
nonlinearity to the neural network so that it can approximate all
continuous functions.

AlexNet (9), an early CNN model, adopted the ReLU
activation function to accelerate network convergence and the
dropout technique to prevent overfitting. VGG (10) achieved
better performance than AlexNet by replacing the large 5 ×

5 convolution kernel with two continuous 3 × 3 convolution
kernels and increasing the network depth. GoogLeNet (11) used
the Inception module to increase the width of the network while
reducing the number of parameters. Its subsequent version (12)
improved performance by convolution decomposition, batch
normalization, label smoothing, and other techniques. ResNet
(13) solved the problem of network degradation by using skip
connections and has been one of the most popular feature
extractors in many vision tasks. DenseNet (14) made full use
of extracted features by establishing dense connections between
different layers. Moreover, lightweight models [e.g., MobileNet
(15) and ShuffleNet (16)] and models designed by neural

architecture search (NAS) [e.g., EfficientNet (17)] have already
received widespread attention in the DL community.

Transformers
The transformer structure, which originated from natural
language processing (18–20), has recently attracted substantial
attention from the vision community. The transformer
(18) proposed the multi-head self-attention module and a
feedforward network to model long-term relationships within
input sequences; it also has an enhanced ability for parallel
computing. Witnessing the power of transformers in natural
language processing, some pioneering studies (21–24) have
successfully applied it to image classification, object detection,
and segmentation tasks.

Vision Transformer (ViT) (21) split an image into patches
and directly fed these patches into the standard transformer
with positional embeddings, demonstrating that learning
from large-scale data is better than inductive bias. Data-
efficient image Transformers (DeiT) (22) achieved better
performance by more careful training strategies and token-
based extraction. Convolutional vision Transformer (CvT)
(23) improved the performance and efficiency of ViT by
introducing convolution into the ViT architecture. This was
accomplished by two major modifications: the hierarchical
transformer, containing convolutional token embedding, and
a convolutional transformer block, using a convolutional
projection. Swin-Transformer (24) is a hierarchical transformer
whose features are calculated within a shifted window, providing
higher efficiency by limiting the self-attention calculation to
non-overlapping local windows and allowing cross-window
connection; its computational complexity is linear with respect
to image size. These features make Swin-Transformer compatible
with a wide range of visual tasks, including image classification,
object detection, and semantic segmentation.

Common Algorithms for Semantic
Segmentation
The aim of the semantic segmentation task is to assign a
unique category label to each pixel or voxel in the image.
Semantic segmentation can both identify and mark the
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FIGURE 2 | The overview of automatic segmentation algorithms. (A) For the backbone network, there are CNN-based and Transformer-based methods, the former

includes AlexNet, VGG, GoogLeNet, ResNet, DenseNet, MobileNet, ShuffleNet, and EfficientNet, and the latter includes ViT, Data-efficient image Transformers (DeiT),

Convolutional vision Transformer (CvT), and Swin-Transformer. (B) For the semantic segmentation, the CNN-based methods include FCN, SegNet, PSPNet, DeepLab

(v1, v2, v3, v3+), UNet, VNet, and UNet++, and the Transformer-based methods include SETR, Segmenter, SegFormer, Swin-UNet, Medical Transformer (MedT),

UNETR, MBT-Net, TransUNet, and TransFuse. (C) The instance segmentation task also can be categorized into CNN-based and Transformer-based methods.

Meanwhile, it can be divided into the detection-based and the detection-free instance segmentation methods, the former is divided into the single-stage (YOLCAT,

YOLO, and SSD) and two-stage methods (Mask R-CNN, PANet, Cascade R-CNN, and HTC), and the latter includes SOLO, DWT, and DeepMask. The

Transformer-based methods, such as cell-DETR, ISTR, belong to detection-based methods.

FIGURE 3 | The development of automatic image segmentation. The black represents CNN-based methods and the red shows Transformer-based methods.

boundaries of different categories, such as the boundaries of
teeth and jaws. Depending on the backbone network used,
CNN-based and transformer-based approaches have been
developed (Figure 4). CNN-based semantic segmentation

algorithms include FCN (25), SegNet (26), Pyramid Scene
Parsing Network (PSPNet) (27), DeepLab (v1, v2, v3, v3+)
(28–31), U-shaped Network (UNet) (32), 3D U-shaped
Network (3D UNet) (33), V-shaped Network (VNet) (34),
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FIGURE 4 | Structure of semantic segmentation network. (A) The CNN-based semantic segmentation approach, from UNet. (B) The Transformer-based semantic

segmentation approach, from Swin-Transformer.

and UNet++ (35). Algorithms based on transformers include
SEgmentation TRansformer (SETR) (36), Segmenter (37),
SegFormer (38), Swin-UNet (39), Medical Transformer (MedT)
(40), UNEt TRansformers (UNETR) (41), Multi-Branch Hybrid
Transformer Network (MBT-Net) (42), TransUNet (43), and
TransFuse (44).

CNN-Based Algorithms
As an iconic in image semantic segmentation, FCN (25)
replaced all full connection layers with convolutional
layers to predict the dense segmentation map. In contrast
to FCN, SegNet (26) performed nonlinear upsampling
according to the index of the max-pooling of the
corresponding encoder, where the spatial information of
the encoding stage was maintained. PSPNet (27) obtained
the global context information by aggregating the context
information, to improve the parsing performance for
complex scenes.

The DeepLab series focused on enlarging the receptive
field and integrating multi-scale feature information.
DeepLabV1 (28) used dilated convolution and conditional
random fields to obtain more informative feature maps.
DeepLabV2 (29) featured the atrous spatial pyramid
pooling module (ASPP), which performed the atrous
convolution of different sampling rates to obtain multi-
scale feature representation. DeepLabV3 (30) achieved
the effect of atrous convolutions, multi-grid, and ASPP.
DeepLabV3+ (31) used the encoder-decoder structure to
perform segmentation tasks, and the depthwise separable

convolution from Xception was introduced into the
ASPP module.

UNet (32) was one of the most influential segmentation
models dedicated to biomedical fields. Compared with FCN, its
major contributions lay in its U-shaped symmetric network and
an elastic deformation-based data augmentation strategy. The
U-shaped network consisted of symmetric compression paths
and expansion paths, and the elastic deformation effectively
simulated the normal changes in cell morphology. 3D UNet
(33) implemented a 3D image segmentation task by replacing
the 2D convolution kernel in UNet (32) with a 3D convolution
kernel. VNet (34) used a new loss function, termed Dice loss,
to handle the limited number of annotated volumes available
for training. UNet++ (35) introduced a built-in ensemble of
UNets of varying depths and had redesigned skip connections to
enhance performance for objects of varying sizes.

Transformer-Based Algorithms
SETR (36) used a pure transformer to encode an image to a
sequence of patches, without the need for a convolution layer or
resolution reduction and showed the power of the transformer
structure for segmentation tasks. In Segmenter (37), the global
context relationship was established from the first layer and a
pointwise linear decoder was employed to obtain the semantic
labels. SegFormer (38) combined the hierarchical transformer
structure with a lightweight multi-layer perceptron decoder,
without the need for positional encoding or a complex decoder.

Swin-UNet (39) unified UNet with a pure transformer
structure for medical image segmentation tasks, by feeding
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tokenized image blocks into the symmetric transformer-
based U-shaped encoder-decoder architecture with skip
connections, and local and global cues were fully exploited.
The successful application of Swin-UNet to multi-organ and
cardiac segmentation tasks demonstrated the potential benefits
of the transformer structure to medical image segmentation.
MedT (40) featured the gated axial-attention model, in which
an additional control mechanism was introduced into the self-
attention module. In addition, a local-global training strategy
(LoGo) was proposed to further improve performance. UNETR
(41) employed pure transformers as an encoder to capture global
multi-scale information effectively. The effectiveness of UNETR
in 3D brain tumors and spleen tasks (CT and MRI modalities)
was validated by experiments on the MSD dataset. MBT-Net (42)
applied a multi-branch hybrid transformer network, which was
composed of a body branch and an edge branch, to the corneal
endothelial cell segmentation task. Other transformer-based
methods for medical image segmentation include TransUNet
(43) and TransFuse (44).

Common Algorithms for Instance
Segmentation
Depending on the backbone network used, instance
segmentation methods can also be categorized into CNN-
based and transformer-based methods. In addition, from the
perspective of algorithms, instance segmentation methods can
be divided into detection-based and detection-free methods.
Detection-based methods can be regarded as extensions of
object detection: they obtain bounding boxes by object detection
methods and then perform segmentation within the bounding
boxes. Moreover, the detection methods can be divided into
single-stage and two-stage methods. Single-stage methods
include You Only Look At Coefficient Ts (YOLCAT) (45),
You Only Look Once (YOLO) (46), and Single Shot MultiBox
Detector (SSD) (47). Two-stage methods include Mask R-CNN
(48), PANet (49), Cascade R-CNN (50), and hybrid task cascade
(HTC) (51). Detection-free methods first predict the embedding
vector and then group the corresponding pixel points into a
single instance by clustering; examples of such methods include
Segmenting Objects by Locations (SOLO) (52), Deep Watershed
Tranform (DWT) (53), and DeepMask (54).

Most existing transformer-based instance segmentation
algorithms are built on a detection method, DETR (55), so they
belong to the class of detection-based methods; such methods
include Cell-DETR (56) and ISTR (57). We have collected 12
articles on instance segmentation tasks; the overall development
is shown in Figure 5.

CNN-Based Algorithms
Detection-based instance segmentation methods follow
the principle of detecting first and then segmenting. The
performance of such methods is heavily dependent on the
performance of the object detector, and so a better detector
would improve the quality of instance segmentation. As
discussed above, detection methods can be divided into single-
stage and two-stage methods. A typical example of a single-stage
method is YOLCAT (45), which first generated multiple

prototype masks, and then used the generated coefficient to
combine prototype masks, to formulate the object detection
and segmentation results. In addition, a popular single-stage
object detector [e.g., YOLO (46)] could accomplish the instance
segmentation task by adding the same mask branch. A typical
example of a two-stage method is Mask R-CNN (48), which
used RoIAlign for feature alignment and added an object mask
prediction branch to Faster R-CNN (58). PANet (49) further
aggregated the underlying and high-level features on the basis
of Mask R-CNN and performed fusion operations by adaptive
feature pooling for subsequent prediction. Cascade R-CNN (50)
achieved the purpose of continuously optimizing the prediction
results by cascading several detection networks with different
IoU thresholds. HTC (51) had a multi-task and multi-stage
hybrid cascade structure and incorporated a branch for semantic
segmentation to enhance spatial context.

Detection-free instance segmentation methods learn the
affinity relation by projecting each pixel onto embedding space,
pushing pixels of different instances apart, and pulling pixels
of the same instance closer in the embedding space; finally, a
postprocessing step such as grouping can formulate the instance
segmentation result. SOLO (52) was an end-to-end detection-
free instance segmentation method, which could directly map
the original input image to the required instance mask,
eliminating the postprocessing requirements in detection. DWT
(53) combined the traditional watershed transform segmentation
algorithm with a CNN to perform instance segmentation.
DeepMask (54) simultaneously generated a mask, indicating
whether each pixel on a patch belongs to an object, and
an objectiveness score, indicating the confidence of an object
located at the center of the patch. Compared with detection-
based instance segmentation methods, the performance of
these detection-free methods is limited, and there is scope
for improvement.

Transformer-Based Algorithms
Applying the transformer structure to instance segmentation
tasks is a relatively new research area. Cell-DETR (56) was
one of the first methods to apply the transformer structure
to instance segmentation tasks on biomedical data, achieving
performance comparable with that of the latest CNN-based
instance segmentation methods, but having a smaller number of
parameters and a simpler structure. ISTR (57), an end-to-end
instance segmentation framework, predicted low-dimensional
mask embeddings and assigned them with ground-truth mask
embeddings to compute the set loss, achieving a significant
performance gain for instance segmentation tasks by conducting
a recurrent refinement strategy.

Characteristics of Automatic
Segmentation Algorithms
The characteristics of semantic segmentation algorithms are
shown in Table 2, and those of instance segmentation algorithms
are shown in Table 3. The code and the data of works of literature
are shown in Appendix.
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FIGURE 5 | Structure of instance segmentation network. (A) The CNN-based instance segmentation approach, from Mask R-CNN. (B) The Transformer-based

instance segmentation approach, from ISTR.

CLINICAL APPLICATION OF AUTOMATIC
IMAGE SEGMENTATION IN
STOMATOLOGY

The segmentation of teeth, jaws and their related diseases is
usually considered as a preprocessing step to complete tooth
matching (59–62), tooth numbering (63–65), automatic marking
of important anatomical markers, in addition to the intelligent
diagnosis, classification, and prediction of diseases. Traditional
methods for stomatological image segmentation include region-
based (66), threshold-based (67), clustering-based (68), edge
tracking (69), and watershed (8) methods. With the development
of DL, many DL-based methods for stomatological image
segmentation have been developed; these mainly focus on teeth,
jaws, and their related diseases.

Application to Teeth and Related Diseases
Automatic segmentation of teeth in stomatological images
can contribute to the location of supernumerary teeth
and impacted teeth, as well as digital restoration, digital
orthodontics, and digital implant surgery. Automatic
segmentation of caries and other related lesions is helpful
for the early diagnosis of caries, particularly those that
are easily missed, such as hidden caries and adjacent
caries. At present, the types of medical image data that are
commonly used for the segmentation of teeth and related
lesions include panoramic radiography, CBCT, dental X-rays,
and IOS.

Semantic segmentation is the most common type used for
the DL-based automatic segmentation of teeth and their related
diseases. This paper reviews 11 articles on semantic segmentation
(Table 4), finding that semantic segmentation can mark the
boundary between teeth and jaws, but the boundary is unclean,
particularly for a malposed tooth that overlaps adjacent teeth.
However, instance segmentation can distinguish different teeth
in six relevant articles (Table 5). Compared with semantic
segmentation, instance segmentation is better for marking the
boundary of each tooth, but there are still some problems, such
as the loss of data detail and small sample size, which may affect
the accuracy of segmentation.

Semantic Segmentation in Teeth and Related

Diseases
For 2D images, different models can be trained to segment
different areas, such as all teeth (70–72) or adjacent caries
(73), depending on the artificially defined foreground.
Wirtz (70), Koch (71), and Sevagami (72) all used the
UNet network for the automatic segmentation of teeth
from panoramic radiography. Wirtz et al. (70) also used the
method to segment teeth in complex cases such as tooth
loss, defect, filling, and fixed bridge restoration, achieving a
Dice similarity coefficient (DSC) of 0.744 on their dataset.
Koch et al. (71) proved that UNet improves the segmentation
performance by exploiting data symmetry, an ensemble of
the network, test-time augmentation, and bootstrapping;
they measured a DSC of 0.934 on the dataset created by
Silva (86). Sevagami et al. (72) believed that UNet could
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TABLE 2 | Features of semantic segmentation algorithms.

Models Features

FCN (25) The first full convolution network in semantic segmentation

task.

Ignoring the global context information and having a relatively

high usage of GPU memory.

SegNet (26) Improving the segmentation performance at boundary,

reducing the number of model parameters and calculation

cost

PSPNet (27) Taking the global context information into consideration,

improving the segmentation of small objects and

co-occurrent categories.

DeepLab series

(28–31)

V1: enlarging the receptive field by atrous convolution. V2:

obtaining multi-scale feature by ASPP module. V3: exploring

the effect of atrous convolutions, multi-grid, atrous spatial

pyramid pooling, useful for small objects. V3+:utilizing the

decoder module to refine the segmentation results especially

along object boundaries, which is a faster and stronger

encoder-decoder network.

UNet (32), 3D UNet

(33)

It is extremely suitable for segmenting medical images and

can train from small-scale dataset with dedicated data

augmentation.

VNet (34) It is a variant of UNet and suitable for 3D image analysis.

UNet++ (35) An advanced UNet structure, improving the performance on

objects of varying size by unifying a set of UNet with different

depth.

SETR (36) A novel and accurate Transformer-based model on semantic

segmentation task, without the need for convolution layer and

resolution reduction.

Segmenter (37) Applying Transformer structure to obtain global context

information and achieving SOTA performance on ADE20K

dataset.

SegFormer (38) Simplifying the design of Transformer-based model, a

lightweight multilayer perceptron decoder is proposed to

avoid the complex design of decoder, without the need for

positional encoding.

Swin-UNet (39) A combination of UNet and Swin-Transformer, which is

carefully designed for medical image segmentation, achieving

high performance with small number of parameters.

MedT (40) A Transformer-based medical image segmentation network

without pre-training.

UNETR (41) Effectively capturing the global and multi-scale information

and achieving high performance on 3D brain tumors and

spleen tasks.

MBT-Net (42) Fully exploiting the global and local context information by

Transformer and CNN respectively and achieving high

performance on segmenting corneal endothelial cells.

TransUNet (43) It combines the advantages of UNet and Transformer

structure to make a strong method on many medical

applications including multi-organ segmentation and cardiac

segmentation tasks.

TransFuse (44) It combines Transformers and CNNs in a parallel style,

capturing both global and local information respectively,

obtaining better results on both 2D and 3D medical image

sets including polyp, skin lesion, hip, and prostate

segmentation.

work well without dense connections, residual connections,
or the Inception module; the DSC on the dataset obtained
from Ivisionlab (81) was 0.94. Cui et al. (74) used the

TABLE 3 | Features of instance segmentation algorithms.

Models Features

YOLACT (45) A real-time instance segmentation method, which achieves

the mAP of 29.8% and reaches 33 fps on MSCOCO dataset.

YOLO (46) It takes object detection tasks as a regression problem to

spatially split bounding boxes and class probabilities,

reaching very high speed on many tasks while having a

comparable mAP.

SSD (47) A fast object detection method that predicts bounding box

location by regression and object class by classification,

reaching faster speeds comparing to Faster-RCNN, without

the need for bounding box proposal and pixel/feature

resampling.

Mask RCNN (48) Adding a mask branch to the detection Fast R-CNN,

proposing RoIAlign for feature alignment.

PANet (49) It proposes a new feature fusion strategy for multi-scale

features and obtains the winner in the COCO 2017 Challenge

Instance Segmentation task and the 2nd place in Object

Detection task without large-batch training.

Cascade-RCNN (50)Continuously optimizing the prediction results by cascading

several detection networks with different IoU thresholds.

HTC (51) Proposing a multi-task and multi-stage hybrid cascade

structure and achieve high performance on many tasks.

SOLO (52) An end-to-end detection-free instance segmentation method

DWT (53) Combining the traditional watershed transform algorithm with

the CNN model

DeepMask (54) An earlier instance segmentation method, relatively low

performance.

Cell-DETR (56) The first Transformer-based instance segmentation method

for biomedical data and SOTA performance.

ISTR (57) It is the first end-to-end Transformer-based framework in

instance segmentation task, predicting low-dimensional mask

embeddings, and then matching with ground truth mask

embeddings for loss computing.

generative adversarial network to exploit comprehensive
semantic information for tooth segmentation, with an IoU
of 0.9042 on the LNDb dental dataset. Choi et al. (73) first
aligned the teeth horizontally, generated the probability
map of dental caries in periapical images with FCN, then
extracted the crowns, and finally refined the caries probability
map, to achieve automatic detection and segmentation of
adjacent dental caries. The F1-score was 0.74 on their
own dataset. These applications all perform semantic
segmentation of 2D images; the only differences are the
artificial definition of the foreground and the choice of semantic
segmentation model.

Most 3D images of teeth originate from CBCT data,
and semantic segmentation of these 3D images requires
a 3D semantic segmentation network, such as VNet (75),
multi-task 3DFCN and marker-controlled Watershed
transform (MWT) (76), modified UNet (77), and the
symmetric fully convolutional residual network with
DCRF (78). Ezhov et al. (79) proposed a coarse-fine
network structure to refine the volumetric segmentation
of teeth, with an IoU of 0.94. The segmentation
results can be used for applications such as tooth
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volume prediction (75), panoramic reconstruction (75),
digital orthodontic simulation (76), and dental implant
design (77).

The gingival tissue cannot be shown on the panoramic
radiography or CBCT image, but it is very important
for clarifying the relationship between the tooth and
gingiva for digital restoration, implant, and orthodontics.
For this reason, another imaging method has emerged
in stomatology, namely, IOS, which can obtain real-
time 3D data (which are point cloud data) of teeth and
soft tissues. Zanjani et al. (80) proposed an end-to-end
learning framework for semantic segmentation of individual
teeth and gingivae from IOS data. This method was
based on PointCNN; it used a non-uniform resampling
mechanism and a compatible loss weighting to improve
performance; it achieved an IoU of 0.94 on the own dataset of
the authors.

The performance of the above methods is shown in Table 4.

Instance Segmentation in Teeth and Related

Diseases
Instance segmentation can mark both the boundaries between
different categories in the image, such as the boundaries between
teeth and jaws and the boundaries of different individuals in the
same category, such as the boundaries between different teeth.

Tooth instance segmentation from panoramic radiography is
a common task in dentistry. Using the Mask R-CNN algorithm,
Jader et al. (81) performed instance segmentation of teeth from
panoramic images, using the transfer learning strategy to solve
the problem of insufficient annotated data, and proposing a data
augmentation method by separating the teeth; they achieved
accurate segmentation, with an F1-score of 0.88 on the dataset
(86). Silva et al. (65) analyzed the segmentation, detection,
and tooth number performance of four end-to-end deep neural
network frameworks, namely Mask R-CNN, PANet, HTC, and
ResNeSt, on a challenging panoramic radiography dataset.
Of these algorithms, PANet achieved the best segmentation
performance, with an F1-score of 0.916 on the UFBA-UESC
Dental Images Deep dataset. Gurses et al. (82) proposed amethod
for human identification from panoramic dental images using
Mask R-CNN and SURF; they used two datasets [DS1: part of the
dataset from (81), DS2: their own dataset], achieving an F1-score
of 0.95.

The tooth structure from 3D data is clearer, which is an
important clinical advantage in instance segmentation of teeth.
Wu et al. (83) used a two-stage deep neural network, which
included a global stage (heatmap regression UNet) to guide the
localization of tooth ROIs together with a local stage (ROI-based
DenseASPP-UNet) for fine segmentation and classification, to
perform tooth instance segmentation from CBCT; they achieved
a DSC of 0.962 on their own dataset. Cui et al. (84) proposed a
two-stage automatic instance segmentation method (ToothNet),
based on a deep CNN for CBCT images, which obtained a good
result, with a DSC of 0.9264 on their own dataset. It exploited
a novel learned edge map, similarity matrix, and the spatial
relations between different teeth.

Tooth instance segmentation with IOS is also an important
research direction. Zanjani et al. (85) proposed a model named
Mask-MCNet, for instance segmentation of teeth from IOS
data. This model positioned each tooth by predicting its 3D
bounding box, and simultaneously segmented points belonging
to the individual tooth without using voxelization or subsampling
techniques. The model could also preserve the fine detail in
the data, enabling the highly accurate segmentation required
in clinical practice, and obtaining results in just a few seconds
of processing time. On their own dataset, the mIOU achieved
was 0.98.

The performance of the above methods is shown in Table 5.

Application in Jaws and Related Diseases
There are many types of jaw diseases; moreover, the number
of benign and malignant samples is unbalanced, which may
easily cause missed diagnoses and misdiagnoses. Minimally
invasive and precise treatment of these diseases generally
requires precise location of lesions through preoperative
planning and accurate intraoperative image guidance. Patients
with craniomaxillofacial malformations require intelligent 3D
symmetry analysis. The analysis of postoperative efficacy requires
both subjective evaluations by doctors and patients, in addition to
the quantitative and objective evaluation of the progression and
outcome of lesions. Precise segmentation of the jaw or related
diseases is important for clinical diagnosis and treatment. In
the past, manual segmentation of the jaw and its lesions was
time-consuming and laborious. Since the development of DL,
researchers have used DL methods to learn the features of the
jaw and its lesions, realizing automatic segmentation. The main
sources of medical image data used for automatic segmentation
are panoramic radiography, CBCT, and MSCT.

Six relevant articles showed that current DL-based automatic
segmentation methods for jaws and related diseases mainly focus
on semantic segmentation (Table 6). There are two factors that
affect the segmentation performance: (1) The space between
the mandibular condyle and the temporal articular surface is
very small and contains an articular disc, which often affects
the accuracy of mandibular segmentation. (2) The segmentation
accuracy of jaw or teeth in the occlusion and non-occlusion
scenarios can be different because of the influence of the contact
between upper and lower teeth.

For panoramic radiography, Kong et al. (87) adopted theUNet
structure for rapid and accurate segmentation of themaxillofacial
region, with an accuracy of 0.9928 on their own dataset. Li et al.
(88) proposed the Deetal-Perio method to predict the severity of
periodontitis from panoramic radiography. To calculate alveolar
bone absorption, Deetal-Perio first segmented and indexed the
individual tooth by using Mask R-CNN with a novel calibration
method. It then segmented the contour of the alveolar bone and
calculated a ratio of individual teeth, to represent the alveolar
bone absorption. Finally, Deetal-Perio predicted the severity
of periodontitis according to the ratios of all the teeth. They
adopted two datasets, namely the Suzhou dataset and Zhongshan
dataset, with DSCs of 0.868 and 0.852, respectively. Egger et al.
(89) automatically segmented the mandible by using FCN and
carefully evaluated the mandible segmentation algorithm. Ten
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TABLE 4 | Semantic segmentation in teeth and related diseases.

Study Year Algorithm Image type Images total Outcome metrics Performance

Wirtz (70) 2018 UNet Panoramic 24 Accuracy,

Specificity,

Precision, Recall,

F1-Score, DSC

0.818, 0.799, 0.790,

0.827, 0.803, 0.744

Koch (71) 2019 UNet Panoramic 1500 DSC 0.934

Sivagami (72) 2020 UNet Panoramic 1171 Accuracy,

Specificity,

Precision, Recall,

F1-Score, DSC

0.97, 0.95, 0.93,

0.94, 0.93, 0.94

Choi (73) 2016 FCN dental X-ray 475 F1-score 0.74,

Cui (74) 2021 ToothPix Panoramic 1500 IOU, Accuracy,

Specificity,

Precision, Recall,

F1-score

0.9042, 0.9808,

0.9852, 0.9407,

0.9591, 0.9486

Zakirov (75) 2018 VNet CBCT 517 IOU, Accuracy 0.963, 0.96

Chen (76) 2020 FCN+MWT CBCT 25 DSC, Jaccard, RVD,

ASSD

0.936, 0.881, 0.072,

0.363 mm

Lee (77) 2020 CNN CBCT 102 DSC, Recall,

Precision

Validation set:

0.938, 0.952, 0.924;

Testing set: 0.918,

0.932, 0.904

Rao (78) 2020 UNet+DCRF CBCT 110 VD, DSC, ASSD,

MSSD

18.86 mm3, 0.9166,

0.25mm, 1.18 mm

Ezhov (79) 2019 VNet CBCT 935 IOU, ASD 0.94, 0.17 mm

Zanjani (80) 2019 PointCNN IOS 120 IOU 0.94

TABLE 5 | Instance segmentation in teeth and related diseases.

Study Year Algorithm Image type Images total Outcome metrics Performance

Jader (81) 2018 mask RCNN Panoramic 193 Accuracy,

Specificity,

Precision, Recall,

F1-score

0.98, 0.99, 0.94,

0.84, 0.88

Silva (65) 2020 Mask RCNN,

HTC, ResNeSt,

PANet (best)

Panoramic 1,500 Accuracy, specificity,

precision, recall,

F1-Score

PANet: 0.967,

0.987, 0.944, 0.891,

0.916

Gurses (82) 2020 Mask RCNN+

SURF

Panoramic 580 Jaccard, Precision,

Recall, F1-score,

Rank-1 accuracy

0.82, 0.93, 0.91,

0.95, 0.8039

Wu (83) 2020 GH + BADice-

DenseASPP-

UNet +

LO

CBCT 20 DSC, ASD, FA, DA 0.962, 0.122, 0.991,

0.995

Cui (84) 2019 ToothNet CBCT 20 DSC 0.9264

Zanjani (85) 2021 Mask-MCNet IOS 164 mIOU, mAP, mAR 0.98, 0.98, 0.97

CT datasets were included and three network architectures,
namely, FCN-32s, FCN-16s, and FCN-8s, were used; FCN-8s
achieved the best performance, with a DSC of 0.9203. Zhang
et al. (90) introduced a context-FCN for joint craniomaxillofacial
bone segmentation and landmark digitization; the DSCs of
midface and mandible on their own dataset were 0.9319 and
0.9327, respectively. Torosdagli et al. (91) presented a new
segmentation network for the mandible, based on a unified
algorithm combining UNet and DenseNET. Compared with the

most advanced mandible segmentation methods, this method
achieved better performance on craniofacial abnormalities and
disease states; the DSC was 0.9382 on their own CBCT dataset
and 0.9386 on the MICCAI Head and Neck Challenge 2015
dataset. Lian et al. (92) introduced an efficient end-to-end deep
network, the multi-task dynamic transformer network (DTNet),
to perform concurrent mandible segmentation and large-scale
landmark localization in one pass, for large-volume CBCT
images. The network contributed to the quantitative analysis of
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TABLE 6 | Semantic segmentation in the jaw.

Study Year Algorithm Image type Images total Outcome metrics Performance

Kong (87) 2020 UNet Panoramic 2602 Accuracy, Jaccard,

HD, PPS, Para(M)

0.9928, 0.9829,

8.32, 41.0, 0.92

Li (88) 2020 Deetal-Perio

(based-Mask

RCNN)

Panoramic 470 mAP, DSC (all), DSC

(single), F1-score,

Accuracy

Suzhou dataset:

0.826, 0.868, 0.778,

0.878,

0.884;Zhongshan

dataset: 0.841,

0.852, 0.748, 0.454,

0.817

Egger (89) 2018 FCN-32s,

FCN-16s,

FCN-8s (best)

MSCT 20 DSC FCN-8s: 0.9203

Zhang (90) 2018 UNet CBCT, MSCT CBCT(77),

MSCT(30)

DSC, SEN, PPV Midface: 0.9319,

0.9282, 0.9361,

Mandible: 0.9327,

0.9363, 0.9293

Torosdagli (91) 2019 Tiramisu (based

on UNet and

DenseNET)

CBCT 50 DSC 0.9382

Lian (92) 2020 DTNet CBCT, MSCT CBCT(77),

MSCT(63)

DSC, SEN, PPV 0.9395, 0.9424,

0.9368

craniomaxillofacial deformities. The DSC achieved was 0.9395 on
the own dataset of the author.

The performance of the above methods is shown in Table 6.

TRENDS AND FUTURE WORK

Integration and Improvement of Data
Quality
As a consequence of the need to protect patient privacy
and the right to be informed, there are not always enough
cases to establish a large-scale dataset dedicated to the
segmentation of stomatological images. Moreover, the collected
data are usually taken from diverse hospitals and machines,
which further increases the difficulty of formulating universal
benchmarks. Therefore, methods to effectively integrate, store,
and safely share these data are of vital importance and
are urgently required. The establishment of a shared dento-
maxillofacial database can help to solve this problem, to
some extent. Differences in the data acquisition settings and
conditions (such as exposure time) used in each hospital lead
to variation in the quality of image data (such as contrast
and signal-to-noise ratio), which affects the accuracy and
robustness of image segmentation. Further study should focus
on standardizing and normalizing image data and improving
data quality.

Currently, most data used for image segmentation in
stomatology are produced by a single modality (single
CBCT or MSCT). In the future, multi-modality data
of the same case can be employed collaboratively,
to fully exploit the correlative and complementary
essence among these modalities; this may further boost
the performance.

Model Design in the Fully Supervised Case
The most common methods of image segmentation in
stomatology are built on top of a CNN. However, the
transformer structure has been gradually emerging in the
field of computer vision because of its global modeling
ability. It has been applied to mandible segmentation by
researchers, outperforming the current CNN-based model.
Transformer-based methods have the potential to obtain
satisfactory results in medical image segmentation in the future.
In addition, how to reduce the number of model parameters
while ensuring accuracy is an active research topic, which is
particularly important for the deployment of the medical image
segmentation model and the promotion of related technology in
clinical settings.

Model Design for Insufficient Data
Annotation
The existing DL-based algorithm relies heavily on large-
scale data to learn discriminative features, but the process
of labeling stomatological data is time-consuming and labor-
intensive; therefore, how to learn effectively from an insufficient
and imperfect dataset is an active research topic. There are
several ways to solve such problems. First, to reduce the
burden of the time-consuming and labor-intensive annotation
process, for complete annotation data, weakly supervised and
semi-supervised methods can be adopted. Second, to handle
the existence of noise in manual labeling, algorithms that
learn from noisy labels can be employed. Third, to solve
the problem that existing methods cannot be generalized to
new categories, techniques such as transfer learning, domain
adaptation, and few-shot learning can be considered. In
addition, unsupervised learning and self-supervised learning
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could also be used to explore the structural properties
inside the dental image itself, providing a better prior for
downstream tasks.

Interpretability of Deep Learning
Although existing DL methods have shown excellent
performance in stomatology, they have not been widely
promoted because of the limitations of DL. In addition to the
high computing cost and the need for large-scale datasets, the
“black box” characteristic of DL methods is the main factor that
hinders their application. To gain the trust of doctors, regulators,
and patients, a medical diagnostic system must be transparent,
interpretable, and explicable. Ideally, it should explain the
complete logic of how a decision is made. Therefore, research on
interpretability is most urgently needed for the application of DL
to clinical diagnosis and treatment.

Clinical Application in Stomatology
First, from the perspective of what to segment, current studies
focus mainly on teeth and teeth-related diseases, whereas little
attention is paid to jaw and jaw-related diseases, particularly for
soft tissue and related diseases. However, studies on the latter
aspects have more clinical significance, so more studies of this
type are required. Second, the accuracy of image segmentation
is the key to whether the DL methods can be applied clinically.
Therefore, more studies are needed to enhance the accuracy
and precision of image segmentation, to promote its use in the
clinic. Finally, the first step of digital surgical technologies, such
as guide templates, surgical navigation, and augmented reality

technology, is to segment important structures or lesions, for
which the traditional manual segmentation method is currently
mainly used. In the future, DL-based automatic segmentation
methods could be integrated with these technologies, to assist
clinical practice more accurately and efficiently.

CONCLUSION

This paper comprehensively reviews automatic segmentation
algorithms based on DL and introduces their clinical
applications. The review shows that DL has great potential
to segment stomatological images accurately, and this can
further promote the transformation of clinical practice from
experientialism to digitization, precision, and individuation.
In the future, more research is needed to further improve
the accuracy of automatic image segmentation and
realize intelligence.

AUTHOR CONTRIBUTIONS

DL, WZ, JC, and WT contributed to the conception and design
of the study. DL wrote the first draft of the manuscript. All
authors contributed to manuscript revision, read, and approved
the submitted version.

FUNDING

This study was supported by Sichuan Province Regional
Innovation Cooperation Project (2020YFQ0012).

REFERENCES

1. Karayegen G, Aksahin MF. Brain tumor prediction on MR images with
semantic segmentation by using deep learning network and 3D imaging
of tumor region. Biomed Signal Proces and Control. (2021) 66:102458.
doi: 10.1016/j.bspc.2021.102458

2. Atli I, Gedik O S. Sine-Net: a fully convolutional deep learning architecture for
retinal blood vessel segmentation. Eng Sci Technol an Int J. (2021) 24:271–83.
doi: 10.1016/j.jestch.2020.07.008

3. Messay T, Hardie RC, Tuinstra TR. Segmentation of pulmonary nodules
in computed tomography using a regression neural network approach
and its application to the lung image database consortium and image
database resource initiative dataset. Med Image Anal. (2015) 22:48–62.
doi: 10.1016/j.media.2015.02.002

4. Ambellan F, Tack A, Ehlke M, Zachow S. Automated segmentation of knee
bone and cartilage combining statistical shape knowledge and convolutional
neural networks: data from the osteoarthritis initiative. Med Image Anal.

(2019) 52:109–18. doi: 10.1016/j.media.2018.11.009
5. Hojjatoleslami SA, Kruggel F. Segmentation of large brain lesions. IEEE Trans

on Med Imaging. (2001) 20:666–9. doi: 10.1109/42.932750
6. Alsmadi M K. A hybrid Fuzzy C-Means and neutrosophic for

jaw lesions segmentation. Ain Shams Eng J. (2018) 9:697–706.
doi: 10.1016/j.asej.2016.03.016

7. Li H, Sun G, Sun H, Liu W. Watershed algorithm based on
morphology for dental X-ray images segmentation[C]//2012 IEEE 11th
international conference on signal processing. IEEE. (2012) 2:877–80.
doi: 10.1109/ICoSP.2012.6491720

8. Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-Training of Deep

Bidirectional Transformers For Language Understanding. arXiv [Preprint].
arXiv:1810.04805 (2018).

9. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. Adv Neural Inf Process Syst. (2012) 25:1097–
105. doi: 10.1145/3065386

10. Simonyan K, Zisserman A. Very Deep Convolutional Networks For Large-

Scale Image Recognition. San Diego, CA: ICLR 2015 (2014). arXiv [Preprint].
arXiv:1409.1556 (2014).

11. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al.
Going deeper with convolutions. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. Boston, MA,
USA (2015).

12. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception
architecture for computer vision. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. Las Vegas, NV, USA (2016).
13. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:

Proceedings of the IEEE conference on computer vision and pattern recognition.
Las Vegas, NV, USA (2016).

14. Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. Densely
connected convolutional networks. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. Honolulu, HI,
USA (2017).

15. Yu D, Xu Q, Guo H, Zhao C, Lin Y, Li D. An efficient and lightweight
convolutional neural network for remote sensing image scene classification.
Sensors. (2020) 20:1999. doi: 10.3390/s20071999

16. Zhang X, Zhou X, Lin M, Sun J. Shufflenet: an extremely efficient
convolutional neural network for mobile devices. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. Salt Lake City, UT,
USA (2018).

17. Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning. Long Beach, CA:
PMLR (2019).

Frontiers in Medical Technology | www.frontiersin.org 12 December 2021 | Volume 3 | Article 767836

https://doi.org/10.1016/j.bspc.2021.102458
https://doi.org/10.1016/j.jestch.2020.07.008
https://doi.org/10.1016/j.media.2015.02.002
https://doi.org/10.1016/j.media.2018.11.009
https://doi.org/10.1109/42.932750
https://doi.org/10.1016/j.asej.2016.03.016
https://doi.org/10.1109/ICoSP.2012.6491720
https://doi.org/10.1145/3065386
https://doi.org/10.3390/s20071999
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Luo et al. Automatic Image Segmentation in Stomatology

18. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
Attention is all you need. In: Advances in neural information processing

systems. Long Beach, CA: NIPS (2017).
19. Dehghani M, Gouws S, Vinyals O, Uszkoreit J, Kaiser L. Universal

Transformers. United States: ICLR 2018 (2018). arXiv [Preprint].
arXiv:1807.03819.

20. Dai Z, Yang Z, Yang Y, Carbonell J, Le QV, Salakhutdinov R. Transformer-

xl:9 Attentive Language Models Beyond A Fixed-Length Context.
Florence: Association for Computational Linguistics. arXiv [Preprint].
arXiv:1901.02860 (2019).

21. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X,
Unterthiner T, et al. An Image is Worth 16x16 Words: Transformers

For Image Recognition At Scale. arXiv [Preprint]. arXiv:2010.
11929 (2020).

22. Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H.
Training data-efficient image transformers & distillation through attention.
In: International Conference on Machine Learning. Long Beach, CA:
PMLR (2021).

23. Wu H, Xiao B, Codella N, Liu M, Dai X, Yuan L, Zhang L. CVT:

Introducing Convolutions to Vision Transformers. arXiv [Preprint].

arXiv:2103.15808 (2021).
24. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin Transformer:

Hierarchical Vision Transformer Using Shifted Windows. arXiv [Preprint].
arXiv:2103.14030 (2021).

25. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. Boston, MA, USA (2015).
26. Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional

encoder-decoder architecture for image segmentation. IEEE Trans

Pattern Anal Mach Intell. (2017) 39:2481–95. doi: 10.1109/TPAMI.2016.26
44615

27. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
Honolulu, HI: IEEE Computer Society (2017).

28. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Semantic Image

Segmentation With Deep Convolutional Nets and Fully Connected Crfs. arXiv
[Preprint]. arXiv:1412.7062 (2014).

29. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: semantic
image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Trans Pattern Anal Mach Intell. (2017) 40:834–48.
doi: 10.1109/TPAMI.2017.2699184

30. Chen LC, Papandreou G, Schroff F, Adam H. Rethinking Atrous Convolution
For Semantic Image Segmentation. arXiv [Preprint]. arXiv:1706.05587 (2017).

31. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder
with atrous separable convolution for semantic image segmentation. In:
Proceedings of the European conference on computer vision (ECCV). Munich:
Springer (2018).

32. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks
for biomedical image segmentation. In: International Conference on

Medical image computing and computer-assisted intervention. Cham:
Springer (2015).

33. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-
Net: learning dense volumetric segmentation from sparse annotation. In:
International conference on medical image computing and computer-assisted

intervention. Cham: Springer (2016).
34. Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks

for volumetric medical image segmentation. In: 2016 fourth international

conference on 3D vision (3DV). Stanford, CA: IEEE (2016).
35. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: a nested u-net

architecture for medical image segmentation. In: Deep learning in medical

image analysis and multimodal learning for clinical decision support. Springer,
Cham (2018).

36. Zheng S, Lu J, Zhao H, Zhu X, Luo Z, Wang Y, et al. Rethinking semantic
segmentation from a sequence-to-sequence perspective with transformers.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. Salt Lake City, UT: IEEE (2021).
37. Strudel R, Garcia R, Laptev I, Schmid C. Segmenter: Transformer for Semantic

Segmentation. arXiv [Preprint]. arXiv:2105.05633 (2021).

38. Xie E, Wang W, Yu Z, Anandkumar A, Alvarez J M, Luo P. SegFormer:

Simple and Efficient Design For Semantic Segmentation With Transformers.
arXiv [Preprint]. arXiv:2105.15203 (2021).

39. Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, et al. Swin-Unet: Unet-
like Pure Transformer For Medical Image Segmentation. arXiv [Preprint].
arXiv:2105.05537 (2021).

40. Valanarasu JMJ, Oza P, Hacihaliloglu I, Patel VM. Medical Transformer:

Gated Axial-Attention For Medical Image Segmentation. arXiv [Preprint].
arXiv:2102.10662 (2021).

41. Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman, B, et al.
Unetr: Transformers For 3d Medical Image Segmentation. arXiv [Preprint].
arXiv:2103.10504 (2021).

42. Zhang Y, Higashita R, Fu H, Xu Y, Zhang Y, Liu H, et al. A Multi-Branch

Hybrid Transformer Network for Corneal Endothelial Cell Segmentation. arXiv
[Preprint]. arXiv:2106.07557 (2021).

43. Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, et al. Transunet: Transformers

make strong encoders for medical image segmentation. arXiv [Preprint].
arXiv:2102.04306 (2021).

44. Zhang Y, Liu H, Hu Q. Transfuse: Fusing Transformers and CNNs for Medical

Image Segmentation. arXiv [Preprint]. arXiv:2102.08005 (2021).
45. Bolya D, Zhou C, Xiao F, Lee Y J. Yolact: real-time instance segmentation. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision.
Seoul: IEEE (2019).

46. Redmon J, Divvala S, Girshick R, Farhadi, A. You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. Las Vegas, NV: IEEE Computer Society (2016).
47. LiuW, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y, Berg A C. SSD: single

shot multibox detector. In: European conference on computer vision. Springer,
Cham (2016).

48. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the
IEEE international conference on computer vision. Venice: IEEE Computer
Society (2017).

49. Liu S, Qi L, Qin H, Shi J, Jia J. Path aggregation network for instance
segmentation. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. Salt Lake City, UT: Computer Vision Foundation / IEEE
Computer Society (2018).

50. Cai Z, Vasconcelos N. Cascade R-CNN: delving into high quality object
detection. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. Salt Lake City, UT: (2018). Computer Vision Foundation
/ IEEE Computer Society (2018). p. 6154–62.

51. Chen K, Pang J, Wang J, Xiong Y, Li X, Sun S, et al. Hybrid task cascade
for instance segmentation. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. (2019). p. 4974–83.
52. Wang X, Kong T, Shen C, Jiang Y, Li L. Solo: segmenting objects by locations.

In: European Conference on Computer Vision. Cham: Springer (2020). p. 649–
65.

53. Bai M, Urtasun R. Deep watershed transform for instance segmentation.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. (2017). p. 5221–29.
54. Xu K, Guan K, Peng J, Luo Y, Wang S. DeepMask: An Algorithm For Cloud

and Cloud Shadow Detection in Optical Satellite Remote Sensing Images Using

Deep Residual Network. arXiv [Preprint]. arXiv:1911.03607 (2019).
55. Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-

end object detection with transformers. In: European Conference on Computer

Vision. Cham: Springer (2020). p. 213–29.
56. Prangemeier T, Reich C, Koeppl H. Attention-based transformers for

instance segmentation of cells in microstructures. In: 2020 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM). IEEE (2020). p. 700–7.
57. Hu J, Cao L, Lu Y, Zhang S, Wang Y, Li K, et al. ISTR: End-to-End Instance

Segmentation With Transformers. arXiv [Preprint]. arXiv:2105.00637 (2021).
58. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object

detection with region proposal networks. Adv Neural Inf Process Syst.

(2015) 28:91–9. doi: 10.1109/TPAMI.2016.2577031
59. Jain AK, Chen H. Matching of dental X-ray images for human identification.

Pattern Recognit. (2004) 37:1519–32. doi: 10.1016/j.patcog.2003.12.016
60. Fahmy GF, Nassar DEM, Said EH, Chen H, Nomir O, Zhou J, et al. Toward an

automated dental identification system. J Electron Imaging. (2005) 14:043018.
doi: 10.1117/1.2135310

Frontiers in Medical Technology | www.frontiersin.org 13 December 2021 | Volume 3 | Article 767836

https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1016/j.patcog.2003.12.016
https://doi.org/10.1117/1.2135310
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Luo et al. Automatic Image Segmentation in Stomatology

61. Zhou J, Abdel-Mottaleb M. A content-based system for human identification
based on bitewing dental X-ray images. Pattern Recognit. (2005) 38:2132–42.
doi: 10.1016/j.patcog.2005.01.011

62. Nomir O, Abdel-Mottaleb M. A system for human identification
from X-ray dental radiographs. Pattern Recognit. (2005) 38:1295–305.
doi: 10.1016/j.patcog.2004.12.010

63. Mahoor MH, Abdel-Mottaleb M. Classification and numbering of
teeth in dental bitewing images. Pattern Recognit. (2005) 38:577–86.
doi: 10.1016/j.patcog.2004.08.012

64. Lin PL, Lai YH, Huang PW. An effective classification and numbering system
for dental bitewing radiographs using teeth region and contour information.
Pattern Recognit. (2010) 43:1380–92. doi: 10.1016/j.patcog.2009.10.005

65. Silva B, Pinheiro L, Oliveira L, Pithon M. A study on tooth segmentation and
numbering using end-to-end deep neural networks. In: 2020 33rd SIBGRAPI

Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE (2020). p.
164–71. doi: 10.1109/SIBGRAPI51738.2020.00030

66. Lurie A, Tosoni GM, Tsimikas J, Walker Jr F. Recursive hierarchic
segmentation analysis of bone mineral density changes on digital panoramic
images. Oral Surg Oral Med Oral Pathol Oral Radiol. (2012) 113:549–58. e1.
doi: 10.1016/j.oooo.2011.10.002

67. Tikhe SV, Naik AM, Bhide SD, Saravanan T, Kaliyamurthie KP. Algorithm
to identify enamel caries and interproximal caries using dental digital
radiographs. In: 2016 IEEE 6th International Conference on Advanced

Computing (IACC). IEEE (2016). p. 225–8. doi: 10.1109/IACC.2016.50
68. Tuan TM. A cooperative semi-supervised fuzzy clustering framework for

dental X-ray image segmentation. Expert Syst Appl. (2016) 46:380–93.
doi: 10.1016/j.eswa.2015.11.001

69. Trivedi DN, Kothari AM, Shah S, Nikunj S. Dental image matching by Canny
algorithm for human identification. Int J Adv Comput Res. (2014) 4:985.

70. Wirtz A, Mirashi SG, Wesarg S. Automatic teeth segmentation in
panoramic X-ray images using a coupled shape model in combination
with a neural network. In: International conference on medical image
computing and computer-assisted intervention. Cham: Springer (2018).
p. 712–9.

71. Koch TL, Perslev M, Igel C, Brandt SS. Accurate segmentation of dental
panoramic radiographs with U-Nets. In: 2019 IEEE 16th International

Symposium on Biomedical Imaging (ISBI 2019). Venice: IEEE (2019). p. 15–9.
doi: 10.1109/ISBI.2019.8759563

72. Sivagami S, Chitra P, Kailash GSR, Muralidharan SR. Unet architecture based
dental panoramic image segmentation. In: 2020 International Conference on

Wireless Communications Signal Processing and Networking (WiSPNET). IEEE
(2020). p. 187–91.

73. Choi J, Eun H, Kim C. Boosting proximal dental caries detection via

combination of variational methods and convolutional neural network. J
Signal Process Syst. (2018) 90:87–97. doi: 10.1007/s11265-016-1214-6

74. Cui W, Zeng L, Chong B, Zhang Q. Toothpix: pixel-level tooth segmentation
in panoramic X-Ray images based on generative adversarial networks. In:
2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE
(2021). p. 1346–50.

75. Zakirov A, Ezhov M, Gusarev M, Alexandrovsky V, Shumilov E.
Dental pathology detection in 3D cone-beam CT. arXiv [Preprint].
arXiv:1810.10309 (2018).

76. Chen Y, Du H, Yun Z, Yang S, Dai Z, Zhong L, et al. Automatic
segmentation of individual tooth in dental CBCT images from tooth
surface map by a multi-task FCN. IEEE Access. (2020) 8:97296–309.
doi: 10.1109/ACCESS.2020.2991799

77. Lee S, Woo S, Yu J, Seo J, Lee J, Lee C. Automated CNN-Based
tooth segmentation in cone-beam CT for dental implant planning.
IEEE Access. (2020) 8:50507–18. doi: 10.1109/ACCESS.2020.29
75826

78. Rao Y, Wang Y, Meng F, Pu J, Sun J, Wang Q, et al. Symmetric fully
convolutional residual network with DCRF for accurate tooth segmentation.
IEEE Access. (2020) 8:92028–38. doi: 10.1109/ACCESS.2020.2994592

79. Ezhov M, Zakirov A, Gusarev M. Coarse-to-fine volumetric segmentation
of teeth in cone-beam CT. In: 2019 IEEE 16th International Symposium on

Biomedical Imaging (ISBI 2019). Venice: IEEE (2019). p. 52–6.
80. Zanjani FG, Moin DA, Verheij B, Claessen F, Cherici T, Tan T. Deep learning

approach to semantic segmentation in 3d point cloud intra-oral scans of teeth.

In: International Conference on Medical Imaging with Deep Learning. PMLR
(2019). p. 557–71.

81. Jader G, Fontineli J, Ruiz M, Abdalla K, Pithon M, Oliveira L. Deep instance
segmentation of teeth in panoramic X-ray images. In: 2018 31st SIBGRAPI

Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE (2018).
p. 400–7.

82. Gurses A, Oktay A B. Human Identification with Panoramic Dental Images
using Mask R-CNN and SURF. In: 2020 5th International Conference on
Computer Science and Engineering (UBMK). IEEE (2020). p. 232–7.

83. Wu X, Chen H, Huang Y, Guo H, Qiu T, Wang L. Center-sensitive and
boundary-aware tooth instance segmentation and classification from cone-
beam CT. In: 2020 IEEE 17th International Symposium on Biomedical Imaging

(ISBI). IEEE (2020). p. 939–42.
84. Cui Z, Li C, Wang W. ToothNet: automatic tooth instance segmentation and

identification from cone beam CT images. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. (2019). p. 6368–77.

85. Zanjani FG, Pourtaherian A, Zinger S, Moin DA, Claessen F, Cherici
T, et al. Mask-MCNet: tooth instance segmentation in 3D point
clouds of intra-oral scans. Neurocomputing. (2021) 453:286–98.
doi: 10.1016/j.neucom.2020.06.145

86. Silva G, Oliveira L, Pithon M. Automatic segmenting teeth in X-ray images:
trends, a novel data set, benchmarking and future perspectives. Expert Syst
Appl. (2018) 107:15–31. doi: 10.1016/j.eswa.2018.04.001

87. Kong Z, Xiong F, Zhang C, Fu Z, Zhang M, Weng J, et al. Automated
maxillofacial segmentation in panoramic dental x-ray images using an
efficient encoder-decoder network. IEEE Access. (2020) 8:207822–33.
doi: 10.1109/ACCESS.2020.3037677

88. Li H, Zhou J, Zhou Y, Chen J, Gao F, Xu Y, et al. Automatic and interpretable
model for periodontitis diagnosis in panoramic radiographs. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention.
Cham: Springer (2020). p. 454–63.

89. Egger J, Pfarrkirchner B, Gsaxner C, Lindner L, Schmalstieg D, Wallner J.
Fully convolutional mandible segmentation on a valid ground-truth dataset.
In: 2018 40th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC). Honolulu, HI: IEEE (2018). p. 656–60.
90. Zhang J, Liu M, Wang L, Chen S, Yuan P, Li J, et al. Joint craniomaxillofacial

bone segmentation and landmark digitization by context-guided fully
convolutional networks. In: International conference on medical image

computing and computer-assisted intervention. Cham: Springer (2017).
p. 720–8.

91. Torosdagli N, Liberton D K, Verma P, Sincan M, Lee J S, Bagci U.
Deep geodesic learning for segmentation and anatomical landmarking.
IEEE Trans Med Imaging. (2018) 38:919–31. doi: 10.1109/TMI.2018.28
75814

92. Lian C, Wang F, Deng HH, Wang L, Xiao D, Kuang T, et al. Multi-task
dynamic transformer network for concurrent bone segmentation and large-
scale landmark localization with dental CBCT. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. Cham:
Springer (2020). p. 807–16.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Luo, Zeng, Chen and Tang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medical Technology | www.frontiersin.org 14 December 2021 | Volume 3 | Article 767836

https://doi.org/10.1016/j.patcog.2005.01.011
https://doi.org/10.1016/j.patcog.2004.12.010
https://doi.org/10.1016/j.patcog.2004.08.012
https://doi.org/10.1016/j.patcog.2009.10.005
https://doi.org/10.1109/SIBGRAPI51738.2020.00030
https://doi.org/10.1016/j.oooo.2011.10.002
https://doi.org/10.1109/IACC.2016.50
https://doi.org/10.1016/j.eswa.2015.11.001
https://doi.org/10.1109/ISBI.2019.8759563
https://doi.org/10.1007/s11265-016-1214-6
https://doi.org/10.1109/ACCESS.2020.2991799
https://doi.org/10.1109/ACCESS.2020.2975826
https://doi.org/10.1109/ACCESS.2020.2994592
https://doi.org/10.1016/j.neucom.2020.06.145
https://doi.org/10.1016/j.eswa.2018.04.001
https://doi.org/10.1109/ACCESS.2020.3037677
https://doi.org/10.1109/TMI.2018.2875814
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Luo et al. Automatic Image Segmentation in Stomatology

APPENDIX

The code and the data of works of literature.

Study Algorithm Code Data

Wirtz (70) UNet https://github.com/zhixuhao/unet Their own dataset

Koch (71) UNet https://github.com/zhixuhao/unet The dataset created by Gil Silva

Sivagami (72) UNet https://github.com/zhixuhao/unet https://github.com/IvisionLab/deep-dental-

image

Choi (73) FCN https://github.com/shelhamer/fcn.berkeleyvision.org Their own dataset

Cui (74) ToothPix Not available lndb dental dataset: https://github.com/

IvisionLab/dental-image

Zakirov (75) VNet https://github.com/mattmacy/vnet.pytorch Their own dataset

Chen (76) FCN+MWT https://github.com/shelhamer/fcn.berkeleyvision.org Their own dataset

Lee (77) CNN Not available Their own dataset

Rao (78) UNet+DCRF https://github.com/zhixuhao/unet Their own dataset

Ezhov (79) VNet https://github.com/mattmacy/vnet.pytorch Their own dataset

Zanjani (80) PointCNN https://github.com/yangyanli/PointCNN Their own dataset

Jader (81) mask RCNN https://github.com/matterport/Mask_RCNN https://github.com/IvisionLab/deep-dental-

image

Silva (65) Mask RCNN, HTC,

ResNeSt, PANet (best)

https://github.com/openmmlab/mmdetection https://github.com/IvisionLab/deep-dental-

image

Gurses (82) Mask RCNN+ SURF https://github.com/openmmlab/mmdetection DS1: https://github.com/IvisionLab/deep-

dental-image, DS2: their own data set

Wu (83) GH + BADice-

DenseASPP-UNet +

LO

Not available Their own dataset

Cui (84) ToothNet Not available Their own dataset

Zanjani (85) Mask-MCNet Not available Their own dataset

Kong (87) UNet https://github.com/zhixuhao/unet Their own dataset

Li (88) Deetal-Perio (based-Mask

RCNN)

https://github.com/matterport/Mask_RCNN Suzhou Dataset and Zhongshan Dataset

Egger (89) FCN-32s, FCN-16s,

FCN-8s (best)

https://github.com/shelhamer/fcn.berkeleyvision.org Their own dataset

Zhang (90) UNet https://github.com/zhixuhao/unet Their own dataset

Torosdagli (91) Tiramisu (based on UNet

and DenseNET)

https://github.com/zhixuhao/unet

https://github.com/liuzhuang13/DenseNet

https://www.aicrowd.com/challenges/miccai-

2021-hecktor

Lian (92) DTNet Not available Their own dataset
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