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Abstract

Background: The reliable diagnosis of a mild traumatic brain injury (mTBI) is a pervasive problem in sports and in
the military. The frequency and severity of each occurrence, while difficult to quantify, may impact long term cognitive
function and quality of life. Despite the new revelations concerning brain disfunction from head injuries, individuals still
feel pressure to remain on the field despite a debilitating injury. In this study, we evaluated the accuracy of a system
that could be employed on the sidelines or in the locker room to provide an immediate objective mTBI assessment.

Methods: Participants consisted of 38 individuals with a recent mTBI and 47 controls with no history of mTBI within
the last 5 years. Participants were administered a simple symptom questionnaire, behavioral tests, and resting state
EEG was measured using three frontopolar electrodes. An advanced machine learning algorithm called boosting was
utilized to classify subjects into either injured or controls using power spectral densities on 1-min of resting EEG and
the symptom questionnaire.

Results: Results based on leave-one-out cross-validation revealed that the addition of EEG measurements boosted the
accuracy to approximately 91 ± 2% compared to 82 ± 4% from the symptom questionnaire alone.

Conclusion: This study demonstrated the potential benefit of including EEG measurements to diagnose suspected
brain injury patients. This is a step toward accurate and objective classification measurements that can be implemented
on the field as a future injury assessment tool.
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Key Points

� The combination of electroencephalography (EEG)
and symptom questionnaires more accurately
classified mTBI than questionnaires alone

� EEG can be used to reduce the subjectivity of the
remove-from-play decision

� The boosting method in machine learning is a
powerful tool for enhancing classification accuracy

Background
Mild traumatic brain injury (mTBI) is highly prevalent,
with an estimated 1.6–3.8 million sports-related concus-
sions annually [1, 2] and as many as 320,000 concussions
affecting military troops [3, 4]. According to the Centers
for Disease Control (CDC), it is estimated that in the
USA, mTBI costs are $17 billion annually, creating a
huge burden on society [5]. The many possible symp-
toms of mTBI are, by themselves, fairly nonspecific and
include headaches, dizziness, nausea, light/sound sensi-
tivity, loss of consciousness, amnesia, irritability, cogni-
tive changes, sleep disturbance, and emotional
dysregulation. These symptoms can vary in severity and
prevalence from person to person, making reliable
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diagnosis difficult. Despite new knowledge about the po-
tential deleterious long-term effects of mild brain injury,
athletes, their coaches, and military personnel experi-
ence added pressure to minimize symptom reporting, as
to not let down teammates, or appear to be underper-
forming. Returning to the field with a brain injury is very
dangerous as it could worsen the injury and lead to
long-term changes in brain function. Unfortunately, rela-
tive to other common disorders of this magnitude, mTBI
studies of optimal treatment and diagnosis are under-
funded [6]. It is therefore extremely important to de-
velop a simple, field-portable diagnostic tool that can
objectively test for the presence of an mTBI.
Following a mTBI, people experience acute short-term

symptoms (within a month) with a majority of the symp-
toms resolving in 2–3 weeks. Chronic post-concussive
syndrome, which is the persistence of symptomology
several months after injury, can have symptoms that are
very similar to the initial acute phase, such as headache,
memory loss, irritability, sensitivity to light, loss of con-
centration, and fatigue [7]. Approximately 15% of
mTBI-diagnosed patients experience these persistent
disabling difficulties [8]. It is challenging to determine
why or how some patients end up with post-concussion
syndrome, but it appears that gender and neurobehav-
ioral test scores at the time of injury may be predictive
of future chronic symptomology [9]. Importantly, re-
search has shown that the presence of microstructure
white matter lesions that failed to sufficiently heal at the
time of another injury may be critical for the develop-
ment of chronic post-concussive syndrome [10].
It is imperative that the brain is allowed adequate time

to recover before another injury occurs. Autopsies on
football players who likely received multiple successive
concussions revealed an excess of amyloid-beta plaques
and tau tangles [11]. Numerous blows to the head seem
to be associated with clinical abnormalities and possibly
chronic traumatic encephalopathy (CTE) [12]. Other
possible long-term effects of successive concussions in-
clude other forms of dementia, mental health issues, and
depression [13]. Brain recovery can extend beyond the
clinical recovery time, so an improved neurological func-
tion index is needed [14]. Therefore, the consequences
of sustaining multiple concussions, especially without
adequate healing, could have serious long-term conse-
quences, and researchers must determine a way to rap-
idly and adequately diagnose mTBI to prevent future
progression of these diseases.
The post-concussion assessment and cognitive tests:

Immediate Post-Concussion Assessment and Cognitive
Testing (ImPACT; ImPACT Applications, San Diego,
CA), Sports Concussion Assessment Tool, 5th Edition
(SCAT5) [15], and the King-Devick [16] tests are the
available as injury assessment tools. As part of these

tests, a patient interview is also usually carried out, with
questions about symptomology. Although these measures
may be very useful, they can be influenced by trainer or
player bias, so a better protocol should be adopted.
Currently, patients are removed from the field or
returned-to-play based on imprecise self-reported symp-
toms, without the measurement of the underlying patho-
physiology. For example, patients can meet return-to-play
criteria but still show abnormal brain measurements [17]
or show changes in EEG measurements without any dif-
ferences in the ImPACT, SCAT5, or King-Devick tests
[18]. Because of these reasons, it is essential that the diag-
nostic test be as objective as possible and be difficult to
bias the outcome. This is our motivation for developing
an EEG concussion assessment tool.
The portable electroencephalograph has huge potential

for a sideline mTBI diagnostic tool. Researchers are in-
vestigating the use of EEG and evoked potentials but
have yet to adequately develop a diagnostic tool that has
gained widespread use. Evoked potentials and EEG are a
powerful assessment of brain activity and have the po-
tential for mTBI diagnosis [19, 20], but this is difficult to
set-up and requires a very long set of cognitive tasks and
intense data post-processing. Diagnostic tools that re-
quire a large amount of time and subject someone with
a brain injury to a lengthy set of cognitive tasks can be
trying, and difficult for a patient that needs rest. On the
other hand, a quantitative EEG (qEEG) approach could
efficiently assess for a concussion in much less time.
According to Haneef et al. [21], the acute, subacute, and
chronic mTBI stages can be mapped out using qEEG
measurements, suggesting that this technique could be
used for diagnosis and monitoring recovery. Although
analysis for unique EEG components in a mTBI is show-
ing a lot of potential, it still requires the use of a large
number of electrodes [22], making rapid measurements
problematic.
We have utilized an inexpensive, portable, easily

implementable EEG device that, with only three elec-
trodes, can aid in acute mTBI diagnosis on the field,
with only a few minutes of recording. Our advanced al-
gorithm has enabled the differentiation between mTBI
and no mTBI without the need for a baseline (pre--
mTBI) measurement. Baseline measurements of every
athlete or soldier are not always practical, so a diagnostic
tool that does not require prior knowledge of personal-
ized EEG activity is needed. Currently, in order to
achieve meaningfully high prediction accuracies (> 90%),
we are combining the EEG with patient-provided an-
swers to a few questions about their symptoms. This
publication describes our progress toward achieving high
classification accuracy for individuals who recently sus-
tained an mTBI vs those who have not, using simple
EEG measurements while minimizing the number of
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non-EEG variables. This is a step toward a simple
on-field EEG-only diagnostic test that reflects brain
physiology and minimizes the need for questionnaires.

Method
Participants
Volunteers were recruited from local hospitals and sports
fields. Typically, the participants came from high school
and college sports clubs or recreational skiing. The
remaining subjects received injuries from falls and from
accidents. Our program has collected measurements on
189 participants consisting of both concussion and control
participants, with a wide age range (18–80). For the pur-
pose of this study, we chose to focus on the 18–32 year
age range and use only participants who had measure-
ments within 72 h of injury. We chose this age range to
capture a representation of ages likely to be associated
with sport and occupation-related injuries [23] and to re-
duce the variability in the sample that could be attributed
to brain development (under 18) or neurodegeneration
(older adult subject). Future studies will focus on adoles-
cence, middle age, older adulthood, and potentially all age
ranges. The control participants had no head injuries in
the past 5 years, no history of moderate or severe head in-
juries, and no symptoms of chronic post-concussive syn-
drome. One control subject was removed because he/she
reported five injury symptoms and one mTBI subject was
removed because he/she reported no symptoms, both in-
consistent with their assigned classes. This left us with a
total of 85 participants, consisting of 27 females, 58 males,
38 mTBI (mean age = 22.79 ± 4.23), and 47 controls
(20.90± 2.90).
All protocols and procedures were approved by an Insti-

tutional Review Board (IRB) under the guidelines of Aspire
IRB (Santee, CA) and conformed to the ethical standards
outlined in the Declaration of Helsinki. Each participant
provided informed consent to participate in the study.

Screening
Prior to participation, background information such as
age, medical history, and prior history of concussions
was documented. Participants were excluded from the
study if they had a history of eye disease, strabismus,
amblyopia, or another neurologic condition other than
concussion. The subjects were capable of sitting motion-
less in a chair for 10 min, were able to follow simple di-
rections, and were not in pain or otherwise impaired to
the point that would interfere with the test. All of the
subjects needed to have a Glasgow-Coma score of 15.
Participants with a head injury were evaluated by trained
medical professionals for a mTBI and subsequently re-
ferred to our research team. Control participants were
screened for a history of TBI and any chronic symptoms
from past mTBI as specified above.

Materials
EEG measurements were all obtained using the wireless
three-electrode B-Alert SleepProfiler system (Advanced
Brain Monitoring, Carlsbad, CA) controlled by a tablet
computer using software provided by Advanced Brain
Monitoring. The three electrodes were located on the
subject’s forehead in positions AF7, FpZ, and AF8 with a
sampling rate at 256 Hz. The impedance was kept to
below 40 kΩ. The beginning and end of individual tests
are denoted by keyboard-entered event markers. The
voltage vs. sample number and time from each electrode
pair were stored on the computer for further analysis.
The hardware has FDA 510(k) safety approval for a var-
iety of applications.

Procedure
Measurements were made in the following settings: hos-
pital emergency room or a private examination room at
a hospital, clinic, school, or ski-resort. In a few cases, the
measurements were made at the participant’s home. In
all cases, the noise level and other distractions were kept
at a minimum level as allowed by the circumstances.
This study is a preliminary retrospective study as the

measurements were made before the current analysis
protocol was determined. The types of tests and testing
order were slightly modified over the course of the
study. A typical EEG test session consisted of a sequence
such as (1) 1-min eyes open/resting state, (2) 1-min eyes
closed/resting state, (3) King-Devick tests, (4) repeat 1,
(5) repeat 2, (6) balance test, and (7) computer-based at-
tention test. Keeping in mind that the eventual goal of
the project is to develop an EEG-only test, we used just
the 1-min resting state eyes closed tests, which has re-
cently shown to have significant head injury diagnostic
value [24]. All of the other tests were found to have low
predictive power or motion-induced EEG artifacts and
were thus eliminated from the analysis.
In addition to the above measurements, we used seven

yes-no symptom questions. These questions were in ref-
erence to loss of consciousness, headache, nausea or
vomiting, sensitivity to light, sensitivity to sound, confu-
sion, and memory disfunction. These questions are simi-
lar to part of the ImPACT and SCAT5 tests. The
subjects were also asked to rate the symptom severity on
a scale of 0 to 6, 0 signifying no symptoms. The yes-no
answers were used as variables in the analysis, and the
eighth variable was the average numerical severity rating
from all the symptoms.

Analysis
EEG Artifact Removal and Feature Extraction
The EEG data was bandpass filtered 0.1 Hz (high pass)
and 100 Hz (low pass). Artifact removal included muscle
movement (EMG), eye blinks, excursions, saturations,
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and spikes. Regions with excursions and saturated signals
were marked and eliminated from the analysis. EMG arti-
facts were flagged by monitoring high-frequency EEG
power in the 70–128Hz band and low-frequency EMG in
the 35–40Hz band. A small number of blink-like signal
shapes that were detected using the algorithm by Chang,
Cha, Kim, and Im [25] and removed. All detected artifacts
were manually inspected and adjustments were made to
the eliminated data region if appropriate.
Matlab software version R2017a (The Mathworks, Na-

tick) was used to perform feature extraction and data
analysis for the AF7-FpZ and AF8-FpZ voltages. Power
spectral densities (PSD) were calculated from 1 to 40 Hz
in 1-Hz frequency and 1-s time bins. The conventional
EEG bands (delta 1–3 Hz, theta 3–7 Hz, alpha 8–13 Hz,
beta 13–30 Hz, sigma 12–15 Hz, and gamma 25–40 Hz)
were obtained by summing the 1-Hz frequency bins. As
a method of data smoothing, for each 256 samples (1-s
time bin), the PSD was obtained from the average of
three overlapping 1-s time windows, the 1-s bin, and the
two time bins surrounding it. The observational vari-
ables used were the base-10 logarithm of the power
spectral density (PSD) in each of the standard EEG
bands averaged over the full testing period.

Algorithm
The Matlab function fitensemble was used to create the
classification model. The binary classification (mTBI or
healthy control) was performed using the supervised
learning method TotalBoost [26, 27]. This ensemble statis-
tical learning uses a large collection of classifiers to boost
the accuracy over that obtained by a single classifier [28].
For this algorithm, the binary class (mTBI vs control) for
each subject is provided, and the goal is to sufficiently
train the algorithm so that it can accurately classify new
subject data into mTBI or control. Boosting is a
meta-algorithm that works with a collection of other clas-
sifiers, such as decision trees. With each iteration, boost-
ing brings in a new decision tree to improve areas of weak
performance within the algorithm. Typically, several hun-
dred iterations are employed before the algorithm con-
verges. In our case, we used 200 decision trees.
Up to 20 observational variables were used in the classi-

fication analysis. These variables included the delta, theta,
alpha, beta, sigma, and gamma bands from the A7-FpZ
and A8-FpZ voltages (totaling 12 EEG variables). The yes/
no answers to the symptom questions and the average of
the numerical intensities (on a 0–6 scale) of the seven
symptoms were also included. Thus, the number of
variables was between 12 (no non-EEG variables) to 20
(12 EEG variables + 8 non-EEG variables).
Leave-one-out cross-validation was used to estimate

the accuracy of the classification. Here, for our set of 85
observations, 84 observations were used to train the

algorithm. The left-out test observation was then pre-
dicted by the trained algorithm. This procedure was re-
peated for each of the observations. Although it is more
common to cross-validate with two sets of participants
(training set and testing set), we were restricted by our
sample size and turned to the leave-one-out approach,
which is accepted as a method for testing algorithms [29].
A future study with a larger sample size to allow for the 1/
3 testing 2/3 training subject partitioning is a possible next
step. The resubstitution, or training, accuracy is deter-
mined when the full set of observations is used for train-
ing as well as for testing [30]. In all cases, our
resubstitution accuracy was found to be 100%. For a mod-
ern powerful machine learning algorithm and a small data
set such as ours, this not an unexpected result. For much
larger data sets, with overlapping distributions in variable
space, this would have been a signature of overfitting. The
leave-one-out cross validation more accuracy represents
model performance and, for this study, was the proportion
of correctly predicted observations. With this approach,
one possible sign of overfitting of the training algorithm is
the combination of high resubstitution accuracy but low
cross-validation accuracy. As discussed below, this was
not the case for our study.

Results
In selecting the symptom variables to use in the classifi-
cation algorithm, the correlation coefficient R and corre-
sponding p value comparing each variable column in the
data matrix with the class vector. Figure 1 displays the
results. It is seen that most EEG variables have weak
anti-correlations with the class matrix while the symp-
tom variables have relatively strong correlations.

Fig. 1 The correlation R coefficients and corresponding p values are
obtained by comparing each observational variable (data matrix
column) with the class vector. The EEG variables are labeled by the
conventional frequency band names with R and L indicating the
right and left electrodes
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As a second test of predictive value, all 256 possible
combinations of symptom variables combined with the
full set of EEG variables were investigated using the classi-
fication algorithm to determine what variable set gave the
most accurate prediction. It was found that the average se-
verity variable with any combination of the confusion,
light sensitivity, and sound sensitivity variables gave the
best results when the number of symptoms was limited to
three or four. When the number of symptoms was limited
to five or six symptoms, the most predictive variables also
included loss of consciousness and headache.
To demonstrate that EEG variables can boost predict-

ive accuracy for a small number of symptoms, the
three-member symptom set—confusion, light sensitivity,
and average severity—were used to illustrate this point.
The accuracy for the combined EEG and three-symptom
set was found to be near 91%.
Although the classification accuracy is often used to

gauge the performance of a classification algorithm, it is ar-
gued in the literature [31–33] that receiver operator charac-
teristic (ROC) curve analysis gives a more complete

representation of the algorithm effectiveness. Three cases
are considered in Fig. 2: (1) the 12 EEG variables (A, D, G),
(2) the three symptom variables—confusion, light sensitiv-
ity, severity average (B, E, H), and both the EEG and the
symptom variables (C, F, I). The top row shows the ROC
curves for the three cases. The area under the curve (AUC)
is used as a metric for comparison. In our analysis, the pre-
dictions and scores are obtained from the test subjects (sub-
jects that have been left out in the cross-validation). Scores
that have values greater than the class boundary at zero in-
dicate mTBI predictions while those less than zero refer to
control predictions. Scores with larger absolute values indi-
cate higher posterior probabilities.
For each set of prior probabilities, a different set of

predictions and scores are produced, leading to slightly
different ROC curves. Since the prior probabilities are
unknown, each of these curves is equally valid. We gen-
erated a family of 19 ROC curves for each case by vary-
ing the relative class weights by integer values from 1 to
10. We then took the average of these 19 curves as
shown in graphs A, B, and C. The maximum and

a b c

d e f

g h i

Fig. 2 ROC analysis results for the TotalBoost classification algorithm applied to the set of 85 subjects made of injured and control classes. Three
cases are shown: EEG-only (a, d, g), symptoms-only (b, e, h), and EEG plus symptoms (c, d, i). The first row plots the ROC curves, the second row
plots the ordered scores, and the third row shows the score distribution for the three cases. The AUC average and maximum/minimum variation
are given in the ROC plots (top). The distribution means and standard deviations are shown in the distribution plots (bottom)
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minimum values are also plotted to show the range of
variability. The average AUC values are approximately
0.52, 0.82, and 0.91 for the EEG-only, symptom-only,
and EEG plus symptom cases, respectively.
In the second row, we plot the ordered scores for each

of the three cases. Only the instance of equally weighted
classes is shown but the other unequal weighting instances
are similar in shape. The injured subjects (positive) are
shown in red, healthy (negative) in blue. It is noted that
the score values for the symptom-only case (E), while giv-
ing relatively accurate predictions, have a large fraction of
small score values, indicating a weak level of predictive ro-
bustness. On the other hand, the combined variable case
(F) does not exhibit this feature, having the majority of the
score values far from the class boundary.
The third row displays plots of the score distributions.

As before red indicates the distribution of injured subject
scores and blue corresponds to controls. The EEG-only
plot (G) shows nearly overlaying distributions centered at
the class boundary. The symptom-only case (H) shows a
distribution means separated by 0.14 score units. These
distributions are in contrast to the EEG + symptom which
exhibits a greater class separation of 0.22 units.
This result exhibits the nonintuitive but well-established

effect where one set of observed variables alone has little
or no predictive value, but when combined with a second
set of variables, the correlations between the members of
these sets result in stronger predictive power of the result-
ant latent variables compared to that of either set alone.
We checked that the result was not due to noise or added
ROC points by randomizing the EEG variables across sub-
ject measurements. As expected, the randomization re-
moved the correlation of the EEG variables with symptom
variables and resulted in the combined EEG+symp-
toms AUC value being the same as that of the symptoms
alone.

Discussion
Our machine learning algorithm method was able to cor-
rectly classify all of the participants during the training
stage. The participants in the study included those who
sustained a head injury and an mTBI diagnosis within 72
h of measurement, and controls, thus paving the way for a
diagnostic tool. Leave-one-out validation resulted in clas-
sification accuracy of approximately 91 ± 2%, showing that
our simple and portable EEG protocol is capable of asses-
sing brain injury with high accuracy. In addition, the ROC
analysis demonstrated the dangers (low confidence predic-
tions) of relying on symptom questions alone. Our proto-
col consisted of a handful of symptom questions and only
1 min of EEG recordings on three frontal electrodes. The
EEG device is wireless and controlled with a small tablet.
Therefore, the test from the current study can easily be

implemented on the sideline, locker room, or in a military
deployment situation.
Currently, the concussion assessment protocol on the

sports field consists of symptom questions and behavioral
measurements. The symptom questions from our data
provided 75–82% accuracy with weak predictive robust-
ness resulting in marginal performance for practical
applications. The addition of EEG data boosted the classi-
fication accuracy and ROC AUC to approximately 91%.
Supplementing the question-based approach with EEG
data can thus increase accuracy and help reduce any bias,
resulting in a more appropriate remove-from-play judg-
ment call. Importantly, research has shown that EEG mea-
surements can pick up the effects of an mTBI when
behavioral tests show no differences [14, 34]. We therefore
suspect that future analysis algorithms will only increase
the EEG contribution to the decision accuracy, thus avoid-
ing a misdiagnosis based on subjective behavioral tests.
This is an important step in reducing the long-term health
consequences of individuals when he/she has suffered a
brain injury.
The current study focused on those who sustained an

injury within 72 h, which is far from a sideline measure-
ment immediately following injury. The symptom profile
of a concussion can change over time, with some symp-
toms not readily apparent until 24 h post injury [35].
Therefore, future studies should aim at shortening the
time window post injury for a more accurate on-field
diagnostic assessment tool. Future research could also
compare EEG data from those immediately following in-
jury (within 24 h) and a little farther out from injury
(24–72 h) to better understand the difference between
an immediate measurement and a brain in the beginning
stages of healing.
Developing tools that facilitate the accurate diagnosis

of a mTBI is of the upmost important as many individ-
uals under-report symptoms [36] and believe it is fine to
play through a concussion even with background know-
ledge of the potential dangers [37]. The cascade of
events and metabolic crisis that occurs in the brain fol-
lowing a mTBI sets the brain up for a vulnerability to
subsequent injury that could result in a chronic brain
disease [38]. The period of vulnerability is unknown as it
depends on many factors, such as severity, but it is clear
that a subsequent injury occurring prior to full physio-
logical recovery can be detrimental to the brain. It is
therefore important to create a means of measuring the
initial injury and the recovery of that injury. We suspect
that the development of measurement techniques that
can differentiate in mTBI injury severity is critical in the
investigation of injury duration [14], but our study fo-
cuses on a yes-no diagnosis for the purposes of an accur-
ate and effective remove-from-play protocol. In
professional sports, more of an emphasis on this is
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underway, but in recreational and amateur sports lea-
gues, there are not necessarily trained medical personnel
(e.g., athletic trainers) present at all times [39]. A portable
simple measurement EEG tool may help resolve this issue.
Other approaches have been able to classify concus-

sions with high accuracy using an EEG-based technique
[14, 40, 41]. However, these approaches have used
higher density EEGs and longer testing times [40],
which are more difficult to implement on a sideline.
Other data collection paradigms have focused on the
recommendation for brain scans as a follow-up test for
a possible brain bleed, rather than classifying a concus-
sion [20]. Our study provides the unique approach of
combining simple EEG measurements paired with ad-
vanced quantitative analysis to provide a highly accur-
ate injury assessment tool. There has been a debate in
the literature regarding the validity of EEG, specifically
qEEG in the diagnosis of an mTBI as EEG research has
yet to confirm or rule out a mTBI [21]. Recent research
has deployed a three-classification system: concussion,
no concussion, and no decision due to low confidence
[42], which provides a viable solution to the issue about
EEG classification validity and will be utilized in our fu-
ture studies. This method will likely be more robust to
situations where individuals answer symptom ques-
tioners that are inconsistent with their potential injury
or lack of injury as the case in this manuscript. Overall,
this project is a step closer to achieving the goal of a
highly accurate injury assessment tool.
Recommendations for research on EEG and mTBI in-

clude using advanced analytical techniques to help re-
duce limitations in the diagnostic capabilities of EEG
and qEEG [43]. We have followed this recommendation
and deployed a machine learning algorithm technique,
resulting in a classification with high accuracy. Although
the EEG data, in the present case, on its own will likely
not provide confidence to effectively diagnose an indi-
vidual, a simple EEG measurement paired with a symp-
tom questionnaire can be an effective metric. Future
research is expected to uncover the key to an effective,
deployable EEG technique for highly accurate
EEG-based mTBI classification that requires very few or
even a complete absence of non-EEG variables.

Conclusions
The current study employed simple EEG measurements
in addition to a symptom questionnaire on participants
who recently experienced a concussion and healthy vol-
unteers. Machine learning was utilized to classify our
participants based on symptoms alone or symptoms
with EEG, and results revealed that the addition of EEG
boosted accuracy to approximately 91 ± 2% from 82 ±
4% for the symptom questionnaire alone. Although the

improvement is modest this demonstrates progress to-
ward accurate and objective on-field diagnostics. The
addition of a physiological brain measurement will help
ensure that sports players and military personnel
minimize the chance of long-term damage.
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