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ABSTRACT
BACKGROUND: Disturbances in N-methyl-D-aspartate receptors (NMDARs)—as implicated in patients with
schizophrenia—can cause regionally specific electrophysiological effects. Both animal models of NMDAR
blockade and clinical studies in patients with schizophrenia have suggested that behavioral phenotypes are
associated with reduction in inhibition within the frontal cortex.
METHODS: Here we investigate event-related potentials to a roving auditory oddball paradigm under ketamine in
healthy human volunteers (N = 18; double-blind, placebo-controlled, crossover design). Using recent advances in
Bayesian modeling of group effects in dynamic causal modeling, we fit biophysically plausible network models of
the auditory processing hierarchy to whole-scalp event-related potential recordings. This allowed us to identify
regionally specific effects of ketamine in a distributed network of interacting cortical sources.
RESULTS: We show that the effect of ketamine is best explained as a selective change in intrinsic inhibition, with a
pronounced ketamine-induced reduction of inhibitory interneuron connectivity in frontal sources, compared with
temporal sources. Simulations of these changes in an integrated microcircuit model shows that they are
associated with a reduction in superficial pyramidal cell activity that can explain drug effects observed in the
event-related potential.
CONCLUSIONS: These results are consistent with findings from invasive recordings in animal models exposed to
NMDAR blockers, and provide evidence that inhibitory interneuron–specific NMDAR dysfunction may be sufficient to
explain electrophysiological abnormalities induced by NMDAR blockade in human subjects.
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N-methyl-D-aspartate receptor (NMDAR) hypofunction is
considered one of the primary causes of schizophrenia (1,2),
which itself is associated with a number of electrophysiological
brain abnormalities (3,4). NMDAR antagonism, e.g., with ke-
tamine, can reproduce a set of symptoms and electrophysio-
logical features of schizophrenia (5–7), including a reduction in
auditory mismatch negativity (MMN) observed in patients
(8–11). MMNs are difference waves of event-related potentials
(ERPs) to an unexpected deviant stimulus and repeated stan-
dard stimuli (12,13). One theory of the underlying perceptual
inference is formalized in the predictive coding framework
(14,15): based on Helmholtz’s notion that the brain attempts to
infer the causes of sensations (16,17), predictive coding pro-
poses that the brain generates predictions of sensory input.
When sensation deviates from these predictions, prediction
error signals are generated and are passed along the sensory
hierarchy. Evidence from different sensory domains and spe-
cies suggests that this provides a good explanation of MMN-
type responses (18,19). However, there is limited evidence
ª 2018 Society of Biological Psychiatry. Published by Elsevier Inc.
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on how the underlying mechanisms are affected by NMDAR
transmission and its blockade.

Computational models offer a bridge between putative
synaptic disease mechanisms, and electrophysiological and
psychopathology features of disease phenotypes (20,21). Dy-
namic causal modeling is one such approach: neural mass
models of cortical microcircuitry are fitted to ERP data (22,23),
an approach widely applied to auditory MMN paradigms
(24,25), including in patients with schizophrenia (26), patients
with psychosis (11), and healthy volunteers exposed to keta-
mine (27).

Here, we apply novel dynamic causal modeling (DCM)
techniques to a double-blind, placebo-controlled study of the
effects of ketamine on the auditory MMN. We employ a single
hierarchical model to identify 1) within-session coupling
changes explaining ERPs to deviant and standard stimuli
(modeling MMN and repetition suppression effects respec-
tively) and 2) groupwise between-session coupling differ-
ences induced by ketamine. Previous DCM studies have
This is an open access article under the
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Table 1. Study Subject Details

ID Dose (mg/kg/h) Age (Years) Sex

A 0.250 23 Male

C 0.250 21 Male

E 0.250 23 Male

G 0.083 22 Male

I 0.083 22 Male

J 0.250 22 Male

K 0.083 23 Male

M 0.083 26 Male

N 0.083 22 Male

O 0.083 24 Male

P 0.083 25 Male

R 0.083 22 Male

T 0.083 22 Male

U 0.083 22 Male

W 0.083 25 Male

X 0.250 21 Male

Y 0.250 25 Male

Z 0.083 23 Male
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focused on synaptic changes plausibly affected by sensory
input directly. Our approach accommodates more funda-
mental effects of ketamine on neuronal circuits; e.g., on
excitation/inhibition balance within cortical microcircuits, on
intrinsic timescales of cortical areas, or on postsynaptic gain.
We exploit the biophysically detailed microcircuit models
implemented in DCM, linking neurobiological insights and
theoretical accounts of sensory processing in the brain (28).
Thus, we use DCM to identify intrinsic (within-source) or
extrinsic (between-source) synaptic connection changes
induced by oddball stimuli, and how these changes were
contextualized by altered neurobiology during the adminis-
tration of ketamine.

With this approach we addressed two main hypotheses.
First, ketamine may alter synaptic connectivity of the auditory
processing network irrespective of the auditory context.
Because of the nonlinearities of neuronal systems, even a
context-invariant effect on connectivity (i.e., in parameter
space) may produce differential effects in standard versus
deviant responses in terms of ERPs (i.e., in measurement
space). Second, and alternatively, ketamine and the ensuing
NMDAR blockade may directly impact on synaptic plasticity
induced by sensory learning. In other words, observed
changes in deviant ERPs may be an interaction between
deviant effects and drug effects at the level of synaptic
connectivity. Given that our DCM approach estimates both
synaptic plasticity induced by deviant stimuli and changes
induced by ketamine, we can now disambiguate these putative
mechanisms empirically.
METHODS AND MATERIALS

Subjects

We recruited 18 male volunteers (Table 1) through university
advertisements. Subjects gave fully informed, written consent
prior to participation and were compensated. The study was
approved by the University of Lübeck Research Ethics
Committee. Participants completed a psychiatric question-
naire (Symptom Checklist-90-Revised) and routine clinical
examination (including electrocardiography, auscultation, and
blood pressure measurements). Subjects with preexisting
conditions, a family history of psychotic illness or epilepsy,
and regular medication, and who were left handed, smoked,
or were recreational drug users, were excluded. Participants
were invited for two sessions .3 weeks apart (placebo and
ketamine arms).

This was a randomized, placebo-controlled, double-blind,
crossover experiment: Participants were randomly assigned to
either ketamine-first or placebo-first groups (9 in each group).
Subjects and supervising researchers were blinded to session
conditions (N.B., psychotomimetic effects of ketamine may
reveal session conditions to participants). Ketamine or the
saline placebo was infused continuously over 2.5 hours, with
ERP recording commencing at 1.5 hours after onset (29,30). An
initially used higher ketamine dose was poorly tolerated by
some participants, who suffered from nausea, vomiting, and
some degree of disorientation. Because of this, the concen-
tration of the infusion was reduced from 0.250 to 0.083 mg/kg/
hour for subsequent data collection (Table 1).
Biological Psychiatry: Cognitive Neuroscience and Neur
Stimuli and ERP Recording

ERPs were recorded using 20 electrodes (10/20 EASYCAP
system [EASYCAP GmbH, Herrsching, Germany]; Compu-
medics Neuroscan amplifier, sampling frequency 500 Hz
[Compumedics Neuroscan, Abbotsford, Australia]). Pure tones
were presented in pseudorandom sequences: sounds of the
same frequency were repeated 2 to 36 times, before a fre-
quency change (i.e., roving oddball paradigm). Sounds were
presented at 80 dB, with frequencies between 700 and 1200
Hz (in 50-Hz steps), and an interstimulus interval of 400 ms;
tones were 25 ms in duration (31). Subjects were given an
incidental reading task and instructed to ignore the sounds.

Data were analyzed in average referential montage, band-
pass filtered (range, 0.1–80 Hz), and divided into2100- to 300-
ms peristimulus epochs. In the roving paradigm, tones change
from deviant stimuli (i.e., first in sequence) to standard stimuli
through increasing repetitions. We calculated average ERPs
for the first (deviant [D1]; average of 228 trials per participant),
second (S2), sixth (S6), and 36th (S36) (average of 76 [S36] to
209 [S2] trials per participant) presentation in a sequence.
Baseline correction was performed based on 100- to 0-ms
peristimulus time (D1), 250 to 300 ms (S2), or both (S6, S36) to
avoid large P3a components at the end of D1 and the begin-
ning of S2 epochs.

Experimental Design and Statistical Analysis

The experiment was designed to determine within-session
effects of stimulus repetition and deviance, as well as
between-session effects of ketamine in a crossover design.
Within sessions, we compared ERPs with standard tones after
short (two tones) and long (36 tones) sequences, as well as
ERPs after 36 tones, and the deviant ERP (first tone) using
Bonferroni-corrected t tests for time point by time point dif-
ferences. To evaluate between-session group effects of keta-
mine versus placebo, we compared peak amplitude of the
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mean difference between the standard and deviant ERPs
(i.e., mismatch negativity) with a t test.

Dynamic Causal Modeling

Further detailed analysis using cortical source estimates of
population output was performed using DCM. Our analysis
was based on low-density electroencephalogram (EEG) re-
cordings (20 electrodes in the 10/20 electrodes system),
resembling EEG recordings routinely used in the clinic. These
data were sufficient for our purposes because the aim of our
study was not to identify the functional architecture of the
auditory mismatch response, which has been done before
(32,33). Rather, we wanted to infer the effects of ketamine on
the neurobiology of an established MMN network. Our models
reflect this question, focusing on variations in model parame-
ters as the explanation for the ERP differences. Prior knowl-
edge about source locations was included in the DCM
inversion as before, enabling us to finesse the source recon-
struction problem using low-density EEG data and thereby drill
down on the ketamine effects. We apply hierarchical (para-
metric empirical) Bayesian modeling to identify group effects
across DCMs fitted to single subjects. This analysis was
conducted using the free academic software SPM12 (http://
www.fil.ion.ucl.ac.uk/spm/), and custom code available online
(https://doi.org/10.5281/zenodo.570595).

Identifying Prior Parameter Distributions From Grand
Mean ERP. To produce the best fits at the single-subject
level, a DCM was first fitted to grand mean ERPs (24,33), as
detailed below. A standard electromagnetic forward model
based on a boundary element method standard head model in
Montreal Neurological Institute space implemented in SPM12
was used to calculate lead-fields and reconstruct source ERP
waveforms at six cortical locations (25,34): bilateral primary
auditory cortex (A1), bilateral superior temporal gyrus (STG),
and bilateral inferior frontal gyrus (IFG) with Montreal Neuro-
logical Institute coordinates: left A1 [242, 222, 7], right A1
[46, 214, 8], left STG [261, 232, 8], right STG [59, 225, 8], left
IFG [246, 20, 8], right IFG [46, 20, 8].

Differences between ERPs were modeled as arising from
extrinsic (between cortical regions) or intrinsic (within cortical
regions) synaptic coupling change. We modeled the effect of
deviance and repetition as coupling changes (i.e., short-term
plasticity) that are summarized as linear mixture of two tem-
poral basis functions (Figure 1A). This yields three types of
coupling: subject-specific connectivity conserved across rep-
etitions (A parameters), repetition-dependent changes in con-
nectivity greatest for the deviant and subsequently decreasing
(B parameters for the monophasic decay), and repetition-
dependent changes in connectivity that peak with the first
standard tone S2 (i.e., B parameters for the phasic temporal
basis function). The linear mixture of both types of temporal
basis function—weighted by their respective B parameters—
reproduces the estimated connectivity changes across the
four conditions (i.e., repetitions) allowing for a range of different
types of plasticity over time (33). The model inversion provides
both a measure for model evidence and posterior densities of
model parameters. Parameter estimates of this grand mean
inversion were then used as priors for single-subject DCMs.
142 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging F
Individual Model Inversion and Bayesian Model
Reduction to Identify Repetition Effects. Whole-scalp
ERPs for each subject were extracted separately for the pla-
cebo and the ketamine conditions, resulting in 36 separate
sessions (18 subjects, two conditions) for DCM analysis. For
each DCM, the full six-region network was equipped with
grand mean–derived priors and inverted, yielding 36 individu-
ally parameterized DCMs.

To test whether the effects of deviance (24) and the effect of
repetition (33) replicate existing findings in the literature, we
performed Bayesian model reduction. This identifies the best
subset of DCM parameter changes that could explain the
observed ERP responses: based on inverted full DCMs, we
can estimate model evidence for a number of reduced DCMs,
in which some parameters do not allow condition-specific
variations (23,35,36).

We compare models in which repetition modulated only a
subset of network connections along three classes of
models—1) models in which forward connections change
versus models in which they do not, 2) models in which
backward connections change versus models in which they do
not, and 3) models in which intrinsic modulatory gain param-
eters change versus those in which they do not (24,25). This
furnishes a combination of 2 3 2 3 2 = 8 models: four types
differing in between-source connectivity modulation and two
types differing in within-source connectivity modulation
(Figure 1A). As each subject had a high model evidence for the
same (winning) model (see Results), within-session effects
across the group were summarized using Bayesian parameter
averages.

Parametric Empirical Bayes andKetamineEffects. To
estimate systematic variations in model parameters caused by
ketamine, we used a parametric empirical Bayesian (PEB)
approach. In brief, PEB allows the Bayesian estimation of a
general linear model explaining effects across DCMs at the
level of model parameters. This second-level model can be
equipped with different regressors (across all sessions and
subjects), with the inversion providing parameter estimates for
these between-DCM effects (37). Here, we use PEB to 1)
perform Bayesian model comparison across reduced models
and 2) quantify the parameter changes in the winning model in
which a subset of DCM parameters explains the ketamine
effect.

Regressors comprised 1) an effect of ketamine (0 for pla-
cebo, 1 for low-dose ketamine, 2 for high-dose ketamine; the
two sessions from each individual subject were thus modeled
as either 0 to 1, or 0 to 2, thus preserving differential effect
sizes of ketamine across participants), 2) the group mean, and
3) random subject or block effects. The parameters included
time constants (s1–4) (temporal dispersion of postsynaptic re-
sponses), intrinsic connectivity parameters (g1–3) (cortical
microcircuit connection strengths), modulatory gain parame-
ters (M, N) (modulations of superficial pyramidal cell gain), and
extrinsic connectivity parameters (A, B) (connection strength
between cortical sources). Our model space addressed two
classes of hypotheses: 1) ketamine affects extrinsic connec-
tions between sources (A, B parameters) and 2) ketamine
modulates intrinsic properties within sources (M, N, g, s pa-
rameters). We allowed for both a nonspecific (main) effect of
ebruary 2019; 4:140–150 www.sobp.org/BPCNNI
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Figure 1. Two-level hierarchical dynamic causal modeling (DCM) model space. DCM represents cortical sensory processing as a network of (extrinsically)
coupled cortical sources, each of which contains (intrinsically) coupled neuronal populations. Each population is modeled as a neural mass with characteristic
synaptic time constants. The free parameters of this model include extrinsic coupling parameters between cortical sources (average coupling: A parameters;
condition-specific modulation: B parameters) and intrinsic coupling parameters between neuronal populations within a source (population time constants:
s parameters; coupling strengths: g parameters; activity-dependent modulation of recurrent self-connections: M parameters; condition-specific modulation of
activity-dependent coupling: N parameters). (A) Effects of repetition were modeled as condition-specific modulations of forward/backward extrinsic con-
nections (BBWD/BFWD) (B parameters) and intrinsic modulatory gain parameters (N parameters) in a coupled network of six cortical sources. The relative
contribution of these parameters to each of the event-related potentials modeled here (i.e., D1, S2, S6, S36) is estimated using two temporal basis functions: a
monophasic decay (where the contribution is maximal for the deviant stimulus D1) and a phasic change in connectivity (where the response is maximal at the
standard stimulus S2), as shown in the right panels. (B) Ketamine effects were modeled at the second level; i.e., as group-level differences in DCM parameters
between conditions that were conserved over subjects. The left panel illustrates the parameters in the canonical microcircuit representation of each source
used in this DCM. Our analysis addressed the following question: which combination of parameter changes between the placebo and ketamine conditions best
explains the ketamine effect observed across the whole group? The model space is divided into models in which ketamine affects only combinations of
extrinsic coupling parameters (right top panel) versus those in which ketamine affects only combinations of intrinsic coupling parameters (right bottom panel).
a.u., arbitrary units; A1, primary auditory cortex; ABWD, extrinsic backward coupling; AFWD, extrinsic forward coupling; B, backward connections; F, forward
connections; i, intrinsic connections; IFG, inferior frontal gyrus; STG, superior temporal gyrus.
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ketamine on coupling (M, A, g, s parameters) and interaction
effects specifically on plasticity (N, B parameters). We used
Bayesian model reduction to compare the evidence for these
(second-level) models, yielding approximate log evidence of
second-level models and estimates of the ketamine-induced
parameter changes (with Bayesian 95% confidence interval).
Finally, to further characterize these effects, we used param-
eter estimates in simulation mode (i.e., in a forward model
Biological Psychiatry: Cognitive Neuroscience and Neur
based on the grand mean DCM) to visualize their impact on
source-space ERPs.

RESULTS

Sensor Space Results

ERPs contain averaged responses to tones of different fre-
quencies at fixed positions within a sequence. Grand mean
oimaging February 2019; 4:140–150 www.sobp.org/BPCNNI 143

http://www.sobp.org/BPCNNI


Ketamine and Sensory Learning
Biological
Psychiatry:
CNNI
ERPs at the frontocentral (Fz) electrode for D1, S2, S6, and S36
are shown for placebo and ketamine conditions (Figure 2A).
Deviance ERPs (to D1) constitute an early negative response
(at MMN latency, approximately 150 ms) and later positivity
(P3a, approximately 250 ms) that differs significantly from
ERPs to standard tones (deviance effect). ERPs to S2, S6, and
S36 show the buildup of a positive memory trace at around
120 ms, with significant differences between S2 and S36
indicated in Figure 2A (repetition effect).

Ketamine reduced the period during which there was a sig-
nificant deviance effect (i.e., D1 to S36 ERPs: placebo 112 ms,
ketamine 90 ms) as well as the repetition effect (i.e., S26 to S2
ERPs: placebo 120 ms, ketamine 98 ms). The MMN is attenu-
ated by ketamine (paired t test) (t17 = 1.85, p . .05) but not P3a
(t17 = 1.10, p. .05) (Figure 2B). The attenuation is also apparent
across the whole scalp when plotting all channels (Figure 2C).

Effects of Repetition on Connectivity

Repetition effects were modeled as changes in connectivity of
the cortical auditory network comprising three bilateral
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sources. This plasticity is captured in a linear mixture of two
temporal basis functions (Figure 1A): a monophasic decay and
a phasic effect across repetitions. The combination of both
effects on extrinsic and intrinsic coupling constitute the full
model (model FBi in Figure 1A; see Figure 3A for subject-
specific model fits). A set of reduced models was compared
using Bayesian model reduction. These models comprised
each of the models in Figure 1A paired with either one, or both,
of the temporal basis functions, resulting in a total of 8 3

3 = 24 models. Bayesian model comparison provides decisive
evidence for the full model (i.e., FBi with both monophasic and
phasic effects) at the group level (Figure 1B) and for each in-
dividual subject (not shown).

Bayesian parameter averages for forward connections,
backward connections, and modulatory self-connections
(shown here for A1) are shown in Figure 3C, indicating
distinct time courses of changes for different types of
connections. Overall, extrinsic connectivity was reduced
across repetitions: biggest reductions were seen earlier in
forward compared with backward connections. Modulatory
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Figure 3. Repetition effects. (A) Event-related potentials to the first (deviant stimulus D1), second, sixth, and 36th (standard stimuli S2, S6, and S36,
respectively) presentation of a sound within a sequence were modeled in subject-specific dynamic causal models. The first principal eigenmode of the
prediction in sensor space (bold colors) and the corresponding mode of the empirical scalp data (light colors) are shown for each individual. These suggest a
good fit for the main components of the event-related potential waves. (B) Bayesian model comparison was performed to compare models in which the
repetition effect was monophasic, phasic, or both, and included modulations of forward (F), backward (B), or intrinsic (i) connections and their combinations.
The winning model across the group was the full model, where monophasic and phasic repetition effects impact on forward, backward and intrinsic
connection. (C) Bayesian parameter averages for this full model of all subjects show changes in connection strength across repetitions for forward, backward
and intrinsic modulatory connections. Error bars indicate the 95% Bayesian confidence interval.
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gain parameters are reduced initially (D1 to S2), before
increasing (S2 to S36). The combination of these param-
eter best explains the observed ERP changes with
repetition.
Effects of Ketamine on Model Parameters

We combined DCMs for each subject and session in a single
PEB model to identify between-session parameter changes
induced by ketamine. Initially, we used Bayesian model
reduction at this second level to compare reduced models that
contained ketamine-related variation in only a subset of
coupling parameters (Figure 4A). This allowed us to identify the
simplest models with greatest explanatory power: in our
Biological Psychiatry: Cognitive Neuroscience and Neur
hypothesis space we allow for complex interactions between
ketamine and the effects of repetition suppression on the
network (through the selection of model parameters). For
example, the N parameters of our DCMs encode repetition-
induced changes in cortical self-modulation. The second-
level (PEB) model space included models in which the
ketamine effect could be explained through changes in these N
parameters; e.g., ketamine could attenuate changes in self-
modulation during repeated exposure to the same sound.
However, the parameters encoding these effects were redun-
dant and were eliminated after Bayesian model reduction. A
better explanation for the ketamine effects on the MMN was
instead a repetition-invariant change in cortical microcircuitry
encoded in the g parameters.
oimaging February 2019; 4:140–150 www.sobp.org/BPCNNI 145
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Figure 4. Ketamine causes frontal lobe disinhibition. (A) Using parametric empirical Bayesian modeling, 14 alternative second-level models were
considered, explaining differences between ketamine and placebo with changes in combinations of parameters. Bayesian model reduction shows that the
model with changes in intrinsic connection parameters (g) best explains the effects of ketamine on the event-related potentials. (B) Estimated parameter
changes with Bayesian 95% confidence intervals (top) and posterior probability of the parameter being affected by ketamine (bottom) are shown. Significant
changes were only observed in a subset of g parameters, with the largest effects estimated for inhibitory interneuron (ii) connections to spiny stellate cells (ss).
In the bilateral superior temporal gyrus (STG), there was an increase in ii inhibition on ss, while in the bilateral inferior frontal gyrus (IFG) there is a ketamine-
induced disinhibition of ss. (C) Simulated effects of opposing changes in ii to ss inhibition at different hierarchical levels are shown in source space. Each graph
shows superficial pyramidal cell (sp) activity in different regions for the 0- to 300-ms poststimulus interval with concurrent, but opposite, modulation of the
parameter in ii to ss inhibition: in the STG the (log-scaled) connection strength is increased from 0 to 2, while in the IFG the strength is decreased from 0 to 22.
This modulation causes an attenuation and increase in latency in the IFG response, with concurrent attenuation of early STG responses and a decrease in the
latency of the response. (D) Neuronal state space plots show the relationship between sp and ss activity for different hierarchical levels and for increasing
changes to the ii to ss inhibition. There is minimal effect on the primary auditory cortex (A1). For STG, the parameter changes induce a reduction in ss response
amplitude compared with sp and an overall shift toward more negative population output. In the IFG there is an inverse reduction of sp response amplitude
compared with ss. s, time constants; ABWD, extrinsic backward coupling; act, activity; AFWD, extrinsic forward coupling; BBWD, condition-specific modulations
of backward extrinsic connections; BFWD, condition-specific modulations of forward extrinsic connections; lt, left; M, modulatory self-connections;
N, condition-specific effects on modulatory connections; rt, right.
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An inspection of the winning second-level model revealed
that of these g parameters, only a subset is affected by keta-
mine (Figure 4B). The biggest effect size is seen in g3, which
represents the strength of inhibition supplied by inhibitory in-
terneurons to excitatory spiny stellate cells. This parameter is
146 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging F
modulated in the opposite direction in the lower areas of the
hierarchy (increased in right A1, left and right STG; decreased
in left and right IFG).

To simulate the (highly nonlinear) effects of these
parameter changes on observed ERPs, we implemented a
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forward model based on the grand mean DCM inversion.
This simulation gradually increased g3 in the bilateral STG,
while decreasing the same parameter in the bilateral IFG.
The effects of these reciprocal changes on source-space
ERPs are shown in Figure 4C. This analysis reveals an
attenuation and small increase in latency in the IFG response
that resembles the observed changes in the MMN response
at the Fz electrode in Figure 2B. The responses at the STG
level are overall reduced in amplitude, with a decrease in
response latency (10).

Further analysis of the relationship between excitatory in-
terneurons (here modeled as spiny stellate cells) and the
superficial pyramidal cells is shown in Figure 4D. Plotted in
terms of estimated neuronal responses, these graphs repre-
sent the evolution of population responses during the devi-
ance ERPs in neuronal state space, starting from and
returning to baseline. These plots show the relative impact of
g3 parameter changes. In the IFG, where interneuron inhibi-
tion on spiny stellate cells is reduced, this plot reveals a
decrease in superficial pyramidal cell amplitude with relative
preservation of spiny stellate cell activity. Conversely, in the
STG, where g3 is increased, the amplitude of spiny stellate
cells is relatively decreased compared with superficial pyra-
midal cells.
DISCUSSION

We identified region-specific changes in cortical microcircuits
induced by ketamine during an auditory oddball paradigm.
Our approach provides a unifying hierarchical model
explaining network-wide short-term sensory learning effects,
mismatch effects, and the effects of NMDAR-blockade with
ketamine. We focused on auditory ERPs—but mismatch re-
sponses are known to be attenuated by ketamine in other
modalities (38). Furthermore, our results indicate that keta-
mine affects background (i.e., condition-invariant) cortical
circuitry. Our findings may thus represent generic aspects of
how predictive processing is affected by ketamine, rather
than domain-specific features of decoding the auditory
environment.

Computational Modeling Links Whole Brain
Observations With Synaptic Mechanisms

Mesoscale neuronal models can reproduce various normal
(39,40) and abnormal (41,42) brain responses, explaining
complex sets of observations, such as ERP data (21). We used
this approach to compare a range of possible ketamine effects
on auditory ERPs.

Our results suggest that 1) acute NMDAR blockade effects
can be explained by a small set of key parameters and 2) the
parameters identified are consistent with a wealth of previous
related, but methodologically distinct, studies. The nontrivial
link between MMN changes and intrinsic inhibition within
frontal microcircuits could not have been made without explicit
computational modeling of EEG generators. With this
approach, we provide evidence for a localized and cell type–
specific role of NMDAR hypofunction in psychotic illnesses
such as schizophrenia (43,44) in a placebo-controlled human
experiment.
Biological Psychiatry: Cognitive Neuroscience and Neur
Deviance Responses Are Caused by Network-wide
Connectivity Changes

Competing theories regarding the origin of the MMN can be
summarized as 1) the neural adaptation hypothesis, according
to which the MMN is explained by bottom-up dishabituation
(45); and 2) the model adjustment hypothesis, according to
which MMNs represent an error detection signal prompting
predictive model updating (46). Here we replicate findings from
previous studies pertaining to the neurobiological implementa-
tion of these putative mechanisms. In this study, we assume the
same cortical sources previously identified and replicated in a
number of auditory oddball EEG and magnetoencephalography
studies (24,25,47,48). This allowed us to focus on processing
dynamics rather than network topology. Our placebo results
support previous DCM studies of the MMN showing that both
neural adaptation and model adjustment are required to explain
the phenomenon, as it requires changes in both intrinsic
modulatory gain and extrinsic cortical coupling. This is in
keeping with a predictive coding account of MMN generation.
According to the predictive coding framework, sensory pre-
dictions are passed downstream along the sensory processing
hierarchy. When they mismatch sensory evidence, a prediction
error signal is evoked, which passes back up the cortical hier-
archy (modulating extrinsic connectivity), while also causing
adjustment of the intrinsic gain in primary sensory cortex
(modulating intrinsic connectivity) (17,18).

Sensory Learning Causes Distinct Patterns of
Change for Different Coupling Parameters

In the roving oddball paradigm, deviant sounds are repeated
until they become the new standard, no longer eliciting
deviance responses. Previous DCM studies identified distinct
temporal patterns in associated coupling changes: using short
auditory sequences, Garrido et al. (33) identified a clear dif-
ference in extrinsic connections, which were consistently
reduced with each repetition; and intrinsic connections, which
showed an initial phasic decrease before slowly increasing
with repetition.

These findings are replicated independently here: extrinsic
connectivity decreases with repetition, while intrinsic connec-
tivity parameters show only a brief phasic decrease. There is
also a temporal dissociation between forward and backward
connections: while forward connection strengths quickly return
to their baseline value, backward connection strengths remain
higher for longer. This asymmetry in the time course of forward
and backward plasticity may reflect more general differences in
temporal dynamics at different points along the cortical hier-
archy. Primate cortical areas are hierarchically ordered in their
neuronal time scales (49,50). The resultant hierarchically
segregated tracking of fast and slow changes at different levels
of the hierarchy may support efficient representation of com-
plex sensory input (51). Our findings add further support for
this hierarchical separation in time scales. After the ERP to the
deviant stimulus, short transient increases of forward con-
nections reflect novel sensory information (encoded in pre-
diction errors) in lower cortical areas. More persistent changes
in backward connections, in contrast, encode the preceding
sensory context (i.e., the recent occurrence of the deviant),
which persists for number of repetitions.
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NMDAR Blockade Has Regionally Specific Effects
on Intrinsic Connectivity

NMDARs are prevalent in the supragranular cortical layers,
suggesting particular relevance of NMDAR transmission to
backward connections in the cortical hierarchy, as they target
superficial layers (52). However, NMDARs are unevenly
distributed across cortical interneuron subtypes, indicating
that the overall effects of systemic NMDAR blockade may be
better represented in regionally specific intrinsic coupling
changes (excitatory or inhibitory), corresponding to localized
subpopulation effects, rather than extrinsic coupling (53).

In our study, changes in a limited set of regional intrinsic
connections best explain the ketamine effects, with strongest
effects in a single connection type: inhibitory connections from
inhibitory interneurons to spiny stellate interneurons. This is
one of the links between fast-oscillating superficial and slow-
oscillating deep neuronal oscillators of cortical microcircuits
(54). This effect is region specific: ketamine causes a decrease
in inhibitory interneuron to spiny stellate inhibition in the STG,
but an increase in the IFG, indicating a relative disinhibition of
the IFG. Our findings contain within them a replication of the
work by Schmidt et al. (27), who considered a subset of model
parameters for the ketamine effect. They identified a single
forward connection as the ketamine-induced change in
connectivity during a roving oddball paradigm. However, in our
more comprehensive model space, the regionally distinctive
disinhibition proves a more parsimonious explanation of
ketamine effects. This is furthermore in keeping with previous
DCM studies of ketamine in other model organisms also
implicating prefrontal regions (55,56), as well as an MMN study
in people with psychosis and their relatives (11).

Functionally, the ketamine-related reduction in prefrontal
inhibition results in a constitutive increase in prefrontal excit-
ability, or gain. Dysfunctions in gain control have been put
forward as explanations for aberrant sensory processing
underlying hallucinations (57), explaining hallucinations as a
failure to encode sensory uncertainty. Several clinical features
of psychosis, including attenuated mismatch negativity, can be
explained through hierarchical failures in precision encoding,
as discussed in detail in Adams et al. (58).

Interestingly, cell type–specific knockouts of NMDAR on
inhibitory interneurons are already used in animal models of
schizophrenia (7,59). Invasive recordings in the prefrosdntal
cortex of such mouse models suggest that the overall effect of
NMDAR transmission is an inhibitory drive (60). Detailed
examination of the role of NMDAR blockade on gamma
oscillations (known to be abnormal in schizophrenia) also
showed the effect to be mediated through inhibitory
interneurons (61). Although—by design—our study focused on
evoked and not oscillatory responses, we note the conver-
gence on inhibitory dysfunction in these optogenetic mouse
models, and EEG studies in human subjects [e.g., (10,60,61)].
The regional specificity of our effects at the source level is
furthermore mirrored by a literature on topographically specific
impairments in schizophrenia (62,63). Prefrontal inhibitory
interneuron dysfunction has also emerged as a potential
mechanism underlying other features of schizophrenia (64,65),
further supported by computational models of prefrontal
cortex functions (66).
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The focus of this study was to relate pharmacological
perturbation of brain function with measurable ERP modula-
tions. Our results concerning the localizable effects of NMDAR
blockade have clear implications for NMDAR-focused hy-
potheses of schizophrenia. While previous studies have shown
a link between MMN measures of abnormal physiology in
schizophrenia and psychopathology (67), we have not specif-
ically addressed psychopathology in the test subjects here.
Previous studies have shown that MMN features (68) or MMN-
derived DCM parameters (27) during ketamine exposure
correlate with different aspects of psychopathology, which is
clearly an important area for future research.

Limitations

This study uses complex DCMs on low-density EEG, limiting
robust source localization without prior assumptions. Here,
we are assuming cortical sources to be located at previously
identified Montreal Neurological Institute coordinates
(25,34,47,48), focusing on exploring processing dynamics
rather than MMN topology.

First, Bayesian model selection—as used in this study—can
only provide relative evidence of models in the model space.
A more parsimonious explanation of the data may exist, but
we cannot comment on alternative hypotheses that are not
included explicitly. We chose our model space carefully, based
on the MMN literature to 1) accommodate previous findings
on repetition suppression and the deviance response and
2) test specific hypotheses about the effects of ketamine in
this setting. In short, we cannot draw conclusions about
whether other models may offer better explanations for our
data; however, we can argue that the model space offers a
broad repertoire that includes most neurobiologically plausible
hypotheses currently entertained in the literature.

Second, because of side effects for some of our partici-
pants, the dose of ketamine had to be adjusted for subsequent
subjects. This additional variation is explicitly accommodated
in the model (as a specific parameter in the parametric
empirical Bayesian analysis), thus allowing integration of two
distinct ketamine doses compared with placebo. Furthermore,
drug-level monitoring was not included in the study design, so
some intersubject variability may be accounted for by differ-
ences in drug metabolism and excretion. However, the
statistical modeling used in our analysis accommodates the
ensuing random (between-subject) effects.
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