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In Brief
We have developed a new
method for the identification of
bacterial species causing Urinary
Tract Infections. The first training
step used DIA analysis on multi-
ple replicates of bacterial inocu-
lates to define a peptide signa-
ture by machine learning
classifiers. In a second identifi-
cation step, the signature is
monitored by targeted proteom-
ics on unknown samples. This
fast, culture-free and accurate
method paves the way of the
development of new diagnostic
approaches limiting the emer-
gence of antimicrobial
resistances.
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• Fast and culture-free method for the identification of the 15 bacterial species causing UTIs.

• Combination of DIA analysis and machine learning algorithms to define a peptide signature.

• High accuracy, good linearity and reproducibility, sensitivity below standard threshold.

• Transferability to other laboratories and other mass spectrometers.
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Fast identification of microbial species in clinical samples
is essential to provide an appropriate antibiotherapy to
the patient and reduce the prescription of broad-spec-
trum antimicrobials leading to antibioresistances. MALDI-
TOF-MS technology has become a tool of choice for mi-
crobial identification but has several drawbacks: it
requires a long step of bacterial culture before analysis
(>24 h), has a low specificity and is not quantitative. We
developed a new strategy for identifying bacterial species
in urine using specific LC-MS/MS peptidic signatures. In
the first training step, libraries of peptides are obtained on
pure bacterial colonies in DDA mode, their detection in
urine is then verified in DIA mode, followed by the use of
machine learning classifiers (NaiveBayes, BayesNet and
Hoeffding tree) to define a peptidic signature to distin-
guish each bacterial species from the others. Then, in the
second step, this signature is monitored in unknown urine
samples using targeted proteomics. This method, allow-
ing bacterial identification in less than 4 h, has been ap-
plied to fifteen species representing 84% of all Urinary
Tract Infections. More than 31,000 peptides in 190 sam-
ples were quantified by DIA and classified by machine
learning to determine an 82 peptides signature and build a
prediction model. This signature was validated for its use
in routine using Parallel Reaction Monitoring on two dif-
ferent instruments. Linearity and reproducibility of the
method were demonstrated as well as its accuracy on
donor specimens. Within 4h and without bacterial culture,
our method was able to predict the predominant bacteria
infecting a sample in 97% of cases and 100% above the
standard threshold. This work demonstrates the effi-

ciency of our method for the rapid and specific identifica-
tion of the bacterial species causing UTI and could be
extended in the future to other biological specimens and
to bacteria having specific virulence or resistance
factors. Molecular & Cellular Proteomics 18: 2492–2505,
2019. DOI: 10.1074/mcp.TIR119.001559.

The identification of the bacterial species or strains present
in a biological sample is essential in many fields of microbi-
ology. Epidemiology, for instance, tracks the spreading of
microorganisms related to infectious diseases; food safety
laboratories ensure the distribution of pathogen-free products
to the consumers; environmental bacteria have a strong im-
pact on maintaining the equilibrium of ecosystems; and clin-
ical laboratories require fast diagnosis methods to provide
appropriate treatment to patients with a bacterial infection.
However, standard methods for the identification of patho-
gens requires a time-consuming bacterial culture followed by
another long step of immunological or biochemical tests of
varying duration and cumbersomeness (1–3). During this pe-
riod, typically of 24 to 48 h but could extend to weeks,
patients received broad spectrum antimicrobial treatments.
Although this strategy is efficient to release the infection for
most cases, it is also known to have a strong impact on the
development of antimicrobial resistances. Indeed, among pa-
tient urines tested for UTI, a large proportion are found not
infected. For others, the prescription of broad-spectrum an-
tibiotics, rather than species-specific antibiotics, might lower

From the ‡Proteomics platform, §Computational Biology Laboratory, CHU de Québec – Université Laval Research Center, Québec City,
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the efficiency of the therapy (4, 5). But in all cases, this misuse
of antibiotics increases the emergence of multi-drug resistant
bacteria (6–9). Therefore, there is a need for the development
of fast and robust methods for bacterial identification, to
improve therapies and guide rational use of antibiotics. In-
deed, identification within few hours would allow to wait for
the analysis result before initiating the treatment and then
reduce the over-prescription of antibiotics to non-infected
patients. But also, the knowledge of bacterial species could
permit the early use of targeted narrow-spectrum antibiotics
thus limiting the selection of resistant species in the overall
population.

Genotyping methods, which are based on the sequencing
of partial (16S small subunit ribosomal [rRNA] gene sequenc-
ing) or entire (Whole Genome Sequencing) genomes of the
microorganisms contained in a sample, are promising be-
cause they do not require bacterial culture and can be applied
to complex samples containing several species (10, 11). How-
ever, the cost and the time required to get identification by
sequencing methods preclude their use in routine laborato-
ries. In addition, if 16S rRNA sequencing can provide a quite
rapid identification (typically 24 h), the high conservation of
16S gene sequences across bacterial families and species
often limits the precision of identification to the genus level
(12, 13). By contrast, Whole Genome Sequencing can provide
an efficient species and even strain typing, but the cost and
the time required to get the results is strongly extended by the
sequencing itself and by the data analysis. Moreover, this
analysis requires expert scientific knowledge to provide a
confident genome assembly as well as large computing re-
sources (14, 15).

In the past few years, Matrix-Assisted Laser Desorption
Ionization - Time of Flight Mass Spectrometry (MALDI-TOF
MS)1 analysis of microbial proteins has made a breakthrough
in routine laboratories for bacterial identification (16–19). This
fast, inexpensive, and automatable technology can replace
the conventional phenotype-based methods, hence reducing
the time required to get an identification from 2 or 4 days to
less than 50 h. For those reasons, two mass spectrometers,
the Biotyper (Bruker) and the Vitek-MS (Shimadzu-BioMéri-
eux), have been approved for clinical use by health govern-
mental organizations of most countries including the United

States Food and Drug Administration (FDA) in 2013 (20). In the
typical workflow, bacterial colonies isolated by culture are
submitted to a fast sample preparation (typically, a treatment
with formic acid and ethanol) before acquisition of protein
mass spectra that are used to interrogate a spectral database
providing a confidence score for the bacterium identification,
an information a physician can use to diagnose the infection.

Despite its numerous advantages, bacterial identification by
MALDI-TOF MS has several drawbacks: 1) it requires a
lengthy culture step to isolate bacterial colonies, because the
detection is based on a comparison with spectral database
acquired on pure colonies. For the same reason, it is not able
to identify polymicrobial infections (i.e.: when several species
are present in the same sample) without analyzing several
types of colonies visually selected on the culture plate; 2)
because of the minimal sample preparation, the information
contained in the spectra is restricted to the most abundant
molecules, thus limiting the specificity of the method and its
capability to identify certain species or subspecies and; 3) it is
not quantitative, a potentially important information for certain
specimens where pathogens need to be distinguished from
the normal microbiota, or when a certain level of infection
needs to be reached to necessitate antibiotherapy.

To overcome the above-mentioned issues, several studies
have tried to improve MALDI-TOF bacterial identification (21).
For instance, Clark and colleagues refined the specificity of
the method to identify Escherichia coli pathotypes by exam-
ining specific peaks in the spectra (22). Other investigators
have tried to improve the specificity using trypsin digestion
which allows the accession to a larger set of molecules and
the generation of a Peptide Mass Fingerprint of the bacterial
subspecies (23). Several studies skip the culture step to pro-
vide a faster identification, especially in the case of sepsis
where MALDI-TOF acquisition is performed directly from a
positive blood culture sample (24, 25). However, it has been
shown that sample preparation methods, which are not ho-
mogenous from lab to lab, can influence the rate of correct
identification of certain microorganisms (26).

Although these studies could improve the standard work-
flow, they are limited by the sensitivity and the specificity of
MALDI-TOF mass spectrometer. Therefore, recent studies
have investigated the possibility of using LC-MS (Liquid Chro-
matography - Mass Spectrometry) methods which, because
of their high sensitivity and specificity, have replaced MALDI-
TOF MS in most research laboratories. Wang and colleagues
used the LC-MS approach to identify biomarkers of five major
bacterial species in bronchoalveolar lavage specimen (27) and
performed strain typing for Acinobacter baumanii (28),
Karlsson R et al. used it for proteotyping within the mitis group
of Streptococcus genus (29) and Cheng et al. also used
LC-MS/MS in Selected Reaction Monitoring (SRM) mode to
target specific peptides of the flagella to type Escherichia coli
at strain level (30). Bioinformatics tools have also been devel-
oped to help in the identification of bacteria from “bottom up”

1 The abbreviations used are: MALDI-TOF, Matrix Assisted Laser
Desorption Ionization - Time Of Flight; DDA, Data Dependent Acqui-
sition; DIA, Data Independent Acquisition; LC-MS/MS, Liquid Chro-
matography tandem Mass Spectrometry; PRM, Parallel Reaction
Monitoring; SRM, Selected Reaction Monitoring; UTI, Urinary tract
infection(s); Cfr, Citrobacter freundii; Ecl, Enterobacter cloacae; Eco,
Escherichia coli; Efa, Enterococcus faecalis; Kae, Klebsiella aero-
genes; Kox, Klebsiella oxytoca; Kpn, Klebsiella pneumoniae; Pae,
Pseudomonas aeruginosa; Pmi, Proteus mirabilis; Sag, Streptococ-
cus agalactiae; Sau, Staphylococcus aureus; Sep, Staphylococcus
epidermidis; Sha, Staphylococcus haemolyticus; Smi, Streptococcus
mitis; Ssa, Staphylococcus saprophyticus.
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proteomics data (i.e. trypsin-digested proteins). These meth-
ods were able to reach 89 to 98.5% correct classification
rates at the species level but these values have only been
demonstrated after a step of bacterial growth (31, 32).

Taking the advantages of sensitivity and specificity from
nanoscale LC-MS/MS technology, and based on these pre-
vious studies, we developed a new pipeline using modern
proteomics (DIA - Data Independent Acquisition mode) and
machine learning algorithms to identify biomarkers able to
speciate a set of bacteria of interest in urine specimens. This
strategy is based on two steps (Fig. 1): 1) a training step, that
enables to define a peptidic signature for the bacteria of
interest and 2) an identification step where the signature is
monitored by targeted proteomics to get the identification of
bacteria in the infected samples.

Once the training step has been developed, the second
step can be performed in routine laboratories on multiple
samples and with any type of mass spectrometer working in
PRM (Parallel Reaction Monitoring) or SRM (Selected Reac-
tion Monitoring) modes.

This pipeline has been applied to the 15 bacterial species
most frequently found in Urinary Tract Infections (UTI). In-
deed, urine is the most common clinical specimen with hun-
dreds of samples analyzed each day in most clinical labora-
tories. Moreover, UTI is one of the most frequent types of
infection in humans: it has been demonstrated that 50 to 60%
of women in western countries will have at least one UTI in
their lifetime (33). As reported by statistics of the Enfant-Jésus
hospital in Québec City, which analyzes 300 urine specimens
each day on average, 68.2% of these samples are infected by
the same 4 bacterial species (Escherichia coli, Streptococcus
agalactiae, Klebsiella pneumoniae and Enterococcus faecalis)
and 15 species are responsible for more than 84% of all UTI
(supplemental Fig. S1). According to literature reports, these
are the most frequently found species in UTI (33, 34).

Our original method enables to define a peptidic signature
which, when monitored by targeted proteomics, can detect
which of the 15 bacterial species is present in the urine
sample, in less than 4 h, without any bacterial culture. We also
demonstrated that the peptidic signature is transferable to
other laboratories and to other mass spectrometers. In addi-
tion, we compared the efficiency of our method to the MALDI-
TOF standard workflow.

EXPERIMENTAL PROCEDURES

Bacterial Culture and Counting—Bacterial strains were obtained
from the Culture Collection of Centre de Recherche en Infectiologie of
Université Laval (CCRI, Québec, Canada).

The bacterial strains used and their corresponding culture condi-
tions are listed in supplementary methods. Semi-log broth bacterial
culture calibrated to 0.5 MacFarland suspension were prepared and
used for spectral libraries generation or for urine inoculation. In par-
allel, they were counted by incubation of 100 �l of serial dilutions on
blood agar plate (Supplementary Methods).

Urine Collection and Bacterial Inoculation—To mimic urinary tract
infections, 1 to 200 �l of semi-log broth culture suspension, corre-

sponding to an estimated final amount of 1 � 104 to 1 � 106 CFU/ml,
were spiked into 10 ml of urine obtained from six different healthy
volunteers. The exact concentration of the inoculated cultures was
determined in parallel by culture on agar plates as described above.

Moreover, urine specimens from 27 patients were collected at the
Microbiology-Infectiology laboratory of Enfant-Jésus hospital of CHU
de Québec (Québec, Canada) after few microliters had been used for
standard MALDI-TOF analysis. The specimens were kept on ice dur-
ing the transportation (� 1 h) and used immediately.

The consent of all donors was obtained as described in the ethical
approval of the Comité d’Éthique de la Recherche of CHU de Québec
- Université Laval (recording number 2016–2656).

Sample Preparation for Spectral Libraries—For the generation of
bacterial spectral libraries, bacteria from 1 ml of semi-log broth bac-
terial cultures were pelleted by centrifugation at 10,000 � g for 15
min, the supernatant was discarded and the pellet was washed three
times with 1 ml of 50 mM Tris and centrifuged in the same conditions.
The final pellet was frozen dried and stored at �20 °C.

Pellets were then resuspended with 50 mM of ammonium bicar-
bonate and 600 units of mutanolysin (Sigma-Aldrich, cat no. M9901)
were added to help bacterial lysis by digestion of cell wall peptidogly-
can. After a 1-hour incubation at 37 °C, 0.5% sodium deoxycholate
(SDC) and 20 mM dithiothreitol (DTT) (final concentrations) were
added and bacterial inactivation was performed by heating 10 min at
95 °C. Lysis was achieved by sonication for 15 min with a Bioruptor®
system (Diagenode), with cycles of 30 s ON/30 s OFF, high level. A
final centrifugation at 16,000 � g during 15 min was performed to
remove cell debris, and protein concentration in the supernatant was
measured using a Bradford assay.

Before proteolytic digestion, SDC concentration was adjusted to
1% and 120 �g of proteins from each bacterial culture were digested
by the addition of trypsin (Promega) in a 1:50 (enzyme/protein) ratio,
during 1 h at 58 °C. Trypsin reaction was then stopped by acidifica-
tion with 350 �l of 5% formic acid (FA), which also leads to precipi-
tation of the SDC. After centrifugation at 16,000 � g for 5 min, the
supernatant was collected, the peptides were purified on Oasis HLB
cartridge 10 mg (Waters) and vacuum-dried.

The pellet was resuspended in 10 mM Ammonium bicarbonate
pH10 and an equivalent of 110 �g of peptides were fractionated on an
Agilent 1200 Series System HPLC equipped with Agilent extend C18

(1.0 mm � 150 mm, 3.5 �m) column. Peptides were loaded at 1
ml/min of solvent A (10 mM ammonium bicarbonate pH10) and eluted
by the addition of solvent B (90% acetonitrile, 10% ammonium bi-
carbonate pH10) with a gradient 5 to 35% solvent B during 60 min
and 35 to 70% solvent B during 24 min. Fractions were collected in a
96 well plates at 1 min intervals and finally pooled in rows into 8
fractions which were vacuum-dried.

Each fraction was resuspended in 2% acetonitrile (ACN)/0.05%
trifluoroacetic acid (TFA) at 0.2 �g/�l and 1X iRT peptides (Biognosys)
were added. An equivalent of 1 �g of peptides was injected on
LC-MS/MS system for each fraction of each bacterial species.

Preparation of Urine Samples—Urine specimens (10 ml), either
from patients or artificially inoculated from healthy urine, were
treated the same way: human cells were initially pelleted by low
speed centrifugation for 5 min at 1000 � g, and the supernatant
was high speed centrifuged for 15 min at 10,000 � g to collect
bacteria. Bacterial pellets were then washed with 1 ml of 50 mM Tris
and centrifuged again in the same conditions, another cycle of
wash and centrifugation was added, and the resulting pellet was
frozen dried.

Protocols for protein extraction, trypsin digestion and peptide pu-
rification are described above in the Sample Preparation for Spectral
Libraries section and were modified as follows: for each sample, 50
units of mutanolysin was used, 250 ng of trypsin was added for the
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digestion which was then stopped with 1 �l of 100% FA and peptides
were purified with StageTips (35) containing C18 reverse phase (3 M

Empore C18 Extraction Disks). Samples were resuspended in 10 �l of
2% ACN, 0.05% TFA and 1X iRT peptides (Biognosys) were added.
Half of the final volume was injected on LC-MS/MS system.

LC-MS/MS Acquisitions—Samples were analyzed by nanoLC/MS
using a UltiMateTM 3000 NanoRSLC system (Thermo Fisher Scientific
Germering, Germany) coupled to an Orbitrap Fusion Tribrid mass
spectrometer with ETD option (Thermo Fisher Scientific, San Jose,
CA, Instrument Control Software version 2.0) installed in CHU de
Québec - Université Laval research center (Québec, Canada). Pep-
tides were trapped at 20 �l/min in loading solvent (2% acetonitrile,
0.05% TFA) on a �-Precolumn, 300 �m i.d � 5 mm, C18 PepMap100,
5 �m, 100Å (Thermo Fisher Scientific) for 5 min. Then, the pre-column
was switched online with a PepMap100 RSLC, C18 3 �m, 100Å, 75
�m i.d. � 50 cm column (Thermo Fisher Scientific) and the peptides
were eluted with a linear gradient from 5–40% solvent B (A: 0.1%
formic acid, B: 80% acetonitrile in 0.1% formic acid) in 90 min, at 300
nL/min flow rate.

For faster measurements, a Q Exactive HF-X mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany, Instrument Control Soft-
ware version 2.9) was coupled to an UltiMateTM 3000 RSLCnano
system (Thermo Fisher Scientific, Germering, Germany) operated in
capillary flow chromatography (installed in Thermo Fisher Scientific
mass spectrometers factory in Bremen, Germany). Peptides were
loaded onto a �-Precolumn, 300 �m i.d � 5 mm, C18 PepMap100, 5
�m, 100Å (Thermo Fisher Scientific) at a flow rate of 50 �l/min,
loading solvent (2% ACN, 0.05% TFA) for 1 min. Then, the pre-
column was switched online with a PepMap100 RSLC, C18 2 �m,
100Å, 150 �m i.d. � 15 cm column (Thermo Fisher Scientific). The
peptides were eluted with a linear gradient from 6–60% solvent B (A:
0.1% formic acid, B: 80% acetonitrile in 0.1% formic acid) in 34 min,
at 1 �l/min flow rate. Mass spectrometer parameters settings in DDA,
DIA and PRM modes on both instruments are described in the Sup-
plementary methods.

Peptides Libraries Generation—Proteome Discoverer 2.1.0.81 soft-
ware (Thermo Fisher Scientific) was used to search DDA raw files
against Uniprot bacterial databases (databases are listed in Supple-
mentary Methods). Peak lists were generated with the Spectrum
Selector node (default parameters) of Proteome Discoverer and
searched using Mascot search engine version 2.5 (MatrixScience).
Parameters were set for trypsin enzyme digestion specificity with two
possible missed cleavages, methionine oxidation, asparagine and
glutamine deamidation were set as variable modifications, and mass
search tolerance were 10 ppm and 0.6 Da for MS and MS/MS
respectively. Peptides were then validated based on target/decoy
search using Percolator software with a Delta Cn parameter �0.05 for
PSM filtering (36). Only high confidence peptides (FDR�1% at pep-
tide level) were finally considered .

Peptides Selection and Signal Extraction in DIA Analyses—For
higher confidence and reproducibility in peptide identification, DIA
signal extraction was performed on a selected part of the peptides
identified in spectral libraries. Only peptides without missed cleavage
or potential missed cleavage, having at least 8 amino acids in their
sequence without any methionine and cysteine and identified in at
least 6 peptide spectrum matches (PSM) were considered. The list of
peptides from the 15 bacterial species was then searched with the
Unipept software (37, 38) to delete peptide sequences also found in
the human proteome, and to associate each peptide to the bacterial
proteome it belongs to. Finally, for each bacterium separately, a list of
potentially observable peptides was built and imported into Skyline
4.1.0.11796 (39, 40). Shuffle decoy peptides were added to allow
further scoring. A spectral library common to the 15 bacterial species
was generated with the BiblioSpec 2.0 tool implemented into Skyline

using the Mascot .dat files generated from all the individual DDA
analyses and a 0.95 cut-off score (Skyline default value) on the
Mascot expected value (homology threshold). Retention time predic-
tor was used considering the iRT peptides retention time values.
Orbitrap resolving power was set at 30 K at 200 m/z with a high
selectivity extraction. For each precursor (2� or 3�), only 6 fragments
(b or y) were automatically selected within 10 min around the pre-
dicted RT and their corresponding signal was extracted from the raw
files, the signal of precursor masses was not extracted. mProphet
algorithm (41) was used within Skyline to score the peaks, consider-
ing the decoys and the second-best peaks.

Only peaks with a Skyline dot product (dotP) � 0.75 and a
q-value � 0.01 were considered as quantifiable and for each of them,
the peptide areas (i.e. the sum of the areas under the curve of the 6
most intense fragments) were normalized with the sum of the 10 iRT
peptides. The non-quantifiable peaks received a value of 0. Finally,
only the best intensity precursor of each peptide was kept to build a
final list of peptides with their corresponding area values.

Machine Learning—We applied various machine learning models
and several feature search approaches to identify a peptidic signature
using BioDiscML (42), a tool based on Weka Java library (43).

Briefly, BioDiscML works as follows: during the loading of input
data, a sampling is performed to create a test set not used during
learning. From the training set, the features, here the peptides, are
identified and ranked by their predictive power through information
gain ranking for classification. Then, optimal signatures are built using
a combination of various stepwise feature selection overall input
features and model search approaches. For each iteration on all best
ranked features, BioDiscML runs a set of stepwise methods (forward,
backward, or a combination of both) using many machine learning
classifiers (e.g. Naïve Bayes, Random Forest) that are evaluated by
cross validation procedures (e.g. k-fold, Bootstrapping, repeated
holdout, evaluation on test set) and on the test set.

Peptidic Signature Validation and Bacterial Identification Predic-
tion—After PRM analysis using the Orbitrap Fusion or the Q Exactive
HF-X instrument, the Skyline software 4.1.0.11796 (39, 40) was used
to extract the signal of the 82 peptides signature (i.e. the sum of the
areas under the curve of the 6 most intense fragments) in each
sample. The peptides were considered as detected if they met the
following Skyline criteria: dotp � 0.85 and average mass error � 10
ppm, or dotp � 0.75 and average mass error � 3 ppm. For each
analysis (inoculated urines or patient sample), the list of detected
peptides was submitted to the Bayesian Network model trained in the
previous section for prediction purposes.

MALDI-TOF Analysis—For all MALDI-TOF analyses, the standard
procedure of the Enfant-Jésus hospital microbiology laboratory was
used. Briefly, 1 �l of urine was streaked on blood agar plate and 1 �l
on Mc Conkey agar plates (Oxoid). The plates were incubated for 18 h
at 35 °C. Isolated colonies with homogenous aspect were selected for
MS analysis. The non-treated colonies were spotted on MALDI plate
with HCCA matrix. MALDI-TOF MS analysis was performed on a
Bruker Biotyper instrument using the Flux control version 3.4 (build
135) software and 7311 MSPs database.

Experimental Design and Statistical Rationale—To obtain a high
quality peptidic signature using machine learning algorithms, 9 high-
level and 3 low-level inoculations replicates of each bacterial species
were used. Ten non-inoculated urine specimens (biological replicates)
were used as control. For the validation of the method in targeted
proteomics (Tier 3 level), four different biological replicates of each
bacterial inoculation in urine were monitored in two different analysis
conditions. The four non-inoculated urines were used as control.
Finally, urine from 27 different patients were used to compare the
method to conventional MALDI-TOF analysis. Prediction accuracies
were reported.
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RESULTS

Our workflow for bacterial identification is composed of two
steps: 1) a training step which includes the LC-MSMS acqui-
sition of a peptide library on pure bacterial colonies in Data
Dependent Acquisition mode followed by Data Independent
Acquisition analyses to obtain information on bacterial pep-
tides observability in urine and the generation of a short
peptidic signature by machine learning models and 2) an
identification step where the signature is monitored in un-
known samples by PRM to obtain a bacterial identification
through a prediction algorithm (Fig. 1).

For the training step, to detect minor bacterial peptidic
signals in the human proteic background, we used DIA ac-
quisition, on an Orbitrap Fusion instrument operating in nano-
flow rate, because of its high sensitivity and its ability to
provide a deep coverage of bacterial proteomes by acquisi-
tion of all peptides contained in the sample (44, 45). Indeed, in
contrast to DDA which uses a full scan MS for the detection of
peptide species, the DIA mode, by systematic acquisition of
small size windows all along the mass range, improves the
dynamic range and, thus, the sensitivity of the analysis. How-
ever, the simultaneous fragmentation of peptides inside this
small window generates a complex spectrum which cannot
be searched with conventional database search engines.

Acquisition of Bacteria Spectral Libraries—One of the pro-
posed approaches to extract information from the DIA com-
plex spectra is to use spectral libraries previously acquired in
DDA mode on the same type of sample and annotated with
peptide/protein identifications through a protein database
search (44). In our study, we have generated these spectral
libraries from pure bacterial colonies to be as exhaustive as
possible and cover a very wide range of bacterial tryptic
peptides, and subsequently be able to extract this specific
bacterial peptide information from the DIA complex spectra
contaminated with human biological material.

We have generated spectral libraries for the 15 bacterial
species of interest. To do so, each species was cultivated
separately, proteins were extracted and digested with trypsin

as described in the Experimental Procedures section. The
resulting peptides were fractionated by high-pH reversed
phase chromatography. For each bacterial species, eight
fractions were injected by LC-MS/MS in DDA mode and an-
alyzed through a standard database search pipeline allowing
the identification of 10686 to 29558 peptides at 1% FDR
corresponding to 810 to 2438 protein groups (supplemental
Tables S1 and S2). As anticipated based on their genome
size, Gram-positive bacteria generated less protein identifica-
tions than the Gram-negative. Indeed, there was a good cor-
relation between the number of proteins identified in our study
and the genome length (Pearson correlation coefficient r �

0.82) or the protein count predicted from genomic data (Pear-
son correlation coefficient r � 0.83) of all those 15 species.
Thus, peptide fractionation combined to mass spectrometry
analysis on a high resolution and high sensitivity instrument
allowed us to cover 22.3 to 48.4% of the Uniprot reference
proteome of each of the 15 species (supplemental Table S1).
Then, the whole list of peptide identifications was refined to
filter out: 1) the peptides which may not to be reproducible
from run to run (i.e. cysteine and methionine containing pep-
tides, those containing trypsin missed cleavages, peptides
shorter than eight amino-acids), and 2) the less abundant or
less ionizable peptides (i.e. those having less than six peptide
spectrum matches). Finally, we obtained a set of 31096 pep-
tides which, according to their taxonomic affiliations, demon-
strated a high redundancy across the 15 species (supplemental
Fig. S2A).

This redundancy associated to our reproducibility filters
showed that it is not possible to select from these data one or
several specific peptides for each bacterial species that could
would be further able to specifically sign for the presence of
each distinct species in the urine. Indeed, not enough specific
peptides are available when working which this large number
of bacteria (i.e. 15) (supplemental Fig. S2B and S2C).

Thus, we aim to define a set of peptides that could be
shared by several species, but which, taken together, form a
pattern for each bacterial species to be identified. To obtain

FIG. 1. Workflow of the method for
bacterial identification. The workflow is
composed of two steps: the “training”
step defines of a peptidic signature for
the bacteria of interest; the “identifica-
tion” step uses this signature in routine
to identify bacteria in biological samples.

LC-MS/MS and machine learning for bacterial identification in urine

2496 Molecular & Cellular Proteomics 18.12

http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1


this ‘peptidic signature’ our strategy was to use deep pro-
teome coverage combined to machine learning algorithms.

Data Independent Analysis of Artificially Inoculated Urine
Replicates—To define a peptidic signature of 15 bacterial
species in the human urine background, we have generated
12 artificial sample replicates, for each species of our selec-
tion, by inoculating urine from healthy volunteers with bacte-
rial culture. Two concentration levels were used set at 1 � 106

CFU/ml (Colony Forming Unit per milliliter of urine) (n � 9)
(high level) and below 1 � 105 CFU/ml (n � 3) (low level)
approximatively which corresponds to the threshold used by
most clinical laboratories for considering a UTI requiring an
antibiotherapy. A total of 190 samples were produced, includ-
ing “blank” samples corresponding to non-inoculated urine as
control. After protein extraction and short trypsin digestion,
the resulting peptides were analyzed by LC-MS/MS in DIA
mode. Compared to the DDA, DIA analysis enables a deep
proteome coverage by reduction of the spectral dynamic
range resulting in fewer missing values (46). However, MS/MS
spectra acquired in DIA mode are the sum of fragments
generated by all precursor peptides selected in the same DIA
window. This yields complex spectra where peptides se-
quences can be deduced by extraction of their specific frag-
ments contained in the spectral libraries previously generated
on pure bacterial colonies as described above. To do so, we
have used the Skyline software (39, 40) and the list of 31,096
selected peptides was used. An additional step of refinement
was done to establish, for each species, the list of bacterial
peptides to be searched for in the DIA runs. To this purpose,
we used the Unipept software (37, 38) that enables to match
peptide sequences with all matching taxa in UniProtKB data-
bases. Starting from the non-redundant list of all peptides
identified from the bacteria (31,096 peptides), Unipept was
used to confirm in which of the 15 bacterial species these
could theoretically be found. Indeed, because of the stochas-
tic effect of DDA used for library generation, it might be that
some peptides belonging to several species had been se-
quenced by MS/MS in only a subset of them. The Unipept
software also helped us to remove peptide sequences shared
with the human proteome (57 peptides), hence generating
high confidence lists of expressed peptides for each of the 15
species, free of potential human interfering compounds (sup-
plemental Table S3).

These lists and the corresponding spectra were added to
Skyline for extracting DIA signals in the 12 replicates of each
of the 15 inoculated samples. As retention time calibration
peptides (iRT, Biognosys) were added in the DDA and DIA
runs (performed with 90 min gradients), predicted RT could be
used for signal extraction in a small window of 10 min, thus
limiting the probability for the software to select background
peaks. A list of decoy peptides generated by Skyline were
also extracted in the same conditions to ensure the calcula-
tion of a scoring q-value through the mProphet algorithm (41)
included in Skyline.

Finally, the peptides were considered as detected if they
met the following criteria: mProphet q-value � 0.01 and li-
brary dot product (dotp) � 0.75. After normalization of the
peptide ions area values (i.e. the sum of the 6 most intense
fragments areas) by the sum of the iRT peptides area values
and filtering for the best intensity precursor (when both doubly
and triply-charged precursors were detected for the same
peptide), the 15 final lists were combined into one, composed
of 4319 peptides, (supplemental Table S4) and submitted to
machine learning algorithms to classify the bacteria and iden-
tify a short peptidic signature. This computational method has
been chosen for its ability to handle large data sets and to
perform predictions on them using accurate statistical models
(47).

Peptidic Signature Generation by Machine Learning—In our
study, before training classifiers, the dimension of the list of
peptides was reduced by mutual information filter (i.e. Infor-
mation Gain ranking), which ended with a list of first 1000 best
peptides according to their ranking. After training and evalu-
ation by BioDiscML, the peptidic signature was composed of
feature subsets found by three models having very high pre-
dictive performance (AUC � 98% on test set): 1) 68 features
signature found by forward stepwise feature selection opti-
mized by Matthew’s correlation coefficient criterion (48) using
Naive Bayes classifier (49) with discretization parameter op-
tion, 2) 78 features signature found by forward stepwise fea-
ture selection optimized by Area Under the Curve (AUC) cri-
terion using Bayesian Network classifier (50) with AD-Tree
parameter option, and 3) 20 features signature found by for-
ward stepwise feature selection combined with backward
stepwise feature elimination optimized by Matthew’s correla-
tion coefficient criterion using Hoeffding Tree classifier (51)
with default parameters. Because stepwise feature selection
tends to remove all correlated features, we retrieved those
using Pearson and Spearman correlations having �99% cor-
relation. The choice of keeping the features and correlated
features selected by more than one classifier was motivated
by the need to have the largest and the most precise signature
exempt of noisy features. Having highly correlated features
here also mean preserving “backup” peptides in case of miss-
ing peptides (for instance at low bacterial concentrations) and
thus improve the sensitivity threshold of the method. The
overlap between the three signatures was 10 peptides (sup-
plemental Fig. S3A and supplemental Table S5).

The obtained feature subsets of the three models were then
merged into a list of 106 unique peptides which were manually
curated by inspection into Skyline software. Peptides which
show uncertain peak picking, those also found in blank sam-
ples, as well as pairs of peptides having the same precursor
mass because of leucine/isoleucine amino-acids were de-
leted to obtain a final curated signature, composed of 82
peptides. Eight peptides from this list were observed in all
three models (supplemental Fig. S3B and supplemental Table
S5). The intensity values for this 82 peptides signature were

LC-MS/MS and machine learning for bacterial identification in urine

Molecular & Cellular Proteomics 18.12 2497

http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001559/DC1


then discretized into presence (intensity � 0) or no presence
(intensity � 0) of a signal and was used to train a final Bayes-
ian Network prediction model by automated learning. All new
samples were analyzed using this predictive model. This
model, trained on only high levels of concentration provided
100% classification accuracy on several k-fold cross-valida-
tions (k � 2, 5, 10) and was able to classify at 84% overall
accuracy the low-level concentration samples (3 replicates
per bacteria) corresponding to a concentration below the
clinical threshold of 1 � 105 CFU/ml.

In the final signature, 5 to 26 peptides are observable for
each bacterium (Fig. 2 and supplemental Fig. S4). Even
though closely related species, such as Streptococcus epi-

dermidis and Staphylococcus aureus, or Klebsiella pneu-
moniae and Escherichia coli, share up to 75% of common
peptides there are always a few peptides to distinguish be-
tween them (4 and 7 peptides respectively in these two
cases). For some very low concentration replicates, a few
peptides, found high concentration replicates, were not de-
tected. This loss affected the ability of the algorithm to predict
the bacteria in only 15% of the tested low concentration
replicates. Inversely, some false positive peptide detections
were also observed, probably because of peak picking errors
by Skyline in DIA runs, but they did not interfere with the
bacterial prediction, assessing the robustness of the Bayesian
Network model. As expected, most of the peptides compos-

FIG. 2. Heatmap of the peptidic signature corresponding to the 15 most frequently found bacteria in UTI. Intensity of each of the 82
peptides identified by the machine learning algorithm is represented for the six high-level concentration replicates of urine inoculation for each
bacteria of interest. Data are presented with hierarchical clustering in rows and columns.
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ing the signature belong to relatively abundant proteins such
as ribosomal proteins (e.g. 50S ribosomal protein L10, 30S
ribosomal protein S5) or enzymes involved in amino acid
metabolism (e.g. formate acetyltransferase) and glycolysis
(e.g. GAPDH, pyruvate kinase) (52).

Validation of the Signature by Targeted Proteomics—Be-
cause the machine learning algorithm has identified a short list
of peptides allowing the discrimination of the 15 bacteria of
interest, this list can now be monitored by targeted proteom-
ics which is known to give a better reproducibility of meas-
urements and a better sensitivity in peptide detection and
could thus improve the limit of detection of bacterial species
in urine (supplemental Table S6). The information on presence
or absence of each of the 82 peptides of the signature is then
given to the developed prediction model to obtain a proba-
bility of contamination. This step corresponds to the Identifi-
cation step of our pipeline (Fig. 1). For this purpose, any type
of mass spectrometer designed to perform targeted proteom-
ics in Selected Reaction Monitoring (SRM) or Parallel Reaction
Monitoring (PRM) modes can be used.

To validate our peptidic signature, we have initially used an
Orbitrap Fusion Tribrid instrument in PRM mode to monitor
precursor masses of the 82 peptides signature on samples
resulting from inoculated urines. For this purpose, the four
most frequently found bacteria in UTIs (Escherichia coli,
Streptococcus agalactiae, Enterococcus faecalis and Kleb-
siella pneumonia) were inoculated at 5 different concentra-
tions (from 2.56 � 104 to 8.77 � 106 CFU/ml) in urine from
four different healthy volunteers (Supplemental Table 7). The
samples were processed as described in the Experimental
Procedures section and analyzed with a 90-min gradient typ-
ically used in research laboratories. Only half of the volume of
each sample was injected whereas the other half was kept for
validation on other instrument types as further described.

To validate the detection or non-detection of each peptide
of the signature, the Skyline software was used associated
with filtering criteria. Several criteria and values were tested to
define the best filtering for the detection of these known
samples (supplemental Table S8). The criteria giving the lower
level of wrong prediction (dotP � 0.85 & ppm � 10 or dotP �

0.75 & ppm � 3) was retained and further reapplied for all
unknown samples. Finally, the list of detected peptides for
each replicate sample was submitted to the Bayesian Net-
work model for evaluation. The probabilities of bacterial iden-
tification are shown on Fig. 3a and supplemental Table S9A.
In 97% of the cases, the method was able to predict the
correct species inoculated in the sample. We have investi-
gated the factors which causes the wrong predictions in our
data set. In most cases, this has been observed on urines
samples inoculated at low bacterial concentrations (below the
clinical laboratory threshold of 1e5 CFU/ml). In those cases,
the signal of some peptides appears to be very low (or unde-
tectable) and Skyline picks a wrong peak. These peaks are
then filtered out by our criteria on dotp and mass shift. In all

cases but one, the wrong prediction is reported as a “blank”
(i.e. no contamination). Finally, when looking at the data above
the 1 � 105 CFU/ml threshold commonly used by clinical
laboratories, the accuracy in prediction reaches 100%.

Using the intensities given by Skyline for each peptide,
linearity curves have been plotted for each detected peptide
of the signature (Fig. 3B and supplemental Fig. S5A–S5D).
The median of determination coefficient (R2) over the 5 con-
centrations was 0.841, suggesting that the method could be
used for the quantification of bacterial contamination in urine
samples. Because four biological replicates (i.e. bacterial in-
oculation in urines coming from four different volunteers) have
been analyzed for each bacteria concentration, the reproduc-
ibility of the method was evaluated. Scatter plots and Pearson
correlation factors were calculated from replicate to replicate
(Fig. 3C and supplemental Fig. S6A–S6D). For the same bac-
teria across various biological replicates, the Pearson corre-
lation factors were 0.894 in average. This good reproducibility
again suggests a possible use of the method for bacterial
quantification in urine.

Transfer of the Signature on Different Instruments—To
demonstrate that the initially designed signature using an
Orbitrap Fusion instrument coupled to a nanoflow chroma-
tography system is transferable to other instruments in others
laboratories, we have analyzed the same inoculated urines of
healthy volunteers (four different bacteria, five concentrations)
in PRM mode on a Q-Exactive HF-X instrument coupled to
capillary chromatography in PRM mode. Indeed, chromatog-
raphy at higher flow rate (1 �l/min) improves the robustness of
peptide separation and detection. To reduce the turnaround
time between sample collection and bacterial identification as
much as possible, the chromatographic gradient was also
reduced between the Orbitrap Fusion and the Q Exactive
HF-X from 90 to 30 min. As for the Orbitrap Fusion data, the
data collected from the Q Exactive HF-X were analyzed using
Skyline with the same validation criteria and the resulting list
of detected peptides was used by the prediction algorithm
(Fig. 4A, supplemental Fig. S7 and supplemental Table S9B).
Thus, in 94% of the cases, the method allowed the correct
prediction of the bacteria initially inoculated in the samples.
Errors were found only for some of the two lowest concen-
trations points and in all cases but one, the sample was
predicted as blank.

We could observe that wrong predictions happened more
frequently on S.agalactiae inoculations. This can be explained
by the fact that this bacterium has been inoculated at a
slightly lower level than the others but also by the fact that
only 4 peptides of the signature are used to predict this
species. In all wrong predictions on S.agalactiae inoculates
only 2 peptides among 4 met our criteria and the samples
were predicted as blank. But when looking at the data above
the clinical threshold of 1 � 105 CFU/ml, the accuracy was
significantly improved to reach 100%.
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Linearities were also calculated by plotting the intensities of
detected peptides across the five bacterial concentrations
inoculated. The median of determination coefficients (R2) of all
peptides was 0.803 (Fig. 4B and supplemental Fig. S8A–S8D).
In terms of reproducibility, four biological replicates were
analyzed on the Q Exactive HF-X. Scatter plots showed very
good reproducibility because the Pearson correlation factors
were 0.852 on average across the various biological replicates
from the same bacterium at the same concentration (Fig. 4C
and supplemental Fig. S9A–S9D). However, lower Pearson
correlation coefficient values were obtained for some pep-
tides of Streptococcus agalactiae. Again, this can be ex-

plained by the fact that this species has been inoculated at
lower concentration than the others (supplemental Table S7).

Again, the good results in terms of linearity and reproduc-
ibility obtained on the Q-Exactive HF-X instrument suggest its
potential use for quantification of bacteria in urine.

Validation on Patient Samples and Comparison to MALDI-
TOF MS—To validate our method compared with conven-
tional MALDI-TOF analysis, samples were collected from 27
patients. Aliquots of the samples were analyzed using either
our pipeline without any culturing by monitoring the peptidic
signature in PRM (nanoscale method) or with the standard
MALDI-TOF method after 24 h bacterial culture and the pre-

FIG. 3. Accuracy, linearity and reproducibility of the ‘identification’ step of the method performed on the four most frequent bacteria
in UTI. A, Prediction reported by the algorithm after peptidic signature monitoring by PRM associated with its probability (light blue : high
probability, dark blue : low probability) for five concentrations corresponding to five inoculation volumes (1, 2, 10, 20 and 100 �l or 2, 4, 20,
40 and 200 �l) of four bacteria (Eco, Efa, Kpn or Sag) in urine of four different healthy volunteers (A, B, C, and D), dotted red line corresponds
to the commonly used clinical laboratories detection threshold of 1 � 105 CFU/ml; B, Linearity curves obtained for 4 peptides of the peptidic
signature with the samples across the five tested concentrations, dotted red line corresponds to the commonly used clinical laboratories
detection threshold of 1 � 105 CFU/ml; C, Pearson correlation coefficients between two of the four biological samples (i.e. four different urines
of healthy volunteers).
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dictions of both methods were compared (Fig. 5A and sup-
plemental Tables S9C and S10). Most of the analyzed urines
were determined to be not infected (n � 7) or infected by
E. coli (n � 9) with both methods, whereas 4 other samples
contained 4 different bacteria among our 15 targeted species.
For those 20 patients we found a correlation between MALDI-
TOF and LC-MS in 95% of cases. In seven other cases, the
LC-MS/MS reported the urine as ‘blank’ (not infected)
whereas the MALDI-TOF reported an identification marked as
“probable” and limited at the genus level (i.e. without species
mention). These results might be explained by a low level of
contamination (below the level requiring anti-biotherapy)
which prevented the LC-MS/MS method without culture to
detect the signature peptides or by a contamination of the
bacterial culture by non-pathogens, or infection of urines by
species outside of our selection.

Among the 15 bacterial species detectable by our method,
many of them have a quite low frequency in UTI and not found
in urines tested. To validate the detection of these species
with our method compared with MALDI-TOF, we inoculated
an aliquot of healthy urine with each of the 15 bacteria at
concentrations ranging from 3.32 � 105 to 5.66 � 106 CFU/ml
(supplemental Table S7) and analyzed them with both pipe-

lines. Our method found the correct inoculated bacterium in
100% of cases, whereas MALDI-TOF reported 2 errors (Fig.
5B and supplemental Tables S9C and S10). This lack of
specificity in MALDI-TOF analysis might also explain some of
the miscorrelations observed on patient samples.

DISCUSSION

In this study, we developed a new strategy combining
proteomics and machine learning for a fast, specific and
accurate detection and identification of bacterial species
present in urine without the need for time-consuming bacterial
culture. We successfully applied our pipeline on the 15 bac-
terial species most commonly found in UTIs and obtained, in
less than 4 h, high rates of prediction accuracy, especially
when looking above the quantitative threshold commonly
used by clinical laboratories to consider a urine as infected
and requiring anti-biotherapy. These 15 species represent
84% of all UTIs, meaning that, by monitoring this peptidic
signature, a wide majority of UTIs, as well as non-contami-
nated samples could be identified in less than four hours,
allowing the possibility to delay the nonspecific antimicrobial
treatment of the patients. Although the MALDI-TOF technol-
ogy is able to discriminate thousands of species from pure

FIG. 4. Accuracy, linearity and reproducibility of the ‘identification step’ of the method performed in two experimental conditions: 90
min gradient at nanoflow rate with PRM acquisition on an Orbitrap Fusion instrument or 30 min gradient at capillary flow rate with PRM
acquisition on a Q Exactive HF-X instrument. A, Right (green) or wrong (red) prediction reported by the algorithm after peptidic signature
monitoring by PRM associated to its probability, for five concentrations corresponding to five inoculation volumes (1, 2, 10, 20 and 100 �l or
2, 4, 20, 40 and 200 �l) of four bacteria (Eco, Efa, Kpn or Sag) in urine of four different healthy volunteers (A, B, C, and D), dotted red line
corresponds to the commonly used clinical laboratories detection threshold of 1e5 CFU/ml; B, Distribution of the determination coefficients of
the linearity curves obtained with the same samples across the five tested concentrations, the dotted line represents the average of all values;
C, Distribution of the Pearson correlation coefficients obtained by comparison of two biological replicates with the same samples, the dotted
line represents the average of all values.
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colonies, our method could be improved in the future to allow
the discrimination of more species causing UTIs. In that case,
a new peptidic signature could be designed using the same
pipeline where machine learning algorithms could be applied
on newly acquired DIA data associated to the DIA data set
available with this study.

Additionally, this proof of concept paves the way to the
development of new peptidic signatures for the analysis of
other types of clinical specimens (bronchoalveolar lavage
(BAL), stool, hemoculture…) (53–55), but also for the detec-
tion of foodborne or waterborne pathogens (56, 57), to reduce
the turnaround time required to obtain a genus- and/or spe-
cies-specific identification of microorganisms by classical or
molecular microbiology methods or MALDI-TOF mass spec-
trometry. In those cases, the sample preparation might need
to be adapted for each type of specimen. However, centrifu-
gation or microfiltration technics could be implemented to
concentrate the bacteria and reduce the background proteins
concentration. These strategies are widely used to isolate
bacteria from water or in dairy industry for milk sterilization
(58–60) and they have been applied on clinical samples to
enrich for bacterial cells before detection (61–63). Sedimen-
tation on spinning devices have also been reported to isolate
bacterial from blood (64). For some of these applications,
without any culture, the sensitivity of the method might be too
low to detect the bacteria but, it is expected that a short-term
culture in a liquid medium might be enough to reach a de-
tectable level (�1 � 103 CFU/ml for certain peptides) without
the isolation of colonies on a culture plate. In all cases, the
high specificity of the method, because of a fine selection of

the signature peptides, leads to a great improvement to what
can be obtained with other standard methods such as MALDI-
TOF mass spectrometry or 16S rRNA sequencing. This would
be particularly valuable for the epidemiological surveillance of
specific pathogens, instead of relying on expensive and time-
consuming whole genome sequencing (65, 66).

Moreover, the linearity and reproducibility of our method
were evaluated and the obtained results suggest that the
method could be used for quantification of bacterial cells in
urine (for instance by addition of peptidic internal standards
during the PRM monitoring). This would be particularly useful
because, in the case of urine specimens, a real infection
needs to be distinguished from low level bacterial contami-
nants and this could serve to prevent the inappropriate use of
antibiotics (67). This quantification is currently done by a plate
counting of the bacterial culture which is a long and inaccu-
rate process. As reported here, once a signature is created, it
can be transferred to other laboratories or other LC-MS sys-
tems working in parallel reaction monitoring (PRM). Because,
only 1.52% of the peptide signals in our PRM data report a
signal-to-noise ratio below 10, we can expect that the method
could be transferable to selected reaction monitoring (SRM)
mode on triple quadrupole (QQQ) instruments as some of
those instruments have already been approved as Medical
Devices for other applications (68) and are known for their low
cost and robustness. However, in that case, it is expected to
obtain lower signal-to-noise ratios because of the higher non-
specific background in QQQ instruments. The transitions to
monitor should also be carefully selected for each peptide of
the signature and a fine tuning of the source voltages and

FIG. 5. Comparison of our fast LC-MS method and the standard MALDI-TOF method. Prediction reported by the algorithm after peptidic
signature monitoring by PRM without bacterial culture (red crosses) or by the MALDI Biotyper analysis after 24h hours bacterial culture (blue
circles) on (A) 27 patients urine specimens or (B) 15 inoculations of bacterial species into urine from healthy volunteers.
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collision energy should be performed. But, once this optimi-
zation done, the method could be reused in routine on many
samples. Moreover, it is also to note that the identification
step could also been performed in DIA mode, because we
have demonstrated on E. coli inoculates that, despite much
more nonspecific interferences, prediction rate where similar
for both PRM or DIA peptide signature monitoring (data not
shown). This finding opens the possibility for monitoring larger
signatures (� 100 peptides) even with short gradients. Al-
though the turnaround time to identify bacterial contaminants
with this method is short (�4 h), the non-parallelizable chro-
matographic time might limits its use in laboratories analyzing
a high number of patient samples every day. Nevertheless, we
showed that this time can be reduced from 90 to 30 min and
could be even more shortened with a better acquisition
scheduling, some optimization of the LC gradient or use of
high-throughput LC devices (69). Sample preparation time
could also be automated and optimized, for instance, the
trypsin digestion here done in one hour might be reduced to
a couple of minutes as reported in the literature (70, 71).
Finally, in a context where the emergence of resistant bacte-
rial strains poses a global public health threat (9, 72, 73), the
development of fast methods for bacterial typing becomes
essential. Indeed, broad spectrum antimicrobials are com-
monly prescribed to patients before obtaining the results of
the clinical microbiological analysis, a practice that might not
be sufficient to control the infection, especially when one
considers the risk posed by antibiotic-resistant species and
their transmission in the hospital environment or the commu-
nity (74). For instance, Staphylococcus aureus has developed
resistance to many antimicrobial drugs including last resort
antibiotics and expresses an arsenal of virulence factors (75–
77). Or, in agriculture, the systematic use of antibiotics in
farming leads to the selection of resistant bacteria that have
been found in commercial food products (78). The accessi-
bility with proteomics methods of the proteins involved in the
resistance or virulence processes might constitute a chal-
lenge. However, several studies already reported the use of
MALDI-TOF and LC-MS/MS to detect changes in the pro-
teome of sensitive versus resistance strains (79–81). Thus, by
including specific peptides belonging to proteins involved in
resistance or virulence mechanisms in our peptidic signature,
we could provide a measure of the risk associated to resist-
ance or virulence and provide additional microbial information
a physician could use to prescribe an appropriate antibiotic to
a patient, thereby reducing the use of broad-spectrum anti-
biotics.

Finally, we anticipate that the constant improvement in
sensitivity, mass accuracy and acquisition speed of mass
spectrometers will contribute in the future to improve the limit
and precision of specific bacterial strains detection, making
even more relevant the use of LC-MS/MS methods in micro-
biology.
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