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Abstract

Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by variants in the

gene encoding the cystic fibrosis transmembrane conduction regulator (CFTR) protein.

Loss of CFTR function disrupts chloride, bicarbonate and regulation of sodium

transport, producing a cascade of mucus obstruction, inflammation, pulmonary

infection, and ultimately damage in numerous organs. Established CF therapies treat

the downstream consequences of CFTR dysfunction and have led to steady

improvements in patient survival. A class of drugs termed CFTR modulators has

recently entered the CF therapeutic landscape. These drugs differ fundamentally from

prior therapies in that they aim to improve the function of disease-causing CFTR

variants. This review summarizes the science behind CFTRmodulators, including their

targets, mechanism of action, clinical benefit, and future directions in the field. CFTR

modulators have dramatically changed how CF is treated, validated CFTR as a

therapeutic target, and opened the door to truly personalized therapies and treatment

regimens.
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1 | INTRODUCTION

Cystic fibrosis (CF) is considered a rare and lethal genetic disease,

occurring in approximately 1:3500 births in the United States and at a

higher incidence inmany northern European countries.1,2 It is caused by

mutations in the gene encoding the cystic fibrosis transmembrane

conductance regulator (CFTR) protein, ananionchannel and regulator of

other ion transporters which controls the hydration and viscoelastic

properties of mucus in several epithelial tissues.1–4 Disease-causing

CFTR variants alter ion transport, leading to mucus obstruction. In the

lungs, this sets the stage for chronic infection, inflammation, and airway

damage that can progress to respiratory failure. There are more than

2000variants in theCFTRgene thathavebeendescribed,andasubsetof

these are clearly disease-associated (www.genet.sickkids.on.ca/cftr and

www.cftr2.org). The vast majority of people with CF have a relatively

small number of variants that have been carefully characterized;

however, there are numerous uncommon or rare variants that remain

poorly characterized (with approximately1200variants identified in less

than five CF subjects worldwide).

2 | ESTABLISHED, SYMPTOM-BASED
THERAPY FOR CF

Symptom-based therapies have been highly successful in CF, leading

to steady increases in patient lifespan and qualitative outcomes over

several decades. These established therapies address critical aspects

of disease pathology, including exocrine pancreatic insufficiency

(pancreatic replacement enzymes), nutritional deficiencies (fat soluble

vitamins and high caloric supplements), airway bacterial infection

(inhaled and systemic antibiotics), mucus hydration (inhaled osmotic

agents), inhaled mucolytics (recombinant human DNAse), and anti-

inflammatories (high-dose NSAIDs, chronic macrolides).5–10 Even with

these effective therapies, the median predicted survival of subjects

born with CF remains well below that of unaffected newborns

throughout the developed world.11 This singular fact provides a clear

need to developmore effective therapies for CF. There continues to be

a great deal of effort directed towards new drug development that

targets symptomatic aspects of CF, with numerous drugs in the

therapeutic pipeline.12 These include strategies to normalize epithelial
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sodium transport (eg, inhibitors of the epithelial sodium channel),

agents which reduce or help to resolve inflammation, muco-active

compounds, novel anti-infective therapies, and treatments that

address nutritional and GI aspects of CF disease.12–19 In addition to

these more traditional targets, clinical trials testing highly novel

strategies are underway, such as allogenic human mesenchymal stem

cells (NCT02866721), iron chelators to disrupt microbial biofilms

(NCT02354859), and inhaled nitric oxide that target difficult to treat

CF infections (NCT02498535, NCT01958944). These approaches

focus on important disease pathologies downstream of the genetic

defect causing CF and can be applied to CF patients independent of

their background genotype.

3 | PRINCIPLES OF CFTR MODULATION

Therehasbeenagreat deal of interest andexcitement in theCFcare and

research community recently regarding a new class of drugs termed

CFTR modulators.12,19–27 These drugs differ fundamentally from

established CF therapeutics in that they aim to increase or potentially

restore the function of disease-causing CFTR variant protein. In general

they are matched to different disease-causing CFTR variants and are

specific in their application (as opposed to the established therapies

described above in section 2). Clinical trial evidence suggests that highly

effective CFTRmodulators can be transformational for CF patientswith

responsive mutations, leading to improvements in multiple relevant

endpoints such as lung function, pulmonary exacerbation rates,

respiratory symptoms, weight and growth, lung function stability,

mucus clearance, intestinal pH, sweat chloride (SC), structural lung

disease, inflammatory burden in mucus, and the detection of CF

pathogens.19–27 These clear benefits across numerous endpoints and

trials have provided validation of CFTR as an appropriate target for drug

development. CFTR modulators have some advantages relative to

current nucleotide strategies in development that seek to repair or

replace CFTR (eg, mRNA or DNA gene delivery, gene editing). These

include absorption and systemic availability of small molecule drugs that

allows oral dosing, and treatment of CFTR defects in multiple organ

systems. They also have a potential disadvantage, as they do not

produce wild-type CFTR. Thus, there is theoretically a ceiling of benefit

that can be achieved by CFTR modulators that depends on the

underlying characteristics of a given disease-causing CFTR variant.

However, data from recent studies suggest that the level of CFTR

function that can be achieved by CFTR modulators is significant,

producing changes in CFTR biomarkers in patients with highly

responsive CFTR variants that fall outside of the range for CF

diagnosis.20–27

When discussing modulation of CFTR, it is helpful to consider

what the fundamental channel factors are that contribute to CFTR-

dependent ion transport. CFTR is a traffic ATPase that is composed of

1480 amino acids that normally resides in the apical membrane of

various epithelial cells (eg, airway, gastrointestinal, vas deferens,

pancreatic duct, biliary tree, sweat gland duct).1–4,28,29 Like all

members of this protein family, it has two transmembrane domains

(TMD-1 and -2) which anchor the protein in the plasmamembrane and

two nucleotide binding domains (NBD-1 and -2) which are cyto-

plasmic, bind, and hydrolyze ATP as a heterodimer, and control gating

(opening and closing) of the channel.30,31 CFTR is unique among traffic

ATPases in that it has a regulatory domain that imparts phosphory-

lation dependent regulation (protein kinase A), and that it, functions as

a chloride and bicarbonate channel.29–32 Traffic ATPases typically

function as small molecule pumps which move their cargo across the

plasma membrane at speeds that are orders of magnitude slower than

ion channels.33 New insights into the molecular (human) and atomic

(zebrafish) structure of CFTR have recently been published, providing

more information regarding relationships between its structure and

unique functions.34,35

Thereareessentially threeways to impact or improve theactivity of

CFTR (orother ion channels). These include increasing the number (N) of

CFTR channels available in the plasma membrane, increasing the time a

given channel is open (open channel probability, or Po), and/or

increasing the size of the channel (channel conductance, or G). The

product of these three factors (N × Po ×G) determines the total CFTR-

dependent ion transport capacity in a givenepithelial cell. The activity of

CFTRmodulators is basedon thesebasicprinciples, andcombinationsof

modulators can be used to address CFTR variants that have more than

one defect. Currently available modulators include potentiators

(increase open channel probability) and correctors (improve folding of

some CFTR variants and localization to the plasma membrane).

Disease-causing CFTR variants fall into a number of different

classeswhich can serve as a first step to categorize themby common or

similar defects. As the scientific community has learned more about

CFTR variants, it has become clear that they often have numerous

defects affecting N, Po, and/or G. Thus, this classification is perhaps

becoming arbitrary, and CFTR modulators can increase CFTR activity

by either directly impacting a defect (eg, restoring gating function to a

CFTR variant that is unable to efficiently bind and hydrolyze ATP such

as G551DCFTR), or exploiting another aspect of the variant that is still

intact (eg, increasing the ion transport capacity of R117H CFTR 5T by

increasing its gating function, despite the presence of additional

conductance and splicing defects).1,2,21,36 The most common disease-

causing CFTR variant is F508del CFTR, which is caused by the deletion

of three base pairs in exon 10 that results in the deletion of

phenylalanine from position 508 of the full-length protein. Its primary

defect is in protein folding, with failure of the nascent protein to

mature beyond the ER and undergo glycosylation. It is rapidly

degraded in the 26S proteosome, and little if any F508del CFTR

normally reaches its proper destination in the apical membrane of

CFTR-expressing epithelia (ie, reduced N).28,37 However, if F508del

CFTR is localized to the plasma membrane by improving it's folding in

the ER, it subsequently exhibits defects in both channel gating

(reduced Po) and protein stability at the plasma membrane (which

further reduces N).38,39 A more recent example is the P67L CFTR

variant, which has been described in detail with both maturation and

gating defects (that are responsive in vitro to approved CFTR

modulators).40 These examples highlight the rationale of combining

CFTR modulators to maximize the activity of CFTR variants.
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Disease-causing CFTR variants that severely reduce the number

of channels available in the plasma membrane (very low/absent N)

include (i) biosynthetic defects (eg, premature termination codons,

frameshift and canonical splice variants) and (ii) trafficking and folding

defects. These are typically considered severe disease-causing variants

as they have little if any function and are associated with pancreatic

insufficiency. Disease-causing CFTR variants that localize to the

plasma membrane in appreciable amounts include those with primary

defects in gating (Po), noncanonical splice variants that produce

reduced plasma membrane levels of functional CFTR (N), variants with

reduced conductance (G) and/or plasma membrane stability (N). Many

variants that primarily impact gating have little if any function and are

considered severe. The other variants that have appreciable amounts

of CFTR at the plasma membrane and have some residual function are

often considered mild, as their presence is often associated with

pancreatic sufficiency.1–3 It is important to note that there are many

exceptions to these general groupings; CF patients with two severe

mutations may have a comparably mild phenotype, and CF patients

with variants that are predicted to be mild often have many typical CF

disease manifestations. Airway epithelial cells from some F508del

CFTR homozygous donors have readily measured CFTR activity

without modulation, and some variants with primary conduction

defects and normal N have very low/absent function.41,42 Figure 1

provides examples of common CFTR variants and their described

primary defects in N, Po, and G. CFTR modulators that have gained

regulatory approval or are in development impact the number of

channels present in the epithelial cell membrane or the gating of

individual channels. It is not clear if current CFTR modulators can

increase the size of a CFTR channel.

4 | POTENTIATION OF CFTR

Potentiators are CFTR modulators which increase the gating of CFTR

(Po), leading to more time spent by the channel in the open

configuration.43,44 This results in increased ion transport across the

epithelium, which impacts many of the downstream processes that are

defective in CF-affected tissues. Compounds that have been devel-

oped into potentiator drugs were identified through high throughput

screening (HTS) assays performed in standardized heterologous

expression systems.43 One of these (ivacaftor) has advanced through

the regulatory process and is available to CF patients with responsive

mutations. Ivacaftor has in many ways set the standard for CFTR

modulator development, demonstrating significant improvements

across numerous clinical endpoints during controlled and observa-

tional clinical trials in patients with highly responsive mutations. The

compound scaffold that throughmedicinal chemistry became ivacaftor

(VX-770) was identified through HTS in cells stably transduced with

G551D CFTR. This is the third most common disease-causing CFTR

variant, and is found in approximately 4% of CF patients. As part of its

development, ivacaftor underwent extensive testing in primary human

bronchial epithelial (HBE) cells derived from lung explants of CF

patients and grown in planar cultures.43 Using this model system,

ivacaftor was shown to increase total G551D CFTR activity to

approximately 50% of that observed in HBE cultures from non-CF

donors (eg, wtCFTR). This level of G551D CFTR potentiation was

sufficient to improve HBE regulation of airway surface liquid volume,

mucociliary clearance, and ciliary beat frequency to near non-CF levels.

Ivacaftor was developed independent of animal model efficacy studies

due to limitations of the available animalmodel (CFmice). Based on this

FIGURE 1 CFTR variant classes discriminated by presence or absence of CFTR at the plasma membrane. Left: CFTR variants that result in
minimal or absent CFTR in the plasma membrane. The red stars represent defects in transcription, translation, or protein folding. Examples
within each group are listed below in parentheses. Right: CFTR variants with significant levels of CFTR in the plasma membrane. The red
arrow represents reduced levels of functional CFTR localizing to the plasma membrane (with a non-canonical splice defect represented). The
red stars represent CFTR variants with normal levels in the plasma membrane, but with defective gating or conduction. Examples within each
group are listed below in parentheses
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and subsequent experience with studies in primary HBEs, reliance on

this model system has become the gold standard for preclinical CFTR

modulator evaluation. The model system is an excellent positive

predictor of agents that have achieved clinical efficacy.

Ivacaftor monotherapy has demonstrated bioactivity and efficacy

in several randomized, double-blind placebo controlled clinical trials

that have enrolled several different CF subpopulations, including

subjects with the G551D CFTR and a variety of other gating variants,

the R117H CFTR variant, and patients with CFTR variants that localize

in appreciable amounts to the plasma membrane and retain some level

of residual function.20–27,36,45–47 Subjects with gating mutations have

demonstrated the greatest evidence of bioactivity and clinical benefit,

including increases in the forced expiratory volume in one second

(FEV1) percent predicted of >10%, reduction in risk of pulmonary

exacerbations by >50%, increases in weight and reductions in

pulmonary symptoms relative to baseline and placebo treated controls.

Mean reductions in SC concentrations have been on the order of

50mM in participants with CFTR gating variants, with perhaps larger

effects observed in younger subjects.46,47 The studies in toddlers and

young children have also shown increases in fecal elastase levels,

suggesting improvements in exocrine pancreatic function with open

label ivacaftor treatment.46,47 Mechanistic studies suggest that

ivacaftor directly binds to CFTR to improve channel gating, based

on its activation of isolated wild-type and mutant CFTR expressed in

proteoliposomes, and its capacity to activate multiple CFTR missense

variants expressed in heterologous expression systems.42,43,48 Fur-

thermore, ivacaftor monotherapy did not demonstrate clinical efficacy

in CF subjects homozygous for the F508del CFTR variant, indicating

it's requirement for appreciable CFTR at the plasma membrane for

drug effect.49 In addition to these acute effects, prolonged treatment

of CF patients with the G551DCFTRmutation reduces the loss of lung

function over time relative to untreated controls and reducesmortality

in patients with advanced disease.50,51 Thus, ivacaftor has the capacity

to modify the course of CF disease in certain CF populations.

Additional observational studies have detected reductions in inflam-

mation, structural lung disease, and possibly detection of CF

pathogens, but these data are currently limited in terms of length of

follow-up and number of subjects.23,25 Based on accumulating

evidence of safety and efficacy in several CF genotypic subgroups,

coupled with relationships observed between results in preclinical

model systems compared to clinical trials, the FDA has expanded the

label of ivacaftor-approved mutations.52 This expansion has included

some rare CFTR variants that have not been represented in clinical

trials. This approach is an exciting development in the CF field, as

patients with very rare variants that are difficult to include in rigorous

clinical trials may be able to gain access to ivacaftor based on results in

standardized preclinical model systems.

5 | MODULATING F508del CFTR

F508del CFTR is themost common disease-causing CFTR variant and is

found in nearly 90% of CF patients.53 The loss of phenylalanine at

position 508 of the full-length protein produces a primary defect in

protein maturation and localization to the plasma membrane.28,54,55

F508del CFTR has additional defects in channel gating and stability that

contribute to its overall limitation of chloride transport.38,39 VX-809 is a

CFTRmodulator that was developed throughHTS efforts and improves

F508del CFTR trafficking and plasma membrane localization.56 This

effect is specific to F508del CFTR as VX-809 does not impact the

maturation of other proteins with folding defects introduced.56 Recent

data indicates that VX-809 has no corrective effect on the secondmost

common CFTR folding variant (N1303K CFTR), and protease digest

studies suggest that VX-809 is able to stabilize anN-terminal domain in

CFTR limited to MSD1 and improve the function of CFTR constructs

with missense mutations introduced into MSD1.57–59 The results

suggest that VX-809 interactions with MSD1 inhibits F508del folding

defects by increasing NBD1, MSD1, and MSD2 domain interactions.

These data point towards specific binding of VX-809 to F508del CFTR

which drives its corrective effects. In vitro and subsequent in vivo

studies havedemonstrated thatVX-809can improve the level ofmature

Band C F508del CFTR levels and activity, again based primarily on

studies performed in primary HBEs derived from F508del CFTR

homozygous CF patients undergoing lung transplantation.56 This

corrective effect is on the order of 15% of wild-type CFTR, but there

is significant donor to donor variability seen in preclinical studies.

Importantly, this effect can be essentially doubled by co-treatment with

VX-770 in vitro, which provided the rationale for the development of

VX-809 (lumacaftor) in combination with VX-770 (ivacaftor) in CF

patients with two copies of the F508del CFTR variant.

Clinical trials of lumacaftor (and subsequent trials with the

chemically similar drug tezacaftor) alone and in combination with

ivacaftor in CF subjects with the F508del variant have generally

aligned with predictions from preclinical observations in HBEs.

Specifically, lumacaftor monotherapy was insufficient to produce

measurable clinical benefits in CF adults homozygous for F508del

CFTRdespite small, but significant dose-dependent reductions in SC.60

Lumacaftor combined with ivacaftor was insufficient to produce

meaningful clinical benefits in CF subjects with one F508del CFTR

variant and a second minimal function variant.61 In contrast,

lumacaftor or tezacaftor combined with ivacaftor in F508del/

F508del CF subjects led to modest increases in FEV1 percent

predicted, and moderate reductions in pulmonary exacerbation risk

and improvements in weight and pulmonary symptoms comparedwith

placebo.62,63 The effects of these therapies on SCwere relatively small

and not substantially different than results with corrector alone.60,64,65

As lumacaftor/ivacaftor has been studied in younger CF subjects (Ages

6-11 years), more robust reductions in SC and improvements in lung

function (measured by the nitrogen multiple breath washout test and

the lung clearance index or LCI) have been observed compared with

studies in older populations.66,67 It is clear that individual changes in SC

are not directly associated with improvements in clinical outcome

measures during CFTRmodulator therapy, but group changes in SC do

directly correlate with changes in FEV1 percent predicted.
68,69 Thus, it

is exciting to speculate that CFTRmodulatorsmay have higher efficacy

in younger CF subjects with early disease, therefore, serving a disease
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preventive role in CF management. Similar to results with ivacaftor in

the G551D CFTR population, lumacaftor/ivacaftor therapy in

F508del/F508del CF subjects is associated with reduced decline in

lung function over time compared with observational matched

controls.70 Moreover, recent results reported in CF subjects with

one F508del CFTR variant and one ivacaftor responsive variant

demonstrated that tezacaftor/ivacaftor produced greater increases in

lung function relative to ivacaftor alone.45 The results of this study,

indicate that targeting each CFTR variant (when they differ) can be

more efficacious than targeting one, and provides support for the

rationale to develop additional CFTR modulator strategies that build

upon the current foundation. They also highlight recent thinking in

regards to patient categorization for clinical trials and treatment. CF

patients with one F508del allele combined with a minimal function

second CFTR allele are likely to require new CFTR modulators to

obtain measurable clinical benefit. Recent press reports are consistent

with this concept, providing preliminary evidence that combining

tezacaftor and ivacaftorwith a third drug (a “next generation corrector”

that further corrects F508del CFTR folding defects) produce large

improvements in lung function and SC in CF subjects with two F508del

CFTR variants or one F508del CFTR variant and one minimal function

variant.71 This latter population is significant, and currently lacks

efficacious CFTR modulator therapies. Phase 3 trials of these “next

generation” correctors combined with ivacaftor and tezacaftor are

currently active, and if successful have the capacity to dramatically

expand the number of CF patients who are candidates for highly

efficacious CFTR modulators.

6 | ADDITIONAL MODULATOR STRATEGIES

In addition to the drugs described above that have gained regulatory

approval or are in late phase clinical trials in CF patients, several early

phase clinical trials of novel modulators are underway (eg,

NCT03173573, NCT02170025, NCT03540524). These agents gen-

erally fit into the categories of CFTR potentiators or correctors.

Additional CFTR modulator strategies that are under development

target other aspects of CFTR biology and offer CF patients with rare

and common CFTR variants potential future benefit.

Premature termination codons or PTCs are found in approximately

10% of CF patients, and are much more common in some ethnicities

including those ofAshkenazi descent.72–74 They are caused by base pair

substitutions that createan in-framePTC (UGA,UAA,UAG),which leads

to the cessation of translation and the production of truncated CFTR

protein.74 Suppressors of PTCs are compounds which lead to the

insertion of a near cognate aminoacyl tRNA in the A site of the

eukaryotic ribosome, allowing translation to continue to the authentic

termination codon and the production of a full-length protein. These

CFTR protein products following PTC suppressionmay ormay not have

full function based on the nature of the amino acid substitution coupled

with the site of the substitutionwithin the full-lengthprotein.74,75Drugs

that induce PTC read-through and full length CFTR production have

been tested in several contexts, including cell lines, primary airway cells

from CF patients with PTCs, transgenic mice, and CF patients.75–80

Some provocative small clinical trials have provided evidence that

certain aminoglycosides, which are known to bind to the eukaryotic

ribosome complex, can improve the function of CFTR in CF patients

harboring PTC variants in CFTR.72,73,77,78 Ataluren was developed

through HTS, and was studied in two phase 3 randomized, double blind

placebo controlled clinical trials in CF subjects with PTC-mediated CF,

but ultimately this drug was insufficient to produce measurable benefit

in subjects with a harboring a variety of PTCs.80,81 Since this concept

was first described inCFcellsnearly twodecadesago, accumulatingdata

has helped the CF research community to better understand the many

factors that contribute to PTC-mediated CF.76 These include the

importance of nonsense mediated decay impacting CFTR mRNA

substrate levels, variable responsiveness of different PTCs to suppres-

sion, the role of the mRNA microenvironment (including nearby base

pairs) in read-through susceptibility, and the observation that some

CFTR variants with PTCs late in the CFTR open reading frame retain

partial function.74,75,82–85 This improved understanding of how cells

regulatePTCsand their read-throughhas led to the identificationofnew

agents capable of producing more robust and predictable PTC

suppression.85–87 The importance of using patient derived cells to

study PTC-mediated CF, and novel model systems to evaluate putative

PTC suppressive candidates has become clear.88 It is hoped that this

new understanding will help to rapidly advance promising strategies to

the clinic.

A new approach that has the potential to impact many disease-

causing CFTR variants is co-treatment with a CFTR amplifier. This

concept increases the amount of translated CFTR protein substrate,

and therefore, could be readily applicable to CF subjects with a variety

of CFTR variants.12 These include subjects with reduced levels of

functional CFTR at the plasmamembrane, or subjects primarily treated

with potentiators and/or correctors. A CFTR amplifier (PTI-148) has

recently advanced to early phase clinical trials, and a recent press

release and scientific presentation supports safety, tolerability, and

pulmonary efficacy in CF patients receiving PTI-148 added to

ivacaftor/lumacaftor therapy.88 Safety and tolerability data is typically

a primary goal of early phase clinical trials, and will hopefully provide

the necessary data to advance this strategy that has the potential to

impact modulator therapies across a variety of CF populations. One

published report supports the hypothesis of amplifier bioactivity in

cells derived from a CF patient with a rare disease-causing CFTR

variant.89

7 | CONCLUSIONS AND FUTURE
DIRECTIONS

CFTR modulator science has advanced dramatically since therapeutic

CFTRmodulators were first described less than 10 years ago. Through

steady advancement of our understanding of the biology underpinning

CFTR variants and modulation, the number of CF subjects who are

candidates for therapy has increased to greater than 50%. The short-

term future appears quite bright in that it is anticipated that highly
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effective CFTR modulator therapy may soon be approved for greater

than 90% of CF patients. Furthermore, additional modulators that

potentiate and correct CFTR variants are well into clinical trials, which

may ultimately overlap with novel approaches to increase CFTR

translation. Successful development of these agents is paramount to

the CF population, as a full and diverse pipeline is necessary to ensure

that CF subjects have access to those therapies that are best matched

to their CFTR variants and their needs. Challenges will undoubtedly be

faced, including performance of clinical trials to develop new therapies

in the face of a CF population heavily treated with CFTR modulators,

and the design of studies that assess the relative benefits of

established, symptom-based therapies in the context of highly

effective CFTR modulator treatment. Finally, the cost of these life-

long drugs is extremely high and is a significant barrier to patient access

in many countries.90 This issue is likely to grow as more and more CF

subjects become candidates for modulators that are currently in

development. Equitable solutions are needed that balance the

incentive needed for companies to develop these drugs for a limited

market, and the capacity of third party payers and national health

systems to offer CF patients the best available treatment for their

personal CF disease. CF is at the cutting edge of personalized care, and

the scientific and health policy lessons that we learn will undoubtedly

have important implications well beyond the science of CFTR

modulation.
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