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Abstract

We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in

lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-2H2]glucose, i.e., D2-glucose, and

[3-13C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB])

blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n = 12, all male) were

entered into the study after consent of patients’ legal representatives. Written and informed consent was obtained from

healthy controls (n = 6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for

glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7 – 2.2 days (range

of days 2–10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was

largely cleared by greater (hepatic + renal) glucose production. After TBI, gluconeogenesis from lactate clearance ac-

counted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude

that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal

glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As

such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the

brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may

provide substrate directly to vital organs of the body, including the injured brain.
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Introduction

Once thought to be the consequence of oxygen deficits in

contracting skeletal muscle, we now know that lactate is

formed and used continuously in diverse cells under fully aerobic

conditions. In fact, as the product of one metabolic pathway (gly-

colysis), and the substrate for a downstream pathway (mitochondrial

respiration), lactate can be regarded as the link between glycolytic

and aerobic pathways. Importantly, according to the lactate shuttle

hypothesis, this linkage can transcend compartment barriers and

occur within and between cells, tissues, and organs.1–3 In contrast to

its early portrayal as a metabolic waste product and poison, lactate is

part of a feedback loop. Short-term challenges to adenosine tri-

phosphate (ATP) supply stimulate lactate production, leading to

short- and long-term cellular adaptions to support ATP homeostasis.

At the whole-body level, lactate metabolism is understood to be

important for at least three reasons: (1) lactate is a major energy

source4–8; (2) lactate is the major gluconeogenic precursor9–12; and

(3) lactate is a signaling molecule with autocrine-, paracrine- and

endocrine-like effects and has been called a ‘‘lactormone.’’2,3,13

‘‘Cell-cell’’ and ‘‘intracellular lactate shuttle’’ concepts describe

the roles of lactate in delivery of oxidative and gluconeogenic

substrates as well as in cell signaling.2,3 Examples of the cell-cell

lactate shuttles include lactate exchanges between white-glycolytic

and red-oxidative fibers within a working muscle bed and be-

tween working skeletal muscle and heart, liver, kidneys, and
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brain.5,8,10,14–16 Examples of intracellular lactate shuttles include

cytosol-mitochondrial,17,18 and cytosol-peroxisome exchanges.19

Subsequent to and coincident with findings of high rates of

lactate flux, oxidation, and gluconeogenesis (GNG) in healthy ro-

dents20,21 and humans during rest and submaximal exercise6,10

were observations that lactate traverses membrane barriers by fa-

cilitated, carrier-mediated lactate anion and proton exchange22–24

involving a family of lactate/pyruvate monocarboxylate transport

(MCT) proteins.25–27 MCT protein isoform expression patterns

vary with muscle fiber type28,29 and are expressed in tissues and

cellular organelles that rapidly exchange lactate, including the

brain.19,30,31 Further, cerebral MCT expression is rapidly increased

after neurotrauma in rats.32

The roles of lactate as a metabolic substrate and critical signaling

molecule continue to gain support with ongoing research.33,34 As in

the intact functioning humans35,36 and in working human skeletal

muscles of those persons4,8 and in the heart,14–16 lactate is preferred

over glucose as a fuel in brain preparations.37–39 The astrocyte-

neuron lactate shuttle posits that lactate is extruded by astrocytes

and then actively consumed and oxidized by neurons involved in

glutamatergic signaling.40 Relevant to lactate shuttling in the brain,

neurons possess the cellular components necessary for glucose

uptake and use by an intracellular lactate shuttle,30 and a post-

trauma neuroprotective role of lactate has been proposed.41,42

Acutely, TBI results in cerebral hyperglycolysis,43 which is fol-

lowed by suppressed cerebral glucose uptake (cerebral metabolic

rate glucose [CMRglc]) and oxygen consumption (CMRO2), but

increased net lactate uptake (CMRlac)44 and improved outcomes

when cerebral lactate uptake occurred in patients with TBI. Im-

portantly, ongoing research on animal models has been translated

to both experimental45 and clinical studies on humans.46–48

At both systemic and cerebral levels, it is clear that glucose-

lactate interactions are essential in normal physiology as well as

pathophysiology after TBI. Observations of blood metabolite

concentrations gave rise to the hypothesis that lactatemia and

hyperglycemia are linked via GNG in a precursor-product rela-

tionship after TBI, as they are during other conditions. Indeed,

we are not alone in positing that there exists a relationship

among lactatemia, GNG, and hyperglycemia after TBI. Recently,

we experimented with intensive insulin therapy to moderate

hyperglycemia after TBI,49 whereas others have experimented

with glucagon50 or with a combination of glucagon and insulin51

administration to normalize glycemia and curb glutamate ex-

citoxicity after TBI.

To better understand the relationships among lactatemia, gly-

cemia, and cerebral substrate supply and metabolism in persons

with TBI, our studies take the novel approach of using two stable

isotope tracers to study the metabolic fates of glucose and lactate in

patients with TBI. In this report, we describe a massive mobiliza-

tion of body carbohydrate stores in the form of lactate to support

hepatic and renal GNG, thereby indirectly supplying glucose,

supporting the nutrient needs of the injured brain. In a companion

report, we describe cerebral glucose-lactate interactions in patients

with TBI and normal controls.52

Methods

Patients with TBI

Methodological details have been reported previously,49 but
are abbreviated here for the convenience of readers. Patients with
moderate or severe head injuries, aged 16 and older, were ad-
mitted to the University of California, Los Angeles (UCLA)

Medical Center within 24 h of injury. Moderate or severe head
injury was defined as closed injury with a post-resuscitation
Glasgow Coma Scale (GCS) score less than or equal to 13, or
deterioration to a GCS less than or equal to 13 within 24 h of
admission, and necessitating mechanical ventilation and intra-
cranial pressure (ICP) monitoring.44 Exclusion criteria included
the following: (1) terminal illness, (2) severe neurologic illness,
and/or (3) acute complete spinal cord injury. UCLA and the
University of California, Berkeley (UCB) Institutional Review
Boards approved this protocol, and informed consent was ob-
tained from patients’ legal representatives.

Patients were admitted to the intensive care unit (ICU) after
initial stabilization or surgical evacuation of an intracranial he-
matoma and treated in accordance with the 2007 Brain Trauma
Foundation and American Association of Neurological Surgeons/
Congress of Neurological Surgeons TBI Guidelines.53 Manage-
ment goals included maintenance of ICP less than 20 mm Hg and
cerebral perfusion pressure (CPP) above 70 mm Hg, in accordance
with the guidelines for the management of severe head injury. All
patients had arterial and jugular bulb ( JB) catheters inserted as soon
as possible after admission to allow determination of arteriovenous
differences (a-v) for glucose (AVDglu), lactate (AVDlac), and
oxygen (AVDO2).

For sampling of venous blood from the brain, the dominant
jugular vein was visualized on admission by means of CT scanning.
Using standard techniques, a 5F Cordis and a 4F Oxymetric cath-
eter (Baxter Critical Care, Baxter Health Care, Deerfield, IL) were
inserted to approximately 15 cm until resistance was encountered.
Placement of the catheter was confirmed by lateral skull radiology.
The catheter was calibrated in vivo, and repeated calibration was
performed every 12 h. Light intensity and oxygen saturation were
continuously displayed on the monitor.

For patient care, arterial and venous samples were scheduled
every 24 h during post-injury days 0 to 5, 7, and 9; 133xenon-
measured cerebral blood flow (CBF) was scheduled for every 12 h
for the first 48 h after injury (post-injury days 0 and 1), then daily on
post-injury days 2, 3, 4, 5, 7, and 9. In this study, to assess the
relationship of early brain metabolism to long-term outcome, only
metabolic data obtained from post-injury days 0 to 5 were used,
given that many patients did not have complete data on post-injury
days 7 and 9. Because of the patients’ clinical status, such as se-
verely elevated ICP (ICP > 30 mm Hg), hemodynamic or respira-
tory instability, or removal of the jugular catheter or extubation
after clinical improvement, it was not possible for all scheduled
studies to be completed on all patients.

For the conduct of isotope tracer studies, stable, nonradioactive
D2-glucose and [3-13C]lactate isotope tracers were infused (vide
infra), 6 – 2 days (range of days 2–10) after admission to the ICU
when informed consent had been obtained. All glucose-containing
intravenous tube feeds were discontinued before isotope infusion.
All enteral feeding was either Osmolite 1.2 or 1.5 (Abbott, Co-
lumbus, OH) and was continued during the isotope infusion. De-
termination of the rate of caloric delivery was at the discretion of
the attending physician.

Healthy control subjects

Six healthy, nonsmoking, weight-stable volunteers (28.25 – 8.22
years) were recruited from the UCLA campus and the surrounding
community by posted notices and Internet advertisements. Subjects
were admitted into the study if they met the following criteria: (1)
were diet and weight stable for > 6 months; (2) were not taking
medications; (3) had normal lung function (forced expiratory vol-
ume in 1 sec of 70% or more); and (4) were disease and injury free
as determined by a health history questionnaire and physical ex-
amination. Control subjects received local anesthetics for catheter
placements and experimental procedures. Details for this technique
were described previously.44 Briefly, through use of a femoral vein
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approach, a JB catheter was inserted under fluoroscopic guidance
into proper position in the JB. A radial arterial line was also placed.
Again, Institutional Ethical Review Boards approved the protocol,
and subjects provided written informed consent. Diet records were
not recorded in the control group.

Experimental protocol control subjects reported to the laboratory,
and patients were studied as described above. Before tracer infu-
sions, a blood sample was collected from the radial artery and JB
catheter for measurement of background isotope enrichments of
glucose and lactate. Next, subjects received a primed continuous
infusion of D2-glucose and [3-13C]lactate while resting semi-supine
for 90 min. The priming bolus for glucose was equal to 125 times the
resting glucose infusion rate. Subsequently, D2-glucose was infused
at 2 mg/min. The priming bolus for lactate was equal to 23 times the
resting lactate infusion rate that was at 2.5 mg/min.4,54 Isotopes were
obtained from Cambridge Isotope Laboratories (Woburn, MA), di-
luted in 0.9% sterile saline, and tested for sterility and pyrogenicity
before use (UCLA Pharmaceutical Services). Tracers were admin-
istered via an indwelling intravenous catheter placed in the arm.

Arterial and JB blood samples (1–2 mL) were collected simul-
taneously every 60 min for 3 h after commencement of tracer in-
fusion. Cannulas were flushed with an equivalent amount of 0.9%
saline after each collection.

Processing and analysis of blood

Blood samples were immediately transferred to ice-chilled tubes
containing 0.6 M of perchloric acid, shaken, and stored on ice until
the end of the experiment. Within 1 h of collection, perchloric acid
extracts were centrifuged (10 min at 3000 rpm, = 2000 G), 4�C),
and the supernatants were transferred to separate tubes for storage
at - 20�C until further analysis. In this investigation, glucose and
lactate flux rates are presented in units of mg/kg/min instead of mMol/
kg/min to facilitate comparisons between metabolite flux rates.

Blood (lactate) was measured in neutralized perchloric extracts
using an enzymatic method in addition to mass spectrometry as
described previously4,36 with (U-13C3)lactate as an internal stan-
dard. Blood lactate isotopic enrichment (IE) was determined using
gas chromatography/mass spectrometry (GCMS: GC, model 6890
series; MS, model 5973N, Agilent Technologies, Danbury, CT) of
the N-propylamide heptafluorobutyrate derivative.55 Briefly, neu-
tralized perchloric extracts were lyophilized, resuspended in
200 lL of 2,2-dimethoxypropane and 20 lL 10% HCl in methanol,
capped, and incubated at room temperature for 60 min. After the
addition of 50 lL of N-propylamine, the samples were heated at
100�C for 30 min, dried under a stream of N2, and transferred to
GCMS vials using ethyl acetate. Thereafter, the samples were dried
under N2, derivatized by adding 20 lL of heptafluorobutyric an-
hydride (5 min at room temperature), dried again under N2, and
resuspended in ethyl acetate for GCMS analysis. Methane was used
for chemical ionization with selected ion monitoring for mass to
charge ratios (M/Z) of 328 (unlabeled lactate), 329 (tracer labeled
lactate), and 331 ([U-13C3]lactate internal standard), respectively.

Blood glucose concentrations and IEs were determined by
GCMS of the pentaacetate derivative and (U-13C6)glucose as in-
ternal standard. Glucose sample preparation was performed as
described previously.4,56 Methane was used for chemical ioniza-
tion, and selective ion monitoring was performed for M/Z of 331
(unlabeled glucose), 332 (M + 1 glucose), 333 (D2-glucose), and
337 ([U-13C6]glucose internal standard). Selected ion abundances
were compared against external standard curves for calculation of
both concentration and IE, with normalization to internal standard
signal for determination of concentration.

Calculations of whole body metabolism

Whole body substrate (glucose and lactate) rates of appearance
(Ra, mg/kg/min) and disappearance (Rd, mg/kg/min) were calcu-

lated using the equations of Steele57 as modified for use with stable
isotopes58:

Ra¼ F�V ([C2þC1]=2) ([IE2� IE1] = ([t2� t1])

([IE2þ IE1] = 2)

Rd¼Ra�V [(C2�C1) = (t2� t1)]

where: F is the tracer infusion rate, Ci is the metabolite concen-

tration at time ti, IE is the isotopic enrichment of either D2-glucose

or (3-13C)lactate, and V is the volume of distribution for glucose59

and lactate.7

The percentage of glucose from GNG was calculated as de-
scribed previously by Bergman and associates,4 derived from that
of Zilversmit and colleagues60 as follows:

Glucose Ra from GNG (%)¼ (100 · [glucose Mþ 1 IE] · H)

= Lactate IEa

where: glucose M + 1 IE is the isotopic enrichment of 13C-glucose

derived from lactate tracer and H is the factor to correct for loss of

label in the tricarboxylic acid cycle during GNG and was assumed

to be 1.45.9,10,59,61–64

Statistical analysis

Data descriptions and testing were conducted in R version
2.15.1.65 Groups were compared both with the conventional t test
and its robust analogue, the Yuen test,66 because of the presence of
nonnormality in the data distributions.67

Results

Patient status and control subject descriptors

Demographic and anthropometric data on study participants are

provided in Table 1.

Glucose. Over the course of measurement, arterial glucose

concentration ([glucose]) was constant in controls and in patients

with TBI, but there was a nonsignificant trend of higher glucose in

TBI than in controls (Fig. 1A). For both populations, JB glucose

concentrations were significantly lower than arterial values, re-

flecting significant cerebral net glucose uptake (i.e., positive

CMRgluc). Within 90 min of the commencement of tracer infusion,

D2-glucose isotopic enrichments (IEs) were constant in jugular and

arterial blood in both control subjects and patients with TBI (ar-

terial values shown, Fig. 2A). Comparing the two populations,

there were no significant changes in IEs of simultaneously sampled

Table 1. Demographics and Anthropometrics

of Patients with Traumatic Brain Injury

and Healthy Controls

Parameter
Patients
with TBI

Healthy
controls p

N 12 6 -
Age (years) 35.8 – 18. 8 28.2 – 8.2 0.36
Sex (% female) 0 17 0.00
Post-resuscitation GCS 6 – 3 NA -
Craniotomy for hematoma (%) 50% NA -
Weight (kg) 77.6 – 11.1 kg 66.2 – 9.2 0.04

GCS, Glasgow Coma Scale score.
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glucose in arterial and JB blood. While constant over time, median

IEs tended to be lower in patients with TBI compared with healthy

controls. Because of greater variability in D2-glucose IEs in patients

with TBI, however, IEs were not significantly different between

groups over time ( p > 0.05). Hence, the apparent increase in whole-

body glucose Ra after TBI was not significantly different (Fig. 3A).

Lactate. Like [glucose], arterial [lactate] was constant in both

populations but slightly depressed after TBI compared with con-

trols (Fig. 1B). The lower, as opposed to higher, blood lactate levels

after TBI reflect their status as patients in the ICU 5.7 – 2.2 days

post-injury,44 well beyond the immediate post-injury state of hy-

perglycolysis.43

As with the glucose tracer, within 90 min of the commencement

of tracer infusion, [3-13C]lactate isotopic enrichments were con-

stant in jugular and arterial blood in both control subjects and pa-

tients with TBI (Fig. 2B). For both populations, IEs were

significantly lower in simultaneously sampled JB than in arterial

blood because of the presence of cerebral lactate production and

admixture to the venous effluent ( p = 0.035 for TBI and p =
< 0.001 for control subjects). Importantly, mean arterial lactate IEs

were constant over time of measurement and significantly lower in

patients with TBI than in control subjects (Fig. 2B) ( p < 0.001).

FIG. 1. Violin plot of arterial glucose (A) and lactate concen-
trations (B) in control subjects and patients with traumatic brain
injury (TBI). Solid lines represent patients with TBI (n = 12) while
dashed lines are normal control subjects (n = 6). This and subse-
quent figures depict the following components: median (light
circle), mean (horizontal line), standard deviation (heavy vertical
bar), box-plot whisker (thin vertical bar), and a kernel density
estimation of the data distribution (replacing the box-plot’s rect-
angular depiction) following Hintze and Nelson80 as visualized by
R package ‘‘Caroline.’’63 TBI are solid border, controls are da-
shed. Values were constant over time, so mean values for min 60,
90, and 120 min are shown.

FIG. 2. Violin plot of arterial D2 glucose (A) and 13C-lactate (B)
isotopic enrichments (IE). Solid lines represent patients with trau-
matic brain injury (TBI) (n = 12) while dashed lines are normal
control subjects (n = 6). Panel (A) arterial glucose IE control sub-
jects (dashed lines) compared with patients with TBI ( p > 0.05).
Panel (B) arterial lactate IEs are significantly lower in patients with
TBI than healthy control subjects ( p < 0.001). Values at 90, 120,
and 150 min of study were shown to demonstrate constancy of
arterial glucose and lactate IEs over the course of study.
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Given that tracer infusion rates were the same in control subjects

and patients with TBI, lower (3-13C)lactate isotopic enrichments in

patients with TBI meant 71% higher lactate appearance (Ra, pro-

duction) and disposal (Rd, removal) rates after TBI (Fig. 3B)

( p < 0.05). The significant increase in lactate flux after TBI could

not have been suspected from measurements of arterial lactate

concentrations alone (Fig. 1B).

After TBI, glucose M + 1 IEs were significantly increased (25%,

p < 0.03) from IEs of control subjects in both arterial and JB sam-

ples (Fig. 4). In controls, the percent contribution of lactate to

glucose production approximated 15.2% as seen previously.9 As a

result of far greater hepatic and renal conversion of lactate to

glucose, however, after TBI, the percent glucose Ra from GNG

increased significantly to 67.1% ( p < 0.03), a four-fold increase

over control subjects (Fig. 5). Again, the dynamic role of lactate in

supporting glycemia was not evident in either the normative and

unwavering blood glucose or lactate concentration responses

shown in Figure 1. For TBI and in general, constancy of blood

glucose and lactate concentrations means only that RayRd, but no

information could be extracted about the flux or metabolite inter-

conversion rates. Thus, a novel aspect of this study was that the use

of tracers revealed previously undetected effects of trauma on

whole-body and cerebral lactate metabolism.

Discussion

Maintaining cerebral nutrient delivery is always a primary

physiological priority, especially after brain injury. Support for

FIG. 3. Violin plot of whole-body glucose (A) and lactate
production, appearance rates, Ra (B) in control subjects (dashed
lines) and patients with TBI (solid lines). Glucose production
tended to be higher after traumatic brain injury (TBI), but values
were NSD, p > 0.05. Whole body lactate production was signifi-
cantly great in patients with TBI than control subjects, p < 0.05.

FIG. 4. Violin plot of incorporation of M + 1 label from infused
lactate tracer into glucose in healthy controls (dashed lines) and
patients with traumatic brain injury (solid lines). Trauma signifi-
cantly greater than control, p < 0.05.

FIG. 5. Violin plot of percent contribution of lactate to glucose
production (gluconeogenesis, GNG) in healthy controls (dashed
lines) and patients with traumatic brain injury (TBI) (solid lines).
Values are significantly greater after TBI, p < 0.05. Trauma caused
a major change in GNG from lactate.
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cerebral nutrient delivery is achieved by mechanisms that operate

within the brain as well as by systemic responses. In this report, we

describe the peripheral support responses by which the body serves

to fuel the brain. Endogenous fueling of the brain after TBI is

accomplished mainly via the mobilization of total body glycogen

reserves and the production of lactate. Lactate is the major gluco-

neogenic precursor in healthy, postabsorptive persons,9,11 but we

now show that the role of lactate as a gluconeogenic precursor is

markedly elevated after TBI. In a resting post-absorptive person,

glucose flux typically exceeds the lactate flux,10 but not during

exercise, when lactate flux can be greater than glucose flux,4,9,68 or

after TBI (Fig. 3B). After TBI, both lactate and glucose production

are increased; a significant amount of the lactate produced is

cleared via GNG, which in turn supports glycemia and, ultimately,

cerebral glucose uptake. Together, the present report, in conjunc-

tion with our companion article in which we describe simulta-

neously measured cerebral glucose and lactate kinetics reveal the

presence of major hepatic and extrahepatic functions in supporting

metabolic needs in the brain after TBI.52

Novel features of this investigation include the use of isotope

tracers; the tracer approach provides new and important data on

whole-body and cerebral metabolite fluxes and their interactions

that were not apparent in either arterial metabolite concentration or

AVD metabolite data. Arterial and JB glucose concentrations and

corresponding IEs were stable during the period of observation

(Fig. 1, 2), showing the results to be reliable and reproducible.

Similarly reproducible were determinations of glucose and lactate

IEs. In that context, equivalent glucose IEs in simultaneously

sampled arterial and JB blood were important because of long-

standing conclusions on the lack of cerebral glucose production and

GNG because of the lack of gluconeogenic bypass enzymes and

glucose 6-phosphatase in brain cells. Because the AVD measure-

ments of glucose IE were negligible, the results mean that there was

no significant contribution to the brain glucose supply, such as the

action of de-branching enzymes that could release unlabeled glu-

cose during the degradation of brain glycogen.

The importance of isotope tracers in this study is indicated by

lactate isotopic dilution measurements (Fig. 3B), and by incorpo-

ration of 13C, from infused [3-13C]lactate, into circulating glucose

(Fig. 4). After TBI, GNG from lactate is the major contributor to

hepatic and renal glucose production (Fig. 5), and this phenomenon

would have been missed had only blood glucose and lactate mea-

surements been available.

Isotopic dilution measurements showed that lactate turnover

was significantly increased after TBI. As seen by the secondary

labeling of glucose from infused lactate tracer, in large measure,

much of the isotopic dilution of lactate tracer was attributable to

diversion to glucose in the process of GNG. The four-fold ele-

vation in GNG, however, could not explain the entire elevation in

lactate turnover after TBI (Fig. 3B). Augmented whole-body

lactate production after TBI was unlikely to involve a negative

feedback mechanism involving changes in blood [glucose] be-

cause systemic glucose concentration was little changed after TBI

(Fig. 1). Rather, another most likely sympathetically driven

mechanism of peripheral glycogenolysis was responsible for el-

evated lactate flux rates after TBI that rival those observed during

hard physical exercise.4,36,69

Results of our investigation indicate that caution needs to be

applied when using the term ‘‘lactate clearance’’ as a biomarker

for the severity of traumatic injury.77 Without the use of isotope

tracers, clearance is calculated as a net metabolite change over

time with lactatemia and lactic acidosis harbingers of poor

outcome. In our investigation, we infused [3-13C]lactate tracer to

determine the metabolic clearance rate (MCR = Rd/[lactate]a),

units being (mL/kg/min). In our investigation, lactate production

(Ra) and disposal (Rd) rates were significantly elevated after

TBI (Fig. 3B, Rd shown), while arterial lactate concentration

([lactate]a) was the same in control subjects and patients with

TBI (Fig. 1B). Ordinarily, a greater Rd, but similar blood [lac-

tate] would mean increased lactate MCR after TBI (Fig. 6).

However, because of variability in the measurements, there was

no significant change in lactate MCR after TBI. Additional

tracer studies will be needed to establish the relationship be-

tween lactate MCR and outcome after TBI.

Since the classic studies of Meyerhof70 and of Hill and Lupton,71

it has widely been assumed that elevations in circulating lactate are

attributable to oxygen insufficiency in skeletal muscle. Those his-

toric assumptions pose problems for the interpretation of diverse

sets of data, because hypoxemia did not occur in our studies. Fur-

ther, we now know that lactate is produced in muscle under fully

aerobic conditions,2,63,72 and like the beating heart, working muscle

can be a net lactate consumer.62,73 Because of its mass and dynamic

range of metabolism, muscle adds lactate to the systemic circula-

tion.4,62,63 Under sympathetic stimulation, other tissues, such as the

integument, also contribute to the circulating lactate level.74

TBI increased glucose flux, but lactate production (Ra, shown)

and disposal (Rd, not shown) rates are 40% greater than glucose

flux rates (Fig. 3). Hence, after TBI, at the whole-body level, lactate

is a far more important CHO-derived carbon source than is glucose.

Although novel, the results obtained on healthy and traumatized

persons were foreshadowed by the studies of Schurr38,39 and Schurr

FIG. 6. Violin plot of lactate metabolic clearance rate (MCR =
Lactate Rd/[Lactate]) in healthy controls (dashed lines) and pa-
tients with traumatic brain injury (TBI) (solid lines). Typical of
parameters of cerebral and body metabolism following TBI,
variability in lactate MRC appeared greater following TBI, but
there were no significant differences in measures of central ten-
dency or variability in MCR following TBI.
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and Gozal41 on brain slices studied in vitro. As well, consistent with

contemporary lactate shuttle concepts,1–3 the present results em-

phasize the role of lactate as the major gluconeogenic precursor

(Fig. 5), but likely serves a variety of other needs via nonoxidative

and oxidative mechanisms.

In the present investigation, we infused 13C-lactate, and some

may wonder why we do not report data on 13C-pyruvate. Previously

we have addressed issues related to lactate-pyruvate interconver-

sion in studies on humans,4,56 and laboratory rats.75,76 Fortunately

for this investigation, the concern is not of lactate to pyruvate

conversion, but conversely it would be a problem in studying py-

ruvate kinetics—i.e., pyruvate to lactate conversion.

The matter is complicated, but in brief, a simple example may be

helpful. In a resting, unstressed person, the arterial lactate/pyruvate

concentration ratio (L/P) is minimally 10, but rises during stress an

order of magnitude or more.56 Further, the Keq for lactate dehy-

drogenase (LDH) is 106. So, a few percent of lactate tracer injected

into blood is converted to pyruvate, but the vast majority of lactate

tracer stays as lactate. Conversely, pyruvate tracer is rapidly con-

verted to lactate in the blood.76 Two factors seem to be involved:

(1) the activity of LDH in erythrocytes, and (2) LDH and MCT

activities in lung parenchyma.76 Accordingly, we are confident that

we were measuring lactate kinetics in the blood. It remains, however,

that tracing the source of JB13CO2 was important. which is what we

have done in our companion paper on the brain carbohydrate.52

Conclusion

Our results obtained using glucose and lactate tracers unmask

enormous attempts in the body for GNG to support energy needs

of the brain after injury. Extracerebral glycogen reserves are

mobilized, resulting in high rates of lactate production. Although

not directly measured, skeletal muscle,4 integument,74 and other

tissues are likely involved in a general sympathetic response.78

While not apparent in either blood glucose or lactate concentra-

tions, lactate production and disposal are very high after TBI,

with lactate giving rise to most glucose production. Regardless of

cerebral demands, systemic glucose flux is greatly increased after

TBI. The large increase in glucose Rd necessitates a corre-

sponding increase in glucose production (Ra) that is supported

mainly by GNG from systemically generated lactate. And as

shown in our companion report,52 peripherally produced lactate is

also available as a cerebral metabolic substrate and is actively

consumed and oxidized by the brain when in crisis. Thus, both

directly, via cerebral lactate uptake, and indirectly, as a gluco-

neogenic precursor, lactate from the corpus serves to maintain the

body energy state (BES) that then serves cerebral energy needs

always and after TBI (see Fig. 7).

Because of the previously unrecognized central role of lactate in

maintaining glycemia and cerebral carbohydrate supply after cere-

bral injury, conceptually ‘‘lactate is the new glucose.’’ With this new

knowledge about glucose and lactate fluxes not predictable from

metabolite concentrations alone, heathcare professionals should now

be better able to write personalized prescriptions to optimize feeding

of patients in the acute phase of critical illness or injury such as TBI.

As such, the measurement of BES may represent the long sought

biomarker for adequacy of clinical nutritional support.79
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