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Background: Ovarian cancer (OC) has the highest mortality rate among gynecologic
malignancy. Hypoxia is a driver of the malignant progression in OC, which results in poor
prognosis. We herein aimed to develop a validated model that was based on the hypoxia
genes to systematically evaluate its prognosis in tumor immune microenvironment (TIM).

Results: We identified 395 hypoxia-immune genes using weighted gene co-expression
network analysis (WGCNA). We then established a nine hypoxia-related genes risk model
using least absolute shrinkage and selection operator (LASSO) Cox regression, which
efficiently distinguished high-risk patients from low-risk ones. We found that high-risk
patients were significantly related to poor prognosis. The high-risk group showed unique
immunosuppressive microenvironment, lower antigen presentation, and higher levels of
inhibitory cytokines. There were also significant differences in somatic copy number
alterations (SCNAs) and mutations between the high- and low-risk groups, indicating
immune escape in the high-risk group. Tumor immune dysfunction and exclusion (TIDE)
and SubMap algorithms showed that low-risk patients are significantly responsive to
programmed cell death protein-1 (PD-1) inhibitors.

Conclusions: In this study, we highlighted the clinical significance of hypoxia in OC and
established a hypoxia-related model for predicting prognosis and providing potential
immunotherapy strategies.

Keywords: hypoxia, tumor immune microenvironment, immune-escape, immune response, somatic copy
number alterations
Abbreviations: OC, Ovarian cancer; OS, Overall survival; TCGA, The cancer genome atlas; WGCNA, Weighted gene co-
expression network analysis; LASSO, Least absolute shrinkage and selection operator; TIMER, Tumor Immune Estimation
Resource; TIDE, Tumor immune dysfunction and exclusion; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; GSEA, Gene set enrichment analysis; ROC, Receiver operating characteristic; TIM, Tumor immune
microenvironment; TME, Tumor microenvironment; CTLA-4, Cytotoxic lymphocyte antigen-4; PD-1, Programmed cell
death protein 1; PD-L1, Programmed-death ligand 1; LAG3, Lymphocyte Activating 3; MHCI, Major histocompatibility
complex class I; MHCII, Major histocompatibility complex class II; APCs, Activate antigen presenting cells; DEGs,
Differentially expressed genes; NES, Normalized Enrichment Score; TMB, tumor mutational burden; SCNAs, somatic copy
number alterations.
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INTRODUCTION

Ovarian cancer (OC) has the highest mortality rate among
gynecologic malignancies, with an estimated 384,000 deaths in
2018 worldwide (1). Despite recent advances in OC treatment,
most OC patients diagnosed at advanced stages and have poor
prognoses, with a recurrence rate of 70% within 3 years and only
30% 5-year survival rate (2, 3). Immunotherapy is a promising
treatment strategy for many cancers, and immunotherapy has
led to improved quality of life and prolonged survival for some
OC patients (4–6). However, immunotherapy for ovarian cancer
still faces challenges, with only 8-9% objective response and a
lack of reliable biomarkers to predict response (7). Therefore,
there is an urgent need to identify sufficient and reliable
biomarkers with high specificity and sensitivity for OC patients
to distinguish responsive patients are suited to immune
checkpoint inhibitor therapy from OC patients.

The hypoxic microenvironment plays a key role in
tumorigenesis, radiotherapy, and chemotherapy resistance in OC
(8, 9). Particularly, hypoxia affects the tumor microenvironment
and promotes tumor angiogenesis, the release of damage-associated
pattern molecules, tumor immunosuppression, and immune escape
(10, 11). Hypoxia is also vital in the natural anti-tumor immune
response as it can reduce the activity of NK or CTL cells (12). At the
same time, hypoxia modulates inhibitory cells, including tumor-
associated macrophages (TAMs) and neutrophils, and increases the
levels of immunosuppressive molecules, including TGFB, IL4, and
IL10, which result in immune suppression and evasion (13, 14). In
recent years, immunosuppressive blockers, such as the inhibitors of
programmed death ligand 1 (PD-L1) or the cytotoxic T-
lymphocyte-associated protein-4 (CTLA-4), have shown potential
as novel treatment targets (15, 16); however, only some patients may
benefit from immunotherapy (17). Therefore, it is of great
significance to explore the common mechanisms in hypoxia,
immune status, and OC microenvironment.

Whole-genome sequencing provides unlimited opportunities
to systemically explore the tumor microenvironment. However,
due to inadequate sample size and the lack of available multi-
omics data, only a few studies have applied genomic analysis to
study OC from an immunological perspective. In our previous
study, based on multi-omics data from the Cancer Genome Atlas
(TCGA) cohort, we found that autophagy can affect the OC
immune microenvironment (18). In the present study, to further
explore the immune microenvironment of OC, we studied the
impact of hypoxia on the immune microenvironment of OC. We
identified hypoxia-related genes using weighted gene co-
expression network analysis (WGCNA), established a risk
model, and verified prognostic signatures. Then, we evaluated
the immune infiltration landscape and proposed potential tumor
escape mechanisms in high- and low-risk patients. In addition,
we used TIDE and SubMap algorithms to predict OC
immunotherapy responsiveness. Finally, a nomogram-based
risk assessment and clinicopathological features of patients
were constructed to improve the prediction ability and
accuracy. The risk signature we obtained may help provide
new prognostic biomarkers for effective immunotherapy in OC
and identify patients’ responsiveness to immunotherapy,
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improve the individualized prognosis of OC patients, and assist
clinicians in making optimal treatment decisions.
MATERIALS AND METHODS

Ovarian Cancer Dataset and
Preprocessing
Gene expression data, patient clinical information, somatic
mutation status data, and the waterfall diagram of significant
tumor mutational burden (TMB) (generated by the maftools
package in R) in OC were downloaded from TCGAwebsite
(https://portal.gdc.cancer.gov/repository). There were 587
patients with OC in the TCGA-OV data, all patients in TCGA-
OV were diagnosed as serous cystadenocarcinoma. Among the
520 patients with sequencing data from of tissue samples, two
patients had no prognostic data and one patient was duplicated.
Therefore, 517 patients were included in this study. GISTIC_2.0
was used for copy number analysis to identify amplified or
deleted genomes (19). The burden of copy number alterations
was calculated as the total number of genes whose copy number
changes at the lesion and arm levels. Hypoxia gene was obtained
from GeneCards (https://www.genecards.org/). MRNAs with a
relevance score of ≥1 were selected and expressed in the TCGA
database, with a total of 1776 genes identified.

Weighted Gene Co-Expression Network
Construction and Module Identification
WGCNA is a systems biology algorithm based on high-throughput
gene expression profiling. WGCNA searches gene modules with
cooperative expression and identifies correlations between modules
and phenotypes (20). In this study, WGCNA was performed using
the WGCNA R package. Soft threshold power b = 4, scale-free
R2 = 0.97, and the pickSoftThreshold function were used to
construct a standard scale-free network. The correlation between
the modules and immune cells was evaluated using Pearson’s
correlation coefficient analysis. Two modules with the highest
average gene significance scores among all genes in the modules
were selected as candidate modules related to immune infiltration.

Estimation of Immune Infiltration
CIBERSORT (https://cibersort.stanford.edu/), a deconvolution
algorithm based on the expression profile of 547 genes, was
performed to accurately determine the absolute abundance of 22
immune cell populations, i.e., memory B cells, plasma cells, naive B
cells, follicular helper T cells, CD8 T cells, naïve CD4 T cells, resting
memory CD4 T cells, macrophages M2, activated memory CD4 T
cells, monocytes, T cells regulatory (Tregs), resting NK cells, gamma
delta T cells, macrophages M0, activated NK cells, macrophages M1,
resting dendritic and mast cells, activated dendritic cells,
eosinophils, activated mast cells, and neutrophils (21). In addition,
the Tumor Immune Estimation Resource (TIMER, https://cistrome.
shinyapps.io/timer/) database was used to calculate the copy
number of hypoxia risk signatures and the infiltration level of
immune cells, including CD8+ T-cells, dendritic cells, macrophages,
B-cells, CD4+ T-cells, and neutrophils (22, 23).
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Construction and Verification of the
Prognostic Model
To screen the best risk genes, 517 samples were randomly
divided into training or validation sets (6:4) to identify and
evaluate the predictors. Univariate Cox regression analysis was
performed to select the significant genes associated with survival
among 395 hypoxia-related genes in the red and blue modules. In
addition, LASSO regression analysis was conducted to screen
optimal gene combination for identifying prognostic risk
signatures. Cox regression analysis was performed to further
identify the selected genes. The hypoxia-related risk score
formula was calculated as follows (24, 25):

Risk score = Expression mRNA1� Coefficient mRNA1

� Expression mRNA2 � Coefficient mRNA2

�…Expression mRNAn :

OC patients were classified into high- or low-risk groups
according to the “surv-cutpoint” function. In 181 high-risk cases,
there were 16 cases of preoperative and 19 cases of postoperative
adjuvant therapy. There were 336 patients in the low-risk group,
60 patients underwent preoperative adjuvant therapy, while 27
patients underwent postoperative adjuvant therapy. Survival
analysis was performed using the Kaplan–Meier curve. The
area under the curve (AUC) of the time-dependent receiver
operating characteristic (tROC) curves (“timeROC” package in R)
was set as the indicator of prognostic efficacy. Subsequently,
univariate and multivariate Cox regression analyses were used to
analyze the relationship between risk score and patient clinical
features (i.e., age, tumor grade, stage, lymph node metastasis, and
survival status) using the survminer package in R. The prognostic
value of each hypoxia-related gene was also assessed. Hazard
ratios (HRs) and the corresponding 95% confidence intervals
(CIs) were calculated.

Functional and Pathway
Enrichment Analysis
Limma R package was used to identify the signaling pathways
that were differentially activated between the low- and high-risk
groups (26). Relative genes were analyzed using gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
with the corrected p < 0.05 to determine the significance of the
genes. Gene ontology (GO) database includes biological process
(BP), molecular function (MF), and cellular component (CC).
KEGG identifies significantly enriched mRNA biological
pathways. To identify the up-regulated and down-regulated
signal pathways specific for the tumor microenvironment
(TME) phenotype between the high- and low-risk groups,
Gene Set Enrichment Analysis (GSEA) was conducted with
adjusted p < 0.05 using the cluster filer R package (27).

Development of Prognostic Nomogram
Based on Hypoxia-Related Signatures
We used clinical risk factors and the multivariate Cox regression
coefficients of the risk score based on the hypoxia-related
Frontiers in Immunology | www.frontiersin.org 3
signatures to construct a nomogram. The prognostic
nomogram was established with the “rms” package in R (28).
The prediction accuracy of the nomogram was evaluated using
the consistency index (C-index) and a calibration curve (29).

Prediction of Immunotherapy Response
Immune checkpoint blockades that target CTLA-4 and PD-1/
PD-L1 have shown some promise against malignancies (30, 31).
Tumor immune dysfunction and exclusion (TIDE) and SubMap
algorithm were used to predict the clinical response to immune
checkpoint inhibitors. TIDE is a calculation method that uses
gene expression profiles to predict ICB response. It evaluates two
different tumor immune escape mechanisms, including the
dysfunction of tumor-infiltrating cytotoxic T lymphocytes
(CTL) and the rejection of CTL by immunosuppressive factors
(32). SubMap was used to compare the similarity of expression
profiles; this feature can be reflected as a treatment response (33).
We used the SubMap algorithm to predict the possibility of anti-
PD1 and anti-CTLA4 immunotherapy response. The expression
profile of the high- and low-risk group that we defined with a
published dataset containing 47 patients with melanoma and
related annotation data was obtained from the Supplementary
Materials of Lu X et al (34).

Statistical Analysis
All statistical calculations were performed using R (v3.6.1, http://
www.R-project.org). The correlation matrices were conducted
using Pearson or Spearman correlation. The Wilcoxon test and
Kruskal–Wallis test were performed to compare continuous
variables and ordered categorical variables, respectively. The
false discovery rate (FDR) correction was used to adjust the P
value for multiple tests. All tests were two-sided, and p < 0.05 was
considered statistically significant.
RESULTS

Study Design
A flow chart was designed to systematically describe the study
design (Figure 1A). Hypoxia genes were downloaded from
GeneCards, and 1776 mRNAs were selected with a relevance
score ≥ 1 and expressed in the TCTA database. GO and KEGG
enrichment analysis were then performed on 1776 genes.
WGCNA showed that two modules are highly associated with
the immune system. GSEA was performed for functional
annotation. Next, a hypoxia-related risk signature by LASSO
Cox regression was established, which validated the reliability of
the risk signature with the tROC curve, Kaplan-Meier curve, and
Cox regression. Then, we analyzed the difference in immune
infiltration, mutations, copy number variation, and response to
immunotherapy between high- and low-risk patients. Finally, a
nomogram was developed based on the risk signature and
clinicopathological factors. A calibration plot was constructed
to predict the 1-, 3-, and 5-year survival rates of patients
with OC.
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Weighted Co-Expression
Network Construction and Key
Module Identification
A total of 517 TCGA-OV samples with data were included, of
which 1776 genes were received for WGCNA analysis
(Supplementary Figure 1A). WGCNA analysis identified six
modules (Figure 1B; non-clustered hypoxia-related genes are
shown in gray). Through the definition of module connectivity
(Figures 1C, D) and the absolute value of the Pearson correlation
and immune cell relationship (Figure 1E), it was found that the
Frontiers in Immunology | www.frontiersin.org 4
red and blue modules showed a high correlation with immune
cells (Supplementary Figures 1B–F), these two modules were
used for further analysis. The blue module was significantly
related to macrophage M1, T cells gamma delta, and T cells CD4
memory activated, and the red module was highly associated
with mast cells activated.

To reveal the potential biological functions of the genes in the
blue and red module, we conducted GO and KEGG analyses
(Supplementary Figures 2A, B). The genes in these two modules
are closely related to immunity. The enriched GO terms were a
A B

D

E

C

FIGURE 1 | Network of co-expressed genes and module–trait relationships. (A) Flow diagram of this study’s systematic analysis and validation. (B) Dendrogram of
the differentially expressed genes clustered based on different metrics. Each branch in the figure represents one gene; each color indicates a single module that
contains weighted co-expressed genes. (C) The left panel presents the relationship between the soft-threshold and scale-free R2. The right panel presents the
relationship between the soft-threshold and mean connectivity. (D) Verification of the scale-free network. (E) Heatmap of the correlation between the module
eigengenes and the immune cells in ovarian cancer. Each column contains the corresponding correlation and p value.
July 2021 | Volume 12 | Article 645839
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response to decreased oxygen levels, hypoxia, and cytokine
activity. KEGG pathway analysis revealed that these modular
genes were related to cytokine–cytokine receptor interaction,
apoptosis, PI3K-Akt and MAPK signaling pathways, cytokine–
cytokine receptor interaction, and TNF signaling pathway.

Establishment and Verification
of the Hypoxia-Immune Related
Prognostic Signature
The prognostic model showed a powerful predictive function
(35, 36). LASSO-COX analysis identified nine hypoxia-related
genes (IGFBP2, SREBF2, LAG3, TGFB1, ALOX5AP, PLK3,
SREBF1, ANXA1, and SLC1A1) that were included in the risk
score (Figures 2A, B). Since hypoxia usually promotes a more
aggressive tumor phenotype (37), the prognostic value of the risk
score was further investigated. According to the optimal cut-off
value, OC patients were divided into high- or low-risk groups. It
was shown that the mortality rate of the high-risk group in the
TCGA-OV training and internal validation cohorts was
significantly higher than that of the low-risk group
(Figures 2C, D). To compare the sensitivity and specificity of
the risk score to the prognostic value of OC, Kaplan–Meier
curves were plotted to analyze the survival of the hypoxia-
immune gene signature.

Kaplan–Meier analysis demonstrated that the high-risk group
predicted poorer overall survival than that predicted for the low-
risk group (Figure 2E), which was further verified by the TCGA
internal validation set (Figure 2F). The ROC curve showed a
high significance for survival in OC, and was studied as a
continuous variable. The AUC was 0.72 at 1 year, 0.75 at 3
years, and 0.755 at 5 years (Figure 2G); this was further validated
by a validation cohort (Figure 2H). These results are
encouraging and highlight the high reliability of the
predictive value.

Univariate and multivariate Cox regression analyses were
applied to assess the independent prognostic value of the
hypoxia-immune risk signature in terms of overall survival
(OS) of OC patients. Among various clinicopathological
variables, univariate analysis emerged as a significant predictor
of poor OS (HR = 1.271 [1.197–1.35], p < 0.001) (Figure 2I).
Subsequent multivariate analysis revealed that the risk score was
an independent factor for predicting poor OS in patients with
OC (HR = 1.283 [1.078–1.528], p = 0.005) (Figure 2J). Taken
together, our results confirmed that hypoxia-immune risk
signature was considerably robust, may be better than the
currently used clinicopathologic features, and serves as an
independent predictor of survival in OC.

Prognostic Value of Hypoxia-Related
Signatures and the Correlation With
Tumor-Infiltrating Immune Cells in OC
Current data suggest that hypoxia may play an important role
in immune response and actively interact with immune cells
(38). First, prognosis of the nine signatures (Figure 3A)—
ALOX5AP, ANXA1, IGFBP2, PLK3, LAG3, and SREBF1—
showed statistical significance (p < 0.05) in OC. Indeed,
Frontiers in Immunology | www.frontiersin.org 5
higher ALOX5AP, ANXA1, PLK3, and SREBF1 mRNA levels
were significantly associated with shorter OS (p < 0.05),
indicating that these four signatures are risk factors (HR > 1).
Of particular note, LAG3 and IGFBP2 have lower mRNA levels
and better prognosis, suggesting that these two genes may be
protective factors (HR < 1).

We further evaluated the correlation between nine hypoxia
risk signatures and 22 immune cells. As shown in Figure 3B,
nine signatures mostly showed a positive correlation with “B cells
memory,” “Dendritic cells activated,” “Monocytes,” “Mast cells
resting,” “NK cells activated,” “T cells follicular helper,” and
“Tregs”, and a negative correlation with “Macrophages M0,”
“Macrophages M1,” “Macrophages M2,” “Mast cells activated,”
“Neutrophils,” “T cells CD4 memory activated,” “T cells CD8”
and “T cells gamma delta.” Among them, ALOX5AP, TGFB1,
LAG3, and IGFBP2 were positively or negatively correlated with
most immune cells, which suggested that hypoxia-related
signatures had pivotal regulatory effect on the TIM for
OC patients.

Next, we analyzed biological processes associated with the
differentially expressed genes (DEGs) on red and blue modules.
DEGs were identified as shown in Supplementary Figure 4A.
GO and KEGG enrichment analysis were then provided for the
annotation of candidate genes (Supplementary Figure 4B, C).
GSEA was performed when comparing the high- and low-risk
groups. It was observed that IL2/STAT5 signaling, IL6/JAK/
STAT3 signaling, interferon response, interferon alpha
response, interferon alpha gamma response, and oxidative
phosphorylation were up-regulated in the high-risk group
(Figure 3C). In contrast, in the low-risk group, mesenchymal
transition, mitotic spindle, myogenesis, notch signaling, and
WNT/b-catenin signaling were downregulated (Figure 3D).
All these pathways are related to immunity and may cause
biological pathways or functional imbalances in the high- and
low-risk groups. Our analysis offers useful data on the study of
OC pathogenesis and clinical treatment strategy.

Immune Landscape Between Low- and
High-Risk Groups
Immune landscape was estimated between the high- and low-
risk groups. As shown in Figure 4A, most of the 22 tumor
immune cell types showed significant differences between the
high-risk and low-risk groups. In the high-risk group, T cells
CD4 memory active, T cells gamma delta, NK cells activated,
Macrophages M1, Macrophages M2, and neutrophils had higher
infiltration levels. However, in T cell CD4 memory resting, T
cells follicular helper, Tregs, dendritic cells activated, and mast
cell activation, were significantly lower in the high-risk group
than those in the low-risk group. In addition, the proportion of
22 immune cells was weak- to moderately-correlated
(Supplementary Figure 3). Differences between groups
illustrated that the variations in proportions of tumor-immune
cells may be associated with the OS of OC patients. Therefore,
immune infiltration heterogeneity in OC may serve as an
effective prognostic indicator, which has crucial and practical
clinical significance.
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Correlation of the High- and Low-Risk
Groups With Tumor Immunogenicity
and Cytokine
Hypoxia suppressed tumor immunogenicity by adjusting tumor
cells and the immune microenvironment. Significant differences
in tumor immune infiltration between the high- and low-risk
groups were found. Therefore, whether the groups have a unique
immune escape mechanism remains to be studied.
Frontiers in Immunology | www.frontiersin.org 6
Tumor immunogenicity can directly mediate tumor
immune evasion (39). Low antigen presentation ability leads
to low immunogenicity, which interferes with the anti-tumor
function of tumor cells and adaptive immunity (40). The
tumor antigen presentation ability was then analyzed and it
was found that the high-risk hypoxia group showed lower
expression of MHC I, MHCII, and other MHC-related
antigen-presenting molecules (Figure 4B), indicating that
A

B

D

E F

G

I

H J

C

FIGURE 2 | Construction and verification of the hypoxia prognostic classifier. (A, B) Determination of the number of factors using LASSO analysis. (C, D) Risk score
distribution, survival overview, and heatmap in patients in the TCGA training cohort (C) and the TCGA internal validation cohort (D) datasets assigned to high- and
low-risk groups based on the risk score. (E, F) Kaplan-Meier curve for the TCGA training cohort (E) and the TCGA internal validation cohort (F). (G, H) ROC curve of
the TCGA training cohort (G) and the TCGA internal validation cohort (H). (I, J) Univariate (I) and multivariate (J) Cox regression analysis of risk score, age, tumor
status(with tumor or tumor free), grade, lymphovascular invasion, vascular invasion, primary site and stage. ROC, receiver operator characteristic. AUC, the area
under the curve.
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the high-risk group has antigen presentation defects, thus
resulting in immune escape.

Evidence suggests that the inability to attract innate immune
cells, inactivation of innate immune chemotaxis, and increase of
immunosuppressive molecules after immune stimulation may
promote tumor external immunity (41). Moreover,
microenvironmental components, other than tumor cells, also
contribute to immune escape (42–44). It was found that the high-
Frontiers in Immunology | www.frontiersin.org 7
risk group had higher expression of immunosuppressive cells
(neutrophils). It was interesting to observe that both M1 and M2

macrophages were more abundant in the high-risk group;
therefore, a ratio of M1/M2 may be more informative when
evaluating the tumor microenvironment (45). The expression of
activated innate immune cells (dendritic cells) in the high-risk
group was significantly reduced. In the high-risk group, the
immunosuppressive factor levels were higher than those in the
A

B

C D

FIGURE 3 | Characteristics of 9 hypoxia signatures. (A) Prognosis of 9 hypoxia signatures. (B) Correlations between 9 hypoxia signatures and the distribution of
immune cell infiltration. (C, D) GSEA enrichment in high- and low-risk groups. Normalized enrichment score (NES) > 1 and nominal p-value (NOM p-val) < 0.05 were
considered significant. *P < 0.05, **P < 0.01.
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low-risk group, such as of chemokines and receptors (e.g., CCR5,
CCR7, CCR9, CXCL10, CXCL9, and CXC4), interferons and
receptors (e.g., IFNB1, IFNAR2, and IFNGR2), and interleukins
and receptors (e.g., IL10RA, IL10RB, IL12, IL32, IL4R)
(Figure 4C) . The high-risk group showed obvious
immunosuppression, which may have prevented immune cells
from clearing the tumor, but may have also resulted in tumor
cells evading immune surveillance and cell death (46).

Genomic Features in High- and
Low-Risk Groups
Genome abnormalities, such as somatic copy number alterations
(SCNAs) and mutations, play an important role in tumor
immune escape. Therefore, we explored the difference between
the high- and low-risk groups at the genomic level.

Somatic mutation is an important cause of tumorigenesis (47,
48). Hence, the TMB of TCGA-OV patients in low- and high-
risk groups based on somatic mutation data was analyzed. To
elucidate the underlying genomic mechanism, we studied the top
20 mutated genes. The most significant types of mutation were as
follows: missense mutations, frame insertions or deletions,
nonsense mutations, and distribution of shear sites
(Supplementary Figure 5A). There were differences in the
mutations between different genes. TP53, TTN, and MUC16
were the most commonly mutated genes in the cohort, and the
mutations occurred in 76%, 33%, and 12% of the cases,
respectively. Further analysis revealed that missense mutations
were the most common and that single-nucleotide
polymorphisms were more common than that was deletion or
insertion (Supplementary Figure 5B). In OC, C > T occurred
most frequently among other single‐nucleotide variants. In
Frontiers in Immunology | www.frontiersin.org 8
addition, the number of mutant genes in each patient was
counted, and the mutation categories are presented as a box
plot with different colors (Supplementary Figure 5C).

Recent studies have shown that the high burden of copy
number loss is positively correlated with anti-PD-1 and anti-
CTLA-4 blockade resistance, indicating that copy number loss is
closely related to tumor immunity (34). CNA was identified
between high- and low-risk groups, showing that genes exhibit
significant amplification or deletion (Supplementary Table 1).
Both high- and low-risk groups exhibited genomic amplifications
and deletions (Figures 5A–C); particularly the gain in
chromosome arms 3q, 8q, and 19p and the loss of
chromosomes 1p, 5q, and 18q. Figures 5D, E show the
distribution of the G-score across all chromosomes in different
groups. The effects of CNAs of the hypoxia-related signatures on
immune infiltration were further analyzed to evaluate the
mechanisms by which the risk score was correlated with
different immune cell infiltrations. The CNAs of the identified
hypoxia-related gene signatures, containing arm-level deletion
and gain, markedly influenced the infiltration levels of CD8+ T
cells, neutrophils, CD4+ T cells, macrophages, B cells, and
dendritic cells in OC patients (Figure 5F). Overall, our analysis
indicated that certain genomic changes may lead to decreased
immune penetration, thereby affecting immunotherapy.

These results demonstrated that tumor antigen presentation
defects, recruitment of inhibitory immune cells and
immunosuppress ive fac tors , and change in tumor
microenvironment results in the evasion of the monitoring,
recognition, and attack by the immune system in high-risk patients,
thus promoting tumor escape. In addition, genomic variation may
also be involved in immune escape in high-risk groups.
A B

C

FIGURE 4 | Potential intrinsic immune escape mechanisms of ovarian cancer. (A) Abundance of each TME infiltrating cell in high- and low-risk groups. (B) Expression of
MHC in high- and low-risk groups. (C) Differential mRNA expression of chemokines, ILs, IFNs, and other important cytokines and their receptors in high- and low-risk
groups (categorized by the median value). The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent the median
value, and the black dots show the outliers. *p < 0.05, **p < 0.01, ***p < 0.001, ns, p < 0.05, ****P < 0.0001.
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Immunotherapeutic Response of High-
and Low-Risk Patients With OC
Immune checkpoint inhibitors using immunotherapies targeting
PD-1, PD-L1, CTLA-4, and LAG3 have emerged as a promising
strategy for the treatment of many diverse malignancies (49, 50).
We evaluated the difference in expression between the high- and
low-risk patients in 12 common immune checkpoints. The
expression of PDCD1, IL13 and NOS3 in the low-risk group
was significantly higher than that in the high-risk group (p < 0.05)
(Figure 6A). We also evaluated the correlation between risk score
Frontiers in Immunology | www.frontiersin.org 9
and CTLA4 and PD-1 (Supplementary Figures 6A, B).
Interestingly, CTLA4 in the high-risk group showed higher
expression than that did the low-risk group (p<0.05). We also
investigated the response to immune checkpoint blockade in high-
and low-risk patients. We found that the low-risk group showed
promising response to anti-PD-1 therapy (Bonferroni corrected
P = 0.01, Figure 6B). Furthermore, patients’ responsiveness to
immunotherapy was distributed in the low-risk but not in the
high-risk group (Figure 6C). These results indicate that the risk
score may predict response to immunotherapy.
A B

D E

F

C

FIGURE 5 | Copy number variation in high- and low-risk groups immune infiltration in ovarian cancer. (A, B) Copy number profiles for high- and low-risk groups,
with gains in dark red and losses in midnight blue. Gene segments are placed according to their location on chromosomes, ranging from chromosome 1 to
chromosome 22. (C) Heat map of the differences in copy numbers in 22 chromosome between the high- and low-risk groups. (D, E) The left plot (D) illustrates
the frequency of the gains and losses. The right plot (E) shows the cytoband with focal amplification and focal deletion generated using the GISTIC_2.0
software. The q value of each locus is plotted horizontally. (F) Effect of genetic alterations on hypoxic signatures of immune cell infiltration. *P < 0.05, **P < 0.01,
***P < 0.001.
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Establishment of a Risk Nomogram for
Predicting Survival in Patients With OC
To further enhance the predictive accuracy of the prognostic
signature, we established a clinically adaptable nomogram
by incorporating univariate clinicopathological features
(e.g., tumor status, lymph node metastasis, grade, vascular
invasion, age, primary site and stage). This provides
clinicians with an effective tool to quantitatively predict the
survival probability in patients with OC. As depicted in
Figure 7A, by calculating the total score, we can estimate
the probability of survival at 1, 3, and 5 years. A higher total
score in the nomogram is related to poorer OS rates. Compared
Frontiers in Immunology | www.frontiersin.org 10
with other clinical factors, the risk score indicated
higher accuracy.

To assess the discrimination and calibration abilities of the
prognostic nomogram, calibration plots of the model for the 1-, 3-,
and 5-year survival were constructed (Figure 7B). In the
calibration analysis, the prediction lines of the 1-year, 3-year, and
5-year survival probabilities were very close to the ideal
performance (45-degree dotted line), indicating that the accuracy
of the nomogram is excellent. These results further strengthen the
clinical significance of our proposed hypoxia-immune risk
signature that exhibits an overall superior predictive power for
determining survival outcomes in patients with OC.
A

B C

FIGURE 6 | Immunotherapeutic responses in high- and low-risk groups with ovarian cancer. (A) Differential expression of 12 immune checkpoints. (B) Immunotherapeutic
responses to anti-PD1 and anti-CTLA4 treatments. (C) Correlation between riskscore and immunotherapy response.
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DISCUSSION

Hypoxia induces and maintains malignant phenotypes, and is
associated with poor clinical prognosis (51–53). At present, the
tumor stage, grade, and lymph node metastasis have been
recommended as independent prognostic factors for patients
with OC. However, because of tumor heterogeneity, the
screening for prognostic molecular markers that can fully
reflect tumor biological characteristics is of great significance
for improving individualized treatment strategies (54).
Accumulating evidence suggests that hypoxia remains an
important prognostic factor and an attractive therapeutic target.

Recently, a myriad of gene signatures has been identified to
improve predictive prognosis in various types of tumors. For
example, the 21-gene model and 18-gene model are used to
provide breast (55) and colon cancer (56) recurrence scores,
respectively. These results demonstrate that screening for new
prognostic cancer markers based on gene expression profiles is a
Frontiers in Immunology | www.frontiersin.org 11
promising high-throughput molecular identification method,
which is beneficial to clinical practice. Prognostic models based
on hypoxia have been reported to have important clinical
prognostic value in glioma and lung cancer (57, 58). Based on
multi-omics data from the TCGA cohort, we conducted
WGCNA to identify immune-related gene modules and found
nine gene signatures using LASSO Cox analysis, a powerful
dimensionality reduction method, with high AUC. In addition,
risk scores and clinicopathological characteristics were used to
construct a nomogram system that verifies the stability of the risk
score and the accuracy of the survival prediction ability. With the
availability of large data sets, the algorithm is effective and
reasonable. Although further improvements are needed, our
findings provide a theoretical basis for clinical applications.

Defects in antigen presentation, cytokine expression, and
immune cell infiltration patterns show unique tumor escape
mechanisms. Cytokines are important regulators of the
immunosuppressive characteristics in a tumor microenvironment.
A

B

FIGURE 7 | Construction of nomogram for survival prediction. (A) Nomogram combining the signatures with clinicopathological features. (B) Calibration plot
showing that the nomogram-predicted survival probabilities correspond closely to the observed proportions.
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Tumor-immunosuppressive cytokines can directly promote tumor
cell growth, inhibit tumor cell apoptosis, and indirectly maintain an
immunosuppressive microenvironment conducive to tumor growth
by influencing angiogenesis and recruiting immune cells (59, 60).
IL-10 is a key immunosuppressive cytokine secreted by M2

macrophages, Tregs, and Th2 cells and has been shown to impair
the proliferation, cytokine production, and migration capabilities of
effector T cells (61). Similarly, IL-6 and IL-32 participate in the
immunosuppressive regulation of the tumor microenvironment.
The activation of chemokines and their receptors, such as CCR7
and CCL21, are also associated with poor prognosis (62, 63). In OC
xenograft, hypoxia promotes tolerance and angiogenesis via CCL28
and Tregs (64). Our findings showed that high-risk patients have
increased levels of neutrophils, resting T and NK cells but decreased
levels of activated cells. The immunosuppressive cytokines in the
high-risk group were upregulated, which was consistent with the
immunosuppressive function of this group.

SCNAs and somatic mutations at the genome level affect the
efficacy of immunotherapy. The relatively low somatic point
mutation frequency and high levels of SCNAs have been related
to low immunogenicity in OC (65, 66). SCNAs are widely
observed in OC, capable of indicating the gain or loss of
chromosomes (67, 68). Focal-level SCNVs and arm-level
SCNVs levels affect immune-escape markers. The immune
microenvironment of tumors with high SCNAs levels is more
tumorigenic and immunosuppressive than that with low SCNAs
levels. Mutations or copy number changes drive immune cell
infiltration (69). In both high- and low-level SCNAs tumors, the
ratio between the mRNA levels of CD8+ T cell and Tregs genes
was significantly reduced (70). In addition, SCNAs and somatic
mutations affect tumor immunotherapy, and patients with high
SCNAs levels respond poorly to immunotherapy (71). In our
study, genomic analysis yielded distinct SCNAs and somatic
mutation landscape, and identified significant differences in
immune cell infiltration between the high- and low-risk groups
that reacted differently to immune checkpoint blockers.
Particularly, in the low-risk group, the expression of immune
checkpoint PD-1 was significantly upregulated and responded
well to anti-PD-1 inhibitors.

Increasingly, computational models are being used to evaluate
the therapeutic efficacy of immunotherapy (72, 73).We used
SubMap to predict the potential response to immunotherapy in
OC patients. As expected, the patients in the low-risk group have
a better response to anti-PD1 therapy than those in the high-risk
group. Group with high TIDE score is more likely to induce
immune evasion, indicating a lower response to immunotherapy
(74), which is consistent with our findings.

The most attractive biomarkers for clinical applications are
those that can provide patients with an accurate prognosis
thereby assisting clinicians in choosing the most effective
treatment. Our prognostic model consists of nine hypoxia-
related genes, most of which have been studied as biomarkers
for other cancer types, but rarely studied in OC. In lung cancer
cells, IGFBP2 induces erlotinib resistance by activating IGF-1R
signaling (75). SREBF1 and SREBF2 are lipid metabolism
regulators. Under oxygen-deprived conditions, the inhibition
Frontiers in Immunology | www.frontiersin.org 12
of SREBP prevents lipid biosynthesis in cancer cells and
impairs cell survival (76). TGFB1 signal transduction is related
to adverse reactions to the PD-1/PD-L1 block (77). LAG-3 is a
new generation of immune checkpoint that targets PD-1 and
CTLA-4. Specifically, it targets the inhibitory receptors on the
surface of T cells, and tumor cells evade immune surveillance by
expressing LAG-3 ligands (78). Similarly, under hypoxic
conditions, PLK3 is a negative regulator of HIF-1a, and the
expression of HIF-1a is closely related to the significant down-
regulation of Plk3 expression in HeLa cells (79). ANXA1 can
regulate the activation and differentiation of T cells, promote
their differentiation into Th1 cells, and negatively regulate their
differentiation into Th2 cells (80). In colorectal cancer, the
expression of SLC1A1 is significantly and positively correlated
with the level of CD8+ T cells and dendritic cell infiltration (81).
Changes in the expression of ALOX5AP can lead to oxidative
stress (82). In addition, in a recent biometric analysis, ALOX5AP
was involved in the presentation of exogenous peptide antigens
and antigen processing through MHC class II molecules (83).
However, the biological functions of tumor hypoxia-related gene
signatures need further exploration in OC.

In conclusion, this study identified the hypoxia genes of the
modules most related to immunity, established a powerful
hypoxia-related signatures for OC, explored the overall
intensity of the immune response in the OC tumor
microenvironment and escape mechanism, and predicted the
responsiveness of immunotherapy. Our findings therefore not
only offer reliable biomarkers for predicting the prognosis of OC,
but also identify the responsiveness of patients to
immunotherapy. Targeted hypoxia therapy for tumors may
provide novel insights into individualized treatment
strategies for OC patients.
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Supplementary Figure 1 | Clustered dendrogram and Scatter plots of the
highly correlated modules in different immune cells of OC. (A) Clustered
dendrogram of 517 samples. (B) Red module has the highest association with
activated mast cells. (C–F) Blue module is highly associated with T cells CD4
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memory activated (C), T cells gamma delta (D), mast cells activated (E),
macrophages M1 (F).

Supplementary Figure 2 | Functional enrichment analysis. (A, B) GO and KEGG
enrichment analysis results revealed that differential genes may be related to
cytokine activity, hypoxia, PI3K-Akt, or other functional pathways.

Supplementary Figure 3 | Correlations among 22 immune cells.

Supplementary Figure 4 | Signal pathway enrichment analysis was performed
on differential mRNAs in the low-risk and high-risk groups. (A) DEGs were reflected
in volcano plot. The absolute value of log fold change > 0.5. (B) GO analysis results
consisting of three parts: biological process, molecular function, and cellular
component. (C) Partial display of the KEGG analysis results.

Supplementary Figure 5 | Summary of mutation profiling in TCGA-OV samples
from high- and low-risk groups. (A) Top 20 genes with the most significant
mutations in high- and low-risk groups. The bar chart shows the total number of
mutations in the top 20 genes of each patient. The bar chart on the right shows the
number of samples in which 20 genes were mutated in all samples. The different
colors in the thermogram indicate the type of mutation; gray indicates no mutation.
(B) Statistical analysis of mutation types based on different categories, wherein
missense mutation is the most frequent; SNP has more frequency than deletion or
insertion; and C > T is the most common type of SNV. (C) Box plot summarizing the
SNV of TCGA-OV cohort. Box plot created by dividing the SNV into transition (Ti)
and transversion (Tv). Bundled column chart showing the SNV classification of
individual cases.

Supplementary Figure 6 | The relationship between CTLA4 and PD-1. (A) The
relationship between risk score and CTLA4. (B) The relationship between risk score
and PD-1.

Supplementary Table 1 | Amplification or deletion genes in high- and low-risk groups.
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