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Stochastic neural networks are a prototypical computational device able to

build a probabilistic representation of an ensemble of external stimuli. Build-

ing on the relationship between inference and learning, we derive a synaptic

plasticity rule that relies only on delayed activity correlations, and that

shows a number of remarkable features. Our delayed-correlations matching
(DCM) rule satisfies some basic requirements for biological feasibility:

finite and noisy afferent signals, Dale’s principle and asymmetry of synaptic

connections, locality of the weight update computations. Nevertheless, the

DCM rule is capable of storing a large, extensive number of patterns as

attractors in a stochastic recurrent neural network, under general scenarios

without requiring any modification: it can deal with correlated patterns, a

broad range of architectures (with or without hidden neuronal states),

one-shot learning with the palimpsest property, all the while avoiding the

proliferation of spurious attractors. When hidden units are present, our

learning rule can be employed to construct Boltzmann machine-like generative

models, exploiting the addition of hidden neurons in feature extraction and

classification tasks.
1. Introduction
One of the main open problems of neuroscience is understanding the learning

principles which enable our brain to store and process information. Neural

computation takes place in an extremely noisy environment: experiments

show that various sources of variability and fluctuations make neurons,

synapses and neural systems intrinsically stochastic [1]. Such internal noise

can originate at different levels, for instance, from the unreliable transmission

of synaptic vesicles, from the random opening and closing of ion channels or

from the trial-to-trial variability in neural responses to external stimuli [2–6].

At the same time, even the typical sensory input is often blurry and ambiguous.

A probabilistic inference framework is thus the natural choice for modelling all

the uncertainties affecting neural learning [7].

A widespread belief is that learning occurs at the synaptic level, both in

terms of creation of new connections and by synaptic strength potentiation or

depression [8–10]. Synaptic plasticity can be encoded in a learning principle

that relates the modulation of the efficacy of a synapse to its pre- and post-

synaptic neural activity. The simplest synaptic plasticity rule, Hebb’s rule,

states that positive correlation between pre- and post-synaptic spikes leads to

long-term potentiation, while negative correlation induces long-term

depression. One important feature of Hebbian plasticity is its capability to
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shape the connectivity of neural architectures in a way that

captures the statistics of the stimuli. This issue has been

addressed in a number of modelling studies, starting from

the classical theory of development of neural selectivity

[11], to more modern accounts of neural tuning that use

homeostasis-stabilized Hebbian plasticity in large spiking

network models [12].

On the other hand, it has long been recognized that

Hebbian plasticity is capable of generating attractor dynamics

in a variety of recurrent architectures: the concept of attractor

neural network is one of the most important in modern

neuroscience, in that it can account for a variety of neurophy-

siological observations of persistent activity in various brain

areas. Examples include line attractor (neural integrator)

models in oculomotor control [13], ring attractor models in

head direction systems [14] and a plethora of models of per-

sistent neural activity whose common feature is a local

connectivity pattern which stabilizes bump attractors by

means of lateral inhibition.

The main intuition that led to the introduction of the

prototypical model of attractor network—the Hopfield

model—was that the frustration phenomenon in disordered sys-

tems (spin glasses), namely the proliferation of metastable

states due to the strongly heterogeneous nature of the coup-

lings, could be exploited to embed uncorrelated patterns as

steady states of a network dynamics. In the Hopfield model,

a straightforward application of Hebb’s rule leads to a defi-

nition for the synaptic weights that allows for an extensive

number of attractors to be stored, but exhibits a phenomenon

known as catastrophic forgetting [15]: all memories are lost, due

to the existence of an absorbing spin glass state uncorrelated

with the memories, as soon as the maximum number of attrac-

tors is exceeded. Since the original introduction of the

Hopfield model [16], many generalized Hebb rules have

been proposed, able to deal with sparse patterns or low

activity levels (e.g. [15]). Moreover, Hebbian learning has

been profitably used to embed attractor states in a variety of

neural network models spanning from binary units to

graded neurons (rate models) [17] and spiking networks [18].

Different lines of research concerning attractor neural

networks in statistical mechanics and computational neuro-

science have strong ties with the study of generative

energy-based models: the formalism of Boltzmann machines

allows for a generalization to neural networks with hidden

neural states [19,20]. This introduction, though, comes at

the price of serious technical complications in the definition

of a viable learning rule. Some of these models have

become popular also in the machine-learning community,

after proving themselves as useful tools in several deep-learning

applications. This stimulated the development of various learn-

ing heuristics, the most renown being contrastive divergence

(CD) [21], and inference methods [22–25].

An alternative direction of research is motivated by many

inference problems in biological systems, where couplings

are typically asymmetric and possibly time-varying. The

study of the dynamics and learning in these purely kinetic

models is complicated by the lack of analytical control over

the stationary distribution [26–28]: a number of interesting

mean field techniques based on generalization of Thouless–

Anderson–Palmer (TAP) equations have been proposed

[26–28] in this context.

In this study, we approach many of these problems from a

unified perspective: the main goal of the paper is to devise a
biologically plausible learning rule which could allow a gen-

eral stochastic neural network to construct an internal

representation of the statistical ensemble of the stimuli it

receives. In the following, we consider the case of asymmetric

synaptic couplings and derive a learning scheme in which the

updates involve only purely local and possibly noise-affected

information. The proposed plasticity rule does not rely on the

presence of supervisory signals or strong external stimuli,

and proves to be compatible with Dale’s principle, which

requires the homogeneity of the neurotransmitters released

by one neuron across its synaptic terminals [29,30]. In this

work, we define the learning process in an online context,

and our analysis will be restricted to the case of discrete

time dynamics.

In the Results section, for clarity of exposition, we will

mostly focus on the specific case of fully visible neural net-

works, giving only a brief overview on the extension to

networks comprising hidden neurons. This last setting is

largely expanded upon in the electronic supplementary

material, where we also provide further analytical insights

and the implementation details of our numerical experiments.
2. Results
We present our main results in three different subsections. In

the first one (The model), we derive the new plasticity rule in

a framework that encompasses a wide variety of unsupervised

and semi-supervised problems, such as the construction of

attractor networks and learning in generative models with

more complicated structures. In the second one (Fully visible

case), we specialize to the case of attractor networks containing

only visible neurons. After describing a link with the maxi-

mum pseudo-likelihood method, we study the numerical

performance of the new learning rule in various settings, show-

ing how it deals with finite external fields, different coding

levels and the constraint of Dale’s Law. We then test the rule

in the case of correlated memories, we investigate its proneness

to create spurious attractors and we measure its palimpsest

capacity. Finally, in the third section (Adding hidden neuronal

states), we give an introduction to the more complex case of

stochastic networks with hidden neurons, and review some

of the results, presented in the electronic supplementary

material, section VI, that were obtained in this setting.

2.1. The model
We consider the customary simple set-up of a network of N
stochastic binary neurons s ¼ {si}

N
i¼1, with each si either in

{� 1, þ 1} or {0, 1}, connected by a set of asymmetric synap-

tic weights Jij = J ji, which evolves with a discrete-time

synchronous dynamics described by the Glauber transition

probability: the next state s0 of the system depends on the

current state s according to the following factorized

probability distribution:

P(s0 j s; b) ¼
YN
i¼1

s(s0i j hi; b), ð2:1Þ

with s(�) being a sigmoid-shaped neural activation function

defined by s(s j h; b)/ e�bsh (the proportionality constant

being set by normalization), and hi ¼ hext
i þ

P
j=i Jijs j � ui

being the total neural current—or local field—obtained by

adding up the recurrent contributions from other neurons
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to the external stimulus hext
i . The quantity ui serves as a local

threshold. The dynamics of the system is thus stochastic, and

the parameter b (which has the role of an inverse temperature

in analogous physical models) provides a measure of the

dynamical noise in the system. When the synaptic couplings

J are finite and the external fields are time independent, the

dynamics is known to be ergodic and a steady state defined

by a unique stationary distribution is approached [26]. How-

ever, the analytical form of this steady state distribution is not

known for general asymmetric kinetic models of the type we

consider here.

In the following, we formulate the problem of learning as

an unsupervised task where the network has to adapt its par-

ameters in accordance with some plasticity rule: the goal is to

learn an internal representation of a target probability distri-

bution, which is to be inferred from a set of external stimuli

conveyed to a subset of the neurons. Suppose we are given

a time-independent binary pattern, a vector j of length

NV � N with components ji ¼+1, to be learned by the

neural network. This pattern is presented to a group

V ¼ {1, . . . , NV} of ‘visible’ neurons in the form of an external

field of variable intensity lext in the direction of j, i.e.

hext
i ¼ lextji for i [ V, while the complementary subset

H ¼ {NV þ 1, . . . , N} of ‘hidden’ neurons receive no external

input. We want to model the scenario in which the stimulus

intensity is high (although not as large as to clamp the neur-

ons) at the onset, and rapidly vanishes. The initial presence of

the field biases the dynamics of the system; in the retrieval

phase, if the stimulus j is sufficiently close to a pattern j0

that the network has learned, the stationary probability distri-

bution of the visible neuronal states should get focused in the

direction of j0 even after the stimulus is no longer present.

For the sake of comparison, the classical Hopfield

network with Hebbian learning can be framed in the same

setting, as follows: we assume that there are no hidden neur-

ons, and the dynamics of the stimulus presentation is a

simple two-step process in which the stimulus intensity lext

is initially effectively infinite (such that the other components

of the inputs become irrelevant and the dynamics of the neur-

ons becomes deterministic and fixed, i.e. such as to clamp the

network) and then drops to 0. The learning rule in that case

actually only uses the information about the state of the net-

work during the clamped phase: DJij / sis j where s ¼ j as a

consequence of the clamping. In the retrieval tests, the

clamped phase is used to initialize the network, which

subsequently evolves by its own internal dynamics in

absence of further stimuli.

In our framework, we exploit the dynamics of the

stimulus during the learning phase, extracting the corre-

lations that the stimulus induces on the network dynamics

and using them to train the network: since the final goal of

the network is to learn from the driving effect of the external

field, we may require the dynamical evolution in the freely

evolving network to maximally resemble the stimulus-

induced evolution. Intuitively, this amounts at training the

network to compensate the gradual vanishing of the external

field by adapting its own recurrent connections. This require-

ment can be framed formally as the minimization of a

Kullback–Liebler (KL) divergence between two different

conditional probability distributions corresponding to differ-

ent levels of intensity of the external field, P(s0 j s; lext
1 ) and

P(s0 j s; lext
2 ), averaged over some initial state probability

distribution P(s). The analytical details can be found in the
electronic supplementary material, section II. As explained

in more detail below, the distribution P(s) is supposed to be

concentrated (for the visible part of the network) around

the direction of the pattern j, such that s0 will also be concen-

trated around j as the combined effect of the initial

conditions, the external field and of the recurrent connec-

tions; when the effect of the external field decreases, the

recurrent connections will tend to compensate for this. If

these conditions can be met, then the procedure can be

applied repeatedly.

As an initial simplified case, consider the same setting as

the Hebbian learning, i.e. the limiting case of an infinite lext,

in which the visible part of the network dynamics is clamped.

The stationary probability distribution can thus be factorized

over the visible neuronal states sV :

Pclamp(s; j) ¼
Y
i[V

dsi ,ji

 !
P(sH j sV), ð2:2Þ

where dx,y denotes the Kronecker delta symbol which equals

1 if x ¼ y and 0 otherwise. Here, the conditional probability

of the hidden neuronal states sH, given the visible, cannot

be written explicitly without losing generality. In our learn-

ing scheme, we seek to minimize the difference between the

initial (fully clamped) situation and the subsequent zero-

field situation; this requirement produces the following

simple learning rules for the synaptic couplings and the

thresholds:

DJij / (hs0is jiclamp,1 � hs0is jiclamp,0)

and Dui /�(hs0iiclamp,1 � hs0iiclamp,0),

9=
; ð2:3Þ

where s and s0 denote two successive states of the network, as

above, and h�iclamp,lext is defined as an average over the poss-

ible dynamical responses starting from a state sampled from

Pclamp:

hs0is jiclamp,lext ¼
X
s0 ,s

s0is jP(s0i j s; lext)Pclamp(s; j)

and hs0iiclamp,lext ¼
X
s0 ,s

s0iP(s0i j s; lext)Pclamp(s; j):

9>>>=
>>>;

ð2:4Þ

In the limiting case, we simply have hs0is jiclamp,1 ¼ jij j for the

visible neurons. In general, however, efficiently obtaining an

accurate estimate of this average can pose serious technical

challenges.

Since the case of a clamping stimulus is biologically unrea-

listic, we explore a setting in which the amplitude of the

external signal is comparable to the recurrent contribution

exerted by the surrounding neurons: instead of trying to

match the dynamical response of a clamped model with a

freely evolving one, we introduce a learning protocol based

on a time-dependent field intensity lext(t), which decreases to

zero starting from a finite initial value lmax. In the following,

we will consider a staircase signal intensity lext(t), lowered

by a fixed amount Dl after every 2T steps of the time-

discretized network dynamics (figure 1). We should remark,

however, that the results presented hereafter are quite robust

with respect to variations in the precise details of the dynami-

cal protocol for the field, and that the above choice was purely

made for simplicity of presentation and analysis.

The training protocol prescribes the network to try and

match its dynamical behaviour at a given level of the field

l with that at a lower level l� Dl, where the dynamical



lmax

2TTinit

lext

t
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Figure 1. DCM learning protocol scheme. This represents the learning process
for one pattern presentation. The blue curve shows the stepwise dynamics of
the external field lext as a function of the time t of the network dynamics.
The first time period (Tinit time steps, shaded) serves for initializing the net-
work state in the proximity of the pattern. The protocol then proceeds in
windows of 2T steps, each one divided in two phases. In the middle of
each window, the field intensity drops by Dl. The time-delayed correlations
are recorded separately for the two phases. The parameters are updated at
the end of each window, in correspondence of the w symbols, according to
equation (2.6). (Online version in colour.)
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behaviour is measured in terms of the time-delayed

correlations between neurons

hs0is jil ¼
X
s0 ,s

s0is jP(s0i j s; l)P(s), ð2:5Þ

and P(s) is some initial probability distribution roughly

concentrated around the presented pattern j for the visible

neurons. More precisely, we suppose that the overall

distribution P(s0i j s; l)P(s) induces a dynamics which is con-

fined around j and ergodic within such region. When that

is the case, sampling the temporal averages as the system

evolves can provide an estimate of the averages involved

in the above expression. It is reasonable to assume, and

confirmed by our experiments, that this condition will be

satisfied if the initial field lmax is sufficiently large, thus

creating an effective basin of attraction, and if the system

evolution manages to keep this confinement in place

even when the field is decreased by adapting the recurrent

connections.

Our learning protocol is thus defined as follows (figure 1):

the network will first record for T time steps its time-delayed

correlations at a given value of the field lext(t) ¼ l; then,

it will do the same for another T steps at a lower level,

lext(tþ T) ¼ l� Dl, after which it will adjust its parameters

such as to try to match the two sets of measurements (see

below). The protocol will then restart with the same field

lext(tþ 2T) ¼ l� Dl (but with updated network par-

ameters), proceeding in this way until the field has

dropped to zero. The network state is never reset during

these steps; rather, it keeps following the dynamics of

equation (2.1). An extra initial period of Tinit steps (we gener-

ally set Tinit ¼ T in our simulations) at lmax field is used to

prepare the network and bias it in the direction of the pattern.

Therefore, in this approximation, we obtain a new

plasticity rule (the notation h�it,l here denotes empirical

averages over time in presence of a given field l, and we

switch to using t and tþ 1 to denote two consecutive
time steps):

DJij / (hstþ1
i st

jit,l � hstþ1
i st

jit,l�Dl)

and Dui /�(hstþ1
i it,l � hstþ1

i it,l�Dl),

9=
; ð2:6Þ

which simply tries to match the time-delayed correlations

in the consecutive time windows, until the signal has van-

ished and the system evolves freely. All the needed

information is thus local with respect to each synapse. In

order to learn a given extensive set of aN patterns, the

same procedure has to be repeated cyclically: a pattern

is presented with decreasing intensity while the network

adapts its parameters, then the network moves to the

next pattern. The network is not reset even between one

pattern and the next. We call this learning rule ‘delayed-

correlations matching’, DCM for short. The full algorithm

is detailed in the electronic supplementary material,

section IV, together with the corresponding pseudo-code.

It is not necessary for the field dynamics to end up exactly

at zero intensity: following the same idea proposed in [31],

the learning scheme described above can be made more

robust if one requires the network to face the presence of

an antagonist field, that tries to interfere with the drawing

effect of the basin of attraction. By considering a negative

minimal intensity lmin , 0, one can in fact both speed up

the learning process and induce larger basins of attraction.

If instead the aim is to learn new basins of attraction coher-

ently, trying not to affect the previously stored memories, it

can be useful to choose a positive lmin . 0: this ensures

that the sampling process does not leave the neighbourhood

of the presented pattern, risking ending up in a different memory

and possibly deleting it (we will consider this prescription in the

one-shot learning scenario).
2.2. Fully visible case
When a network with no hidden neurons is considered

(NV ¼ N), the learning problem effectively reduces to that

of constructing a stochastic attractor neural network with

binary units. Kinetically persistent neuronal states can be

indeed observed even with asymmetric synaptic couplings

J. We will require the network to embed as stable and attrac-

tive memories an extensive set of i.i.d. random binary +1

patterns, denoted by {jm}M
m¼1, with M ¼ aN (each jm is an

N-dimensional vector and m represents a pattern index).

The number of stored patterns per neuron a is the so-called

storage load of the network.

Since the learning procedure is defined as a cyclical

minimization of a KL divergence evaluated at the M pat-

terns, the limiting case with just two dynamical steps and

infinite initial field considered in equation (2.3) can here

be reinterpreted exactly as an online optimization of the

so-called log-pseudo-likelihood:

L({jm} j Jij, u; b)

¼ 1

M

XM
m¼1

XN

i¼1

log P(si ¼ j
m
i j {s j ¼ j

m
j } j=i; l

ext ¼ 0), ð2:7Þ

which is most frequently found in an inference framework

[32,33], where the parameters of a generative model have

to be inferred from a finite set of complete observations

(see electronic supplementary material, section II A).
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Figure 2. Maximum storage load as a function of the width of the basin of
attraction for a network of N ¼ 400 visible neurons. The red and blue curves
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In this case, the update for the synaptic couplings can be

written more explicitly and allows for a clear comparison

with the standard Hebbian plasticity rule:

DJij

/ j
m
i j

m
j �

X
stþ1

i

P(stþ1
i j {s j ¼ j

m
j } j=i; l

ext ¼ 0)stþ1
i j

m
j

0
@

1
A: ð2:8Þ

The DCM rule is explicitly asymmetric, and its differential

form produces a homeostatic mechanism constantly trying

to reproduce externally induced correlations in the network

dynamics. While in the initial stages of the learning process

the synaptic weights are modified according to a typical

Hebbian prescription—potentiation in case of positive corre-

lations and depression with negative ones—the comparator

effectively avoids the possibly uncontrolled positive feedback

loop of the Hebbian principle: no change in synapses will

occur when the correlations in the absence of the stimulus

already match the ones of the learned patterns. Incidentally,

we also note that in the noise-free limit b! 1 the perceptron

learning rule is recovered (see electronic supplementary

material, section II B). In the case of si [ {� 1, þ 1} neurons,

we studied numerically the trend of the maximum storage

load achievable with the DCM rule as a function of the

required width of the basins of attraction. We introduced

an operative measure of the basin size, relating it to the

level of corruption of the memories before the retrieval: a

set of M ¼ aN patterns is considered to be successfully

stored at a noise level x if, initializing the dynamics in a

state where a fraction x of the pattern is randomly corrupted,

the retrieval rate for each pattern is at least 90% (for

additional details, see the electronic supplementary material,

section IV A). In figure 2, we compare the DCM rule with the
Hopfield model, which is known to achieve a maximum

storage load of approximately 0.14N.

If we move to the more biologically plausible scenario of

finite time-dependent external fields (equation (2.6)), we clearly

see in figure 3 that an infinite signal is actually redundant. If

the external field intensity is high enough, the recorded time-

delayed correlations carry enough information about the

pattern to be learned. If instead the signal component in the

local field is dominated by the recurrent contribution from

other neurons the dynamics becomes completely noisy. Since

the average strength of the connections between the neurons

increases with the number of stored memories, the maximum

storage load grows with the signal amplitude. Nevertheless,

the results of pseudo-likelihood are already almost saturated

at small field intensities lmax � 1, and the DCM rule

generally works well even when the stimulus intensity is rela-

tively small compared with the total recurrent input (see inset

of figure 3). The implementation details are described in the

electronic supplementary material, section IV .

We also considered an alternative model with somewhat

more biologically plausible features, using si [ {0, 1} neurons

(see the electronic supplementary material, section I ) and

sparse j
m
i [ {0, 1} patterns, and forcing the synapses to satisfy

Dale’s Law. This means that two sub-populations of excit-

atory and inhibitory neurons should be defined, the sign of

their outgoing synapses being fixed a priori. Note that this

restriction reduces the theoretical maximum capacity of the

network, although not dramatically (roughly by half [34]).

For simplicity, we restricted our analysis to the case where

only excitatory synapses are plastic and a separate inhibitory

sub-network provides a feedback regulatory effect, whose

goal is to maintain the network activity St ¼
PN

i¼1 st
i around

a desired level Nfv (the same sparsity level as the learned pat-

terns), and preventing epileptic (all-on) or completely

switched off states. We tested three different effective

models that implement an inhibitory feedback mechanism:
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‘winner takes all’ mechanism. The noise level in the retrieval phase was
set to x ¼ 0:3, while the sparsity was fixed at fv ¼ 0:5 in order to
avoid finite size effects with the relatively small networks. The curves are
interrupted at the value of a where the algorithm starts failing. (Online
version in colour.)
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(full curves). The correlation is introduced trivially: each pattern is built
by extracting spins from a biased distribution P(ji ) ¼ bd(ji � 1)þ
(1� b)d(ji þ 1). The blue curves show the scaling properties of the
capacity of the DCM rule as a function of the bias. The drop in the perform-
ance for small biases is due to finite size effects, and the performance
improves with N. The red and green curves show the results for the naive
Hebb rule and the generalized Hebb rule adapted to the biased case, respect-
ively (see the electronic supplementary material, section IV D). For larger N,
the capacity for all unbalanced cases is expected to drop to 0. All the curves
were obtained by averaging over 10 samples (error bars are smaller than the
point size). (Online version in colour.)
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(i) a generalization of the global inhibitory mechanism

described in [34], tuned such as to counterbalance the oscil-

lations of the network activity around the desired level; (ii)

a soft ‘winner-takes-all’ mechanism, effectively playing the

role of a global inhibitory unit [35–45]; and (iii) a model

with adaptive thresholds that allow the Dale’s principle

model to behave approximately like the unconstrained one.

The details, including the derivation of the parameters of

all these schemes, are reported in the electronic supplementary

material, section III. For all of them, the results are comparable

to the ones shown in figure 4.
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Figure 6. Maximum storage load as a function of the length of the diction-
ary of features. We study the critical capacity of the generalized Hebb rule
(red curve) and the DCM rule (blue curve) when the patterns are generated
as combinations of features, chosen from a dictionary of varying length L. In
the inset, the mean Pearson correlation in a dataset of 200 patterns is shown
as a function of the dictionary length. In the numerical experiments, every
feature had a fixed sparsity of f ¼ 0.1 and each pattern was obtained as
a superposition of F ¼ 6 features (see the electronic supplementary material,
section IV D). The curves were obtained by averaging over 10 samples (error
bars are smaller than the point size). (Online version in colour.)
2.2.1. Comparison with Hebbian plasticity rule
Most real-world data are inherently sparse and redundant,

so that it is crucial for a plasticity rule to be able to deal

with a pattern set exhibiting internal correlations. The

most trivial way of introducing a positive correlation

among the patterns is to bias the probability distribution

from which the patterns are extracted, i.e. using the prob-

ability distribution P(ji) ¼ bd(ji � 1)þ (1� b)d(ji þ 1) for the

pattern components, with b [ (0, 1) (b ¼ 1
2 being the unbiased

case). The Hebbian learning rule needs to be adapted for

enabling learning of biased patterns [46] (see the electronic

supplementary material, section IV D), and the modification

requires explicit knowledge of the statistics of the stimuli.

The DCM rule is instead able to adapt to the case of unba-

lanced patterns without any modification, and achieves a

much better performance, as can be seen in figure 5.

A more realistic way of introducing pattern correlations

can be studied in the si [ {0, 1} case, where it is possible to

generate a set of patterns as combinations of sparse features

drawn from a finite length dictionary (i.e. we pre-generate a

set of sparse patterns—the dictionary of features D—and

then generate each stimulus by taking a small random

subset of D and superimposing the patterns within it; see
the electronic supplementary material, section IV D). In

the limit of an infinitely large dictionary, one produces

uncorrelated patterns, but correlations set in as the length

of the dictionary is reduced. In figure 6, we show how the

DCM rule is able to take advantage of the decrease in the

information content of the patterns as the total number of

features is reduced.



0

200

400

600

800

1000

1200

0.02 0.04 0.06 0.08 0.10 0.12

sp
ur

io
us

 a
ttr

ac
to

rs

storage load a 

DMC
Hebb
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10000 independent random walks, of 200 time-steps, after a small
number of patterns were learned by the network (see the electronic sup-
plementary material, section IV B). The red curve represents the Hebb rule
(the first peak is due to finite size effects). The blue curve shows the behav-
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Another drawback of the plain Hebb rule is the introduc-

tion of spurious memories while the desired patterns are

embedded as attractors. These spurious states usually

appear in overlapping regions of the basin of attraction of

different stored memories, and are therefore referred to as

mixture states [15]. As can be seen in figure 7, the problem

of spurious attractors is almost completely avoided when

the DCM rule is employed, since it is able to store the patterns

more coherently and the basins of attraction are not likely to

interfere with each other.
2.2.2. One-shot learning
Finally, we also tested the DCM learning rule in a one-shot

online setting: each pattern is presented to the network until

it becomes a stable attractor and then is never seen again. In

this scenario, the relevant measure of the performance is the

so-called palimpsest capacity [47]: after an initial transient,

the network is expected to enter a steady-state regime in

which an old memory is lost every time a new one is learned.

Our numerical results, obtained in the si [ {� 1, þ 1} case

(figure 8), show that—quite remarkably—by simply adding

a weight regularization the DCM rule achieves an extensive

palimpsest capacity, slightly above approximately 0.05N.

This property was verified by a scaling analysis. Similar results

can be obtained in the si [ {0, 1} case only with the adaptive

threshold regulatory scheme (see the electronic

supplementary material, section IV C, for more details).

Another local learning rule that is known to perform well

in an online setting was proposed by Storkey [48], and reads

DJij ¼ DJ ji / (jmi j
m
j � hij

m
j � h jj

m
i ), ð2:9Þ

where hi ¼
P

k Jikjk are the local fields. The last two terms can

penalize the weights when the memory is already stored (hi

has the same sign of ji ) and the local field becomes exces-

sively large, building a regularization mechanism directly

into the learning rule. Limiting the growth of the synaptic
weights is in fact necessary in order to avoid entering a

spin glass phase, where all the memories are suddenly lost

and learning can no longer take place [49]. However, Stor-

key’s rule fails when tested against our retrieval criterion in

a finite temperature setting (we are setting b ¼ 2 in the

parallel Glauber dynamics). This not only shows that the

DCM is able to embed attractors arbitrarily robustly (depend-

ing on the temperature considered during training), but also

stresses the fact that the retrieval criterion that was employed

throughout this paper is very strict compared to alternative

definitions. For example, if we consider the criterion proposed

in [48] the DCM rule palimpsest capacity is measured to be as

high as approximately 0.3N.

2.3. Adding hidden neuronal states
When hidden neurons are introduced, the stochastic neural

network turns into a rather general computational device,

which can be framed as a parametric probabilistic model

able to develop an internal representation of the statistics of

external stimuli. This kind of neural network could recover

a partially corrupted memory, as in an attractor neural net-

work, but it could also be exploited as a generative model,

able to produce new samples in accordance with the statistics

inferred from the training data.

Even in the case with undirected symmetric synaptic

couplings—the Boltzmann machine—the inference and learn-

ing problems become NP-hard, since the time required for

the dynamics to reach thermal equilibrium is bound to

grow exponentially with the network size [50]. A well-

studied solution to these problems is to consider a simplified

synaptic structure, in which the connections of the network

are restricted to the ones between visible and hidden neurons,

the so-called restricted Boltzmann machine (RBM) [51]. We

will focus on the same rigid architecture.

The DCM learning rule can still be understood in a KL

minimization framework. As before, in the infinite signal

limit, we obtain a log-pseudo-likelihood optimization pro-

cedure, except that now the inference is from incomplete
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observations and an average over all the possible hidden

neuronal states is required (see the electronic supplementary

material, section VI). In this limit, the synaptic couplings are

updated as

DJij / P(s j j sV ¼ j)jis j

�
X
s[H

Y
k[H

P(sk j sV ¼ j)P(s0i j sH)s0is j: ð2:10Þ

This equation is closely linked to the CD-k method,

a heuristic algorithm for approximating the maximum-

likelihood method for RBMs [21]. The first term in equation

(2.10) requires sampling from the probability distribution of

the hidden neuronal state induced by a clamping stimulus

on the visible neurons, as in the positive phase of CD-k,

while the second term can be estimated by implementing a

Gibbs sampling chain starting from a visible state prepared

in correspondence of the stimulus but subject to no external

field, as in CD-k’s negative phase. This relationship could

shed some light on the apparently surprising performance

that can be obtained with CD, even when a very small

number of Gibbs sampling steps k is chosen: this means

that the partition function of the model is estimated very cru-

dely, restricting sampling only to the mode induced by the

seed of the Gibbs chain. This is in fact what the pseudo-like-

lihood method would require [24]. CD-k, however, is defined

in the context of models with symmetric interactions and there-

fore does not apply to asymmetric kinetic models of the type

considered throughout this work.

In the presence of hidden neurons, we can still apply the

heuristic prescription described above (equation (2.6)), yield-

ing a plasticity rule that matches time-delayed correlations,

recorded during the network dynamics. In order to test

numerically how a biologically plausible system could per-

form against a state-of-the-art learning method, we also

derived the TAP mean-field equations [52] for approximating

the steady-state distribution of the neural states and the time-

delayed correlations (see the electronic supplementary

material, section V, for their analytical derivation) in a

sparse asymmetric network.

In the electronic supplementary material, section VI, we

consider the problem of learning the statistics of a dataset of

real-world images [53]. The performance of the DCM rule is

assessed in the customary feature extraction, generative and

classification tasks and compared with that of the TAP

approach, on the same neural network architectures. While

there is an obvious degradation in the learning performance,

we also observe that the robustness of our learning model is

still allowing the network to learn despite the presence of

noise and strict detrimental biological constraints.
3. Discussion
In this work, we studied the problem of learning in general

stochastic neural network models. Starting from a KL diver-

gence minimization condition, we derived analytically a

differential update rule closely related to the maximum

pseudo-likelihood method, able to store an ensemble of

patterns of neuronal activity, conveyed to the network in

the form of external fields. With some slight modifications,

we obtained a version of the rule that allowed us to introduce

a number of important requirements for biological
plausibility, concerning not only the network structure but

the learning process as well. We further showed that all the

needed information could be collected during the dynamics

of the network by some kind of short-term memory mechanism,

locally keeping track of correlations, and that the updates could

be implemented by a comparator simply trying to maintain

externally induced correlations by incrementing the synaptic

weights.

Our DCM learning rule bears great resemblance with

classical Hebb plasticity, in that synaptic modifications are

driven only by the information about activity correlations

locally available at the synapse. However, the DCM rule

can be applied in a general framework where asymmetric

synapses are allowed, at odds with the previous learning

paradigms. Moreover, the rule relies on finite external signals,

that are not able to quench the network dynamics completely.

Apart from retaining a higher biological plausibility, this is

one of the reasons why this rule can embed an extensive

number of patterns while minimizing the pattern cross-talk,

avoiding the creation of spurious memories. The stochastic

network becomes capable of learning in a purely online

context, including in the extreme limit of one-shot learning.

The differential form of the plasticity rule also allows for a

good retrieval performance when the memories are corre-

lated, both in the case of simply biased memories and in

the case of patterns obtained as combinations of features. In

the sparse case, we showed the robustness of the DCM rule

to the introduction of the excitatory–inhibitory differen-

tiation constraint (Dale’s principle), and proposed various

inhibitory mechanisms which proved to be able to control

the activity level of the network and to prevent the dynamics

from reaching epileptic states.

Finally, we showed how the very same learning rule

allows a more general network, in which hidden neurons

are added, to perform well in feature extraction, generation

and classification tasks, when dealing with real-world data.

By means of comparison with a state-of-the-art method, we

argue that, by implementing the proposed learning rule, a

stochastic neural network obeying strong biological require-

ments could preserve great modelling potential. In

particular, the similarities with Boltzmann machine learning

[20,51] (see also below) suggest that the DCM rule may be

a viable candidate for feature extraction and inference: for

example, in experiments with patterns formed from combin-

ing features from a dictionary (as for those of figure 6), we

may hope to recover the individual features as internal rep-

resentations in the hidden part of the network. We

performed preliminary experiments in this direction and

the results are indeed promising. In this paper, however,

our numerical analysis was limited to the well-studied case

of directed visible-to-hidden synapses and digit recognition,

and the exploration of hybrid and more general architectures

and tasks is left for future work.

Future possible research directions include the generaliz-

ation of this learning framework to continuous-time

dynamics and more realistic spiking network models, and

the problem of learning dynamical activation patterns instead

of static ones. It must be noted that the idea of learning recur-

rent weight matrix in a network model by matching some

measure of a driven system to that of an autonomous one

is not new. The general strategy for stabilizing dynamical pat-

terns has been rediscovered under several denominations in

the broad context of reservoir computing and generally
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involves the matching of local currents [54–56], with notable

examples both in the discrete time-step deterministic setting

[57] and in spiking network models [58,59]. These models

have the advantage of capturing the dynamical complexity

of neural systems. We note that, on the other hand, they

rely on some non-local learning strategies.

Our model also shares some similarities with the Equili-

brium Propagation algorithm (EP) for energy-based models

of [60], but with some crucial differences. The main similarity

relies in the fact that the resulting update rule for the synaptic

weights uses the difference between the correlations

measured with the network in a weakly clamped state

(using the EP terminology) and a free state. This is also remi-

niscent of the original algorithm for training Boltzmann

machines proposed in [20]. The major difference in our

model is the use of time-delayed correlations, which stems

from the different approach used in our derivation and

allows us to work in the general setting of asymmetric synap-

tic connections—indeed, the synaptic symmetry in the EP

approach was regarded by the authors as its most unsatisfac-

tory requirement from a biological perspective. Additional

important differences arise from the overall setting and deri-

vation: in the EP case, the context is supervised learning, the

inputs are fully clamped and drive the network towards an

equilibrium (in the free phase), after which the outputs are

weakly clamped (the limit of vanishing clamping is con-

sidered) and the weights updated accordingly. In our case,

the context is unsupervised learning, there is no preliminary

equilibration step (the network is not reset between pattern

presentations), and the external driving force is relatively

weak but non-vanishing (it decreases to zero gradually as

training progresses).
In [61], in the context of diluted neural networks, the

authors used as a learning criterion the matching of equal-
time correlations, still comparing a system driven by a finite

field with a freely evolving one. In that case, however, the

connections were assumed to be symmetric, and the corre-

lations were estimated with the Belief Propagation

algorithm. At odds with these approaches, we presented a

formulation in terms of delayed activity correlations that,

while requiring a time integration mechanism, is completely

local, and is used to construct general excitatory–inhibitory

asymmetric networks. Another attempt at devising a learning

protocol with good performances and subject to basic bio-

logical constraints was presented in [34], exploiting the

statistics of the inputs rather then the dynamical properties

of the network. The resulting ‘three thresholds’ learning

rule (3TLR) shares with the DCM rule most desirable features

for a biological system, e.g. it can achieve near-optimal

capacity even with correlated patterns. A detailed compari-

son of the performance of the two rules is technically and

computationally demanding and unfortunately out of the

scope of this work, but the 3TLR seems to require stronger

driving external fields; furthermore, lowering the field results

in an abrupt performance drop, while the DCM rule

degrades gracefully (cf. figure 3).
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9. Rogan MT, Stäubli UV, LeDoux JE. 1997 Fear
conditioning induces associative long-term
potentiation in the amygdala. Nature 390,
604 – 607. (doi:10.1038/37601)

10. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. 2006
Learning induces long-term potentiation in the
hippocampus. Science 313, 1093 – 1097. (doi:10.
1126/science.1128134)

11. Ben-Yishai R, Bar-Or RL, Sompolinsky H. 1995
Theory of orientation tuning in visual cortex. Proc.
Natl Acad. Sci. USA 92, 3844 – 3848. (doi:10.1073/
pnas.92.9.3844)

12. Sadeh S, Clopath C, Rotter S. 2015 Emergence of
functional specificity in balanced networks with
synaptic plasticity. PLoS Comput. Biol. 11, e1004307.
(doi:10.1371/journal.pcbi.1004307)

13. Compte A, Brunel N, Goldman-Rakic PS, Wang X-J.
2000 Synaptic mechanisms and network dynamics
underlying spatial working memory in a cortical
network model. Cereb. Cortex 10, 910 – 923.
(doi:10.1093/cercor/10.9.910)

14. Zhang K. 1996 Representation of spatial orientation
by the intrinsic dynamics of the head-direction cell
ensemble: a theory. J. Neurosci. 16, 2112 – 2126.
(doi:10.1523/JNEUROSCI.16-06-02112.1996)

15. Amit DJ. 1989 Modeling brain function: the world of
attractor neural networks. New York, NY: Cambridge
University Press.

16. Hopfield JJ. 1982 Neural networks and physical
systems with emergent collective computational
abilities. Proc. Natl Acad. Sci. USA 79, 2554 – 2558.
(doi:10.1073/pnas.79.8.2554)

17. Hopfield JJ. 1984 Neurons with graded response
have collective computational properties like
those of two-state neurons. Proc. Natl Acad. Sci.
USA 81, 3088 – 3092. (doi:10.1073/pnas.81.10.
3088)

18. Amit DJ, Brunel N. 1997 Model of global
spontaneous activity and local structured activity
during delay periods in the cerebral cortex. Cereb.
Cortex 7, 237 – 252. (doi:10.1093/cercor/7.3.237)

19. Hinton GE, Sejnowski TJ. 1983 Optimal perceptual
inference. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, Washington, DC, USA, June
1983, pp. 448 – 453. Piscataway, NJ: IEEE Press.

20. Ackley DH, Hinton GE, Sejnowski TJ. 1985 A learning
algorithm for Boltzmann machines. Cogn. Sci. 9,
147 – 169. (doi:10.1207/s15516709cog0901_7)

21. Carreira-Perpinan MA, Hinton GE. 2005 On
contrastive divergence learning. In Aistats, vol. 10

http://dx.doi.org/10.1016/j.pneurobio.2009.01.006
http://dx.doi.org/10.1371/journal.pcbi.1000886
http://dx.doi.org/10.1523/JNEUROSCI.19-06-02209.1999
http://dx.doi.org/10.1167/6.11.8
http://dx.doi.org/10.1371/journal.pcbi.1002211
http://dx.doi.org/10.1038/361031a0
http://dx.doi.org/10.1038/361031a0
http://dx.doi.org/10.1038/37601
http://dx.doi.org/10.1126/science.1128134
http://dx.doi.org/10.1126/science.1128134
http://dx.doi.org/10.1073/pnas.92.9.3844
http://dx.doi.org/10.1073/pnas.92.9.3844
http://dx.doi.org/10.1371/journal.pcbi.1004307
http://dx.doi.org/10.1093/cercor/10.9.910
http://dx.doi.org/10.1523/JNEUROSCI.16-06-02112.1996
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1073/pnas.81.10.3088
http://dx.doi.org/10.1073/pnas.81.10.3088
http://dx.doi.org/10.1093/cercor/7.3.237
http://dx.doi.org/10.1207/s15516709cog0901_7


rsfs.royalsocietypublishing.org
Interface

Focus
8:20180033

10
(eds RG Cowell, Z Ghahramani), pp. 33 – 40. Society
for Artificial Intelligence and Statistics.
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