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Introduction
Balance dysfunction is one of the main factors leading to 
impaired mobility and postural control, influences walking 
after discharge and in the community-dwelling elderly, and 
also impacts balance control in daily life (Brosseau et al., 
1996; Wee et al., 1999; Hsieh et al., 2003). Previous studies 
have shown that more than 33% of people with chronic 
balance dysfunction have an increased risk of falling in their 
daily lives (Colledge et al., 2002), and the cause of more than 
half of older people’s accidental death was significantly cor-
related with falling and balance dysfunction (Agrawal et al., 
2009). Some balance ability training methods have demon-
strated postural control and mobility improvement (Yavuzer 
et al., 2006; Lo et al., 2012), but the effectiveness of existing 
interventions is limited because patients tend not to be fully 
involved and adhere to the training protocol.

With the development of technology, rehabilitation facil-
ities and technology that can study the simulated real envi-
ronment are increasingly used to restore motor function and 
address balance dysfunction (Bower et al., 2014; McEwen et 
al., 2014). Virtual reality technology is developed on a com-
puter hardware and software environment that enables im-
mersed users to generate visual, audio, and haptic feedback, 
and obtain an interactive experience in the three-dimension-
al visual space, which strives to give users the impression of 
a real environment. The virtual real environment is created 

by virtual reality technology with a focus on three charac-
teristics: autonomy, interaction and sense of being. Patients 
who have perceived deficiencies and motor dysfunction can 
use virtual reality technology during their rehabilitation 
training, to produce the greatest recovery in their impaired 
motor function. This technique might also partially or fully 
improve impaired bodily functions. Consequently, following 
this treatment, patients might be able to achieve full self-
care, and virtual reality training might allow some of them 
to work independently, improving their quality of life (Berra, 
2004). Balance control relies on the central nervous system at 
multiple levels; some studies have shown that exploring the 
virtual real environment activates the cortical and sub-cor-
tical regions (Nancy et al., 1980; Bolton et al., 2012). In this 
current review, the possible central control mechanism of 
virtual reality technology as well as its clinical application 
will be introduced. 

Neural reorganization mechanism of virtual 
reality exercise in the balance control of the 
body
Generally, balancing the body is thought to be achieved by 
the coordination of three major systems, including visual, 
vestibular and proprioceptive sensation. Previous studies 
have shown that the prefrontal cortex is one of the most 
important brain areas in controlling human balance (Nan-
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cy, 1980; Virk et al., 2006; Walker et al., 2010; Bolton et al., 
2012). They provided information about the position and 
motion of the head with respect to the surroundings, and 
based on information in the visual surroundings provided by 
visual cues. The main role of the proprioceptive and somato-
sensory system is to sense the distributed tactile input stim-
uli at the neural level, and to provide a relationship between 
limb position and the central nervous system (Figure 1). The 
vestibular system, located in the inner ear, is used to control 
and perceive the motion and position of the head in space 
(Virk et al., 2006). The function of these systems reduced af-
ter the brain is impaired. When one or two of these sensory 
input systems are dysfunctional, the allocation of different 
gains to the sensory inputs can be exploited to compensate 
for the impaired systems (Nancy, 1980; Walker et al., 2010). 
Virk et al. (2006) proposed that such an adaptation can take 
place in everyday life or in a virtual environment. By using 
a virtual environment to train the eye-head movement, bal-
ance in older people can be improved and occupational falls 
are minimized.

Behavioral experiences including an enriched environ-
ment, physical activity and spatial learning substantially 
improve sensorimotor function outcome after brain injury 
following ischemia (Johansson et al., 1996; Borlongan, 2000; 
Johansson, 2000). Virtual reality systems have been shown 
by many studies to provide similar real-world training ef-
fects, such as in the intensity and repetition referred to as 
constraint-induced movement therapy, body weight support 
treadmill training and allow patients with stroke to modify 
their neural organization and promote neuroplastic changes 
(Viau et al., 2004; Dvorkin et al., 2006). Therefore, we hope 
to explore the possible mechanism of how virtual reality 
promotes balance rehabilitation after brain injury in terms 
of visual, vestibular and proprioceptive feedback. 

Cortical mechanisms of balance control
Recent studies have shown that balance control in standing 
is a complex sensorimotor action based on automatic and 
reflexive spinal programs under the influence of several 
distinct and separate supra-spinal centers in the brainstem, 
cerebellum and cortex (Drew et al., 2004). Different cortical 
areas were activated, related to these artificial environment 
tasks. The prefrontal cortex would be activated when par-
ticipants performed spatial orientation tasks. Multimodal 
dance training over 4 weeks could activate the region of the 
prefrontal cortex (Tachibana et al., 2011). Some experiments 
have allowed patients to play and learn spatial navigation 
in mazes (Ayaz et al., 2011), and activation could always be 
found in brain regions in our preliminary study of virtual 
reality training of stroke patients in SYSU using an Xbox 360 
(Figure 2). Although the mechanism is not clear, these re-
sults suggest a corresponding relationship between the pre-
frontal cortex and spatial orientation ability. A further study 
from Miller suggests that during the incremental swing 
balance task, when unpredictable and external postural per-
turbations were applied to healthy standing participants, the 
prefrontal cortex would bilaterally recruit both visual and 

proprioceptive information to adaptively modify postural 
instability in response to changes in the virtual environment 
to complete the action goal (Miller et al., 2001). Another 
study by Basso Moro also demonstrated that, when healthy 
participants performed an incremental swing balance task 
in a semi-immersive virtual reality environment, the effect 
of oxygenation increased in the prefrontal cortex of both 
hemispheres (Basso et al., 2014). In addition, Slobounov et 
al. (2005) recorded the ankle movement of twelve young 
healthy participants using force plates, EEG and EMG as 
they performed oscillatory and discrete postural movements 
in the anterior and posterior directions. A statistically sig-
nificant difference in the amplitude of all three components 
of movement-related cortical potentials, with respect to the 
baseline at the front-central electrode sites was found in the 
EEG data. They also demonstrated that the frontal region 
may play an important role in postural equilibrium, likes 
moving continuously in different directions, or only in the 
forward direction.

During walking, the prefrontal cortex also seems to play a 
role in controlling balance. Some studies show that when ad-
justing walking speed on the treadmill (Suzuki et al., 2004) 
and during the recovery process following ataxic stroke 
(Mihara et al., 2007), the prefrontal cortex participates in the 
control of locomotion. Basso used functional near-infrared 
spectroscopy to study changes in regional activation in the 
frontal cortices in terms of hemoglobin oxygenation in the 
brain’s vascular system during walking at 3 and 5 km/h and 
running at 9 km/h on a treadmill. The density of oxygenated 
hemoglobin increased, but that of deoxygenated hemoglobin 
was not found in the frontal cortices. Moreover, other studies 
found a positive correlation between presence and parietal 
brain activation, and a negative correlation between presence 
and frontal brain activation during interactive virtual reality 
training (Mihara et al., 2008). We can see that alongside the 
prefrontal cortex, the parietal cortex makes a contribution to 
the control of balance. 

Through investigating the hemodynamics of patients who 
had cortical activation induced by postural perturbation, 
Mihara found that there was a strong relationship between 
continuous activation during ataxic gait and the compensa-
tory mechanisms for ataxic gait after infarct stroke. In con-
clusion, there are widespread cortical network activations, 
including the prefrontal, premotor, supplementary motor, 
and parietal cortical areas in both hemispheres, which have a 
significant impact on postural control in post-stroke hemi-
plegic patients (Kober et al., 2012; Mihara et al., 2012). 

Visual input mechanisms of balance control
The simulated real-world scenarios give balance dysfunction 
patients more and stronger information input than the real 
world to ensure that they relearn their coordination and sense 
of balance. The fidelity of virtual reality may play an import-
ant role in the effectiveness of recruiting neural circuits and 
the delivery of desirable outcomes at the functional level.

The structure of the brain can be enhanced using visu-
al feedback in virtual reality to augment interconnected, 
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distributed cortical regions. It is suggested that visual infor-
mation can provide a potent signal for the reorganization of 
sensorimotor circuits (Lewis et al., 2000; Lewis et al., 2005; 
Stepniewska et al., 2005). Patients with stroke can use visual 
feedback to adjust the body’s center of gravity, and to achieve 
the goal of controlling the body state (Srivastava et al., 2009). 
In this way, the multi-sensory virtual reality feedback loop 

can strengthen the control of balance. Fetter et al. (1998) con-
ducted some animal experiments on monkeys, cats and other 
animals, and showed that visual experience and action seem 
to be the keys to functional recovery of vestibular function de-
ficiency (Lacour et al., 1976; Courjon et al., 1977). 

A large number of clinical trials support this view. In a 
study by Webster et al. (2010), a virtual environment was cre-

Figure 1 A simplified representation of the human motion control loop.
A desired body state directs the controller within the central nervous system generating motor commands that drive the muscles of the body. Ex-
ternal sources like electric current (d) can stimulate the body (a). The actual state of the body is registered by (among other things) the vestibular 
apparatus and the visual system (b). The signals from these sensors are processed by the central nervous system (c) for comparison with the desired 
body state. Adapted from Bos et al. (2002). 

Figure 2 Areas activated during an active foot movement task by a patient with stroke at the First Affiliated Hospital, Sun Yat-sen University, 
China.
The two functional MRI images of preliminary experiments are supplied by the Motor Recovery Laboratory in the Department of Rehabilitation, 
showing active tasks of the right paretic foot before (A) and after (B) virtual reality training.
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ated to help people control the mobility of their wheelchairs, 
and participants had to navigate through a virtual obstacle 
course. After treatment, compared with participants who 
did not have training on the virtual course, the experimental 
group showed a decreased rate of wheelchair accidents and 
falls and a better performance on obstacle courses (Webster et 
al., 2001). To study the influence of virtual reality technology 
on the recovery of balance function following chronic stroke, 
Belinda and Cho used different kinds of video games to stim-
ulate patients’ balance, coordination, strength and upper limb 
coordination, and the results showed that all patients had sig-
nificantly improvement in balance function (Cho et al., 2012; 
Michalski et al., 2012). Some other studies have suggested that 
middle cerebral artery infarcts in the right hemisphere might 
have a relationship with increased dependence on vision, and 
non-infarct brain regions are recruited to control postural 
sway. It is also suggested that the control of lateral posture fol-
lowing a right hemisphere infarct requires more visual input 
than in a healthy participant (Manor et al., 2010). 

Vestibular sensory pathway mechanism of 
balance control 
At present, virtual reality use in vestibular rehabilitation is 
a relatively new concept, and there are not many studies on 
the relationship between virtual reality and balance in the 
vestibular field. Common vestibular function disorders may 
be caused by abnormalities in the vestibulo-ocular reflex. 
Viirre suggested that the vestibulo-ocular reflex could be 
adapted in virtual reality simulations with an increase in ves-
tibulo-ocular reflex gain, and virtual reality could be used to 
increase the rate of adaptation by specifically adapting scenes 
to a person’s capabilities, thereby facilitating their recovery 
(Viirre et al., 2000). 

Miles’ study suggested that the key to adjusting the ves-

Figure 3 Virtual training with bilateral limb movement in the Motor 
Recovery Laboratory, Department of Rehabilitation, the First 
Affiliated Hospital, Sun Yat-sen University, China.

tibular system is the retinal slip, the movement of a visual 
image across the retina, which is a powerful signal that in-
duces the adaptation of vestibular responses. The primary 
rationale for using virtual reality for vestibular rehabilitation 
is that realistic visual environments may enhance adaptation 
by causing retinal slip (Miles et al., 1980). Pavlou et al. (2001) 
studied people with uncompensated unilateral peripheral 
vestibular dysfunction using a customized exercise program 
or a machine-base optokinetic stimulation exercise program. 
Preliminary findings suggest that both exercise programs 
could improve vestibular dysfunction, yet the machine-base 
group demonstrated that physical therapy involving con-
flicting visual environments might be more effective than a 
customized program alone or a program that includes only 
Cawthorne-Cooksey exercises. Virtual reality scenes may 
promote rehabilitation more effectively than optokinet-
ic-based therapies, since there is an ability to finely control 
the virtual scene (Pavlou et al., 2001). To discover the po-
tential of virtual reality for vestibular disorders, in a small 
sample investigation, Wbitney asked two vestibular disorder 
patients and three healthy people to stand while viewing a 
sinusoidal waveform on a force plate. The results suggested 
that virtual reality was a valid way to perform vestibular re-
habilitation (Whitney et al., 2002). Nevertheless, because of 
the small number of participants, the accuracy of the study 
needs to be validated with further data collection. Another 
theory to explain the effect of virtual reality on the vestibu-
lar system is habituation therapy. Habituation refers to the 
reduction of patients’ symptoms by provoking the symp-
toms repetitively. The patients may feel uncomfortable at the 
beginning, and then a sensory mismatch is sent to the brain 
and promotes compensation for and adaptation to labyrin-
thine disorders (Norre et al., 1989). 

Role of proprioceptive rehabilitation
Ninety consecutive patients with hemiplegic involvement 
following a single cerebrovascular accident were recruited 
to assess the relative importance of factors affecting balance, 
and it was found that balance function and mobility post-
stroke were both strongly influenced by proprioception 
(Keenan et al., 1984). Proprioceptive training affects mo-
bility and balance function by altering how proprioceptive 
receptors input information, and improves the control of 
the musculoskeletal motion system and balance function in 
stroke patients. Some studies have demonstrated that pro-
prioceptive neuromuscular facilitation promotes neuromus-
cular control and motor function recovery by stimulating 
proprioceptive stimuli, such as stretching the limbs, joint 
compression, traction and so on. In addition, the use of spi-
ral diagonal movement patterns can stimulate the joint and 
muscle proprioceptors. By training the proprioceptive sys-
tem, the responsiveness of muscles can be enhanced and the 
recovery of neuromuscular and motor function can be stim-
ulated (Pan et al., 2011). Furthermore, virtual reality training 
could improve standing balance in stroke patients, including 
normal and abnormal proprioceptive function (Song et al., 
2014). 
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But compared with proprioceptive neuromuscular facil-
itation technology, virtual reality training exercises can not 
only train the limbs, but also train the body by enriching 
proprioceptive information input. Pan et al. (2011) trained 
31 patients using the Pro-Kin training system and found 
that the score on the Berg Balance Scale in these patients was 
significantly increased after training, which indicates that 
proprioception training played an active role in improving 
balance function in stroke patients.  

The feasibility and effect of virtual reality 
technology applied to balance dysfunction 
recovery
Compared with conventional therapies (physiotherapy, 
occupational therapy, or other exercises), virtual reality 
technology has unique advantages in the field of rehabilita-
tion. First, it makes treatment more interesting and brings 
patients more enthusiasm, and the sports favored by the 
patients in daily life can be used as a training program in a 
virtual reality system (Figure 3). Second, patients can un-
dergo familiar training in a wheelchair or sitting in a chair as 
well as standing or walking, so there is no need for stabilized 
posture control, rehabilitation difficulty is reduced, and the 
safety of the rehabilitation exercise is increased. Third, the 
game system is cheap and easy to carry, and can be easily op-
erated in the hospital, at home or in the community. 

Ding et al. (2013) used a simple computer game involving 
virtual reality-based constraint-induced movement thera-
py training for balance dysfunction in three chronic stroke 
survivors, which improved dynamic stability and weight 
symmetry by encouraging them to use their paretic leg 
with more effort. The patients received motion signals from 
virtual avatars in virtual reality as well as augmenting the 
control gain. This study also demonstrated that this training 
pattern could be used for balance improvement. Measured 
by functional gait assessment, the Berg Balance Scale and a 
walking speed test, Horlings and coworkers confirmed that 
virtual reality balance training could provide more realistic 
proprioceptive and visual input, and improved the patient’s 
reaction time, postural stability, balance and walking func-
tion effectively (Bisson, 2007; Horlings et al., 2009; Singh 
et al., 2012). Therefore, virtual reality balance games can be 
used as a potential and useful tool to train adults with bal-
ance dysfunction (Schwesig et al., 2011).  

Virtual environments are used in many areas, such as in 
entertainment, training situations and medicine, including 
the rehabilitation of behavioral and neurological dysfunc-
tion. The use of virtual reality technology in the functional 
rehabilitation of various debilitating diseases not only pro-
vides patients with a very authentic virtual environment and 
an immersive experience, but also greatly improves their 
participation enthusiasm and initiation in rehabilitation. 
Compared with conventional rehabilitation therapy, there 
is a more significant improvement in motor function and 
activities of daily living when treated using virtual reality 
(Bryanton et al., 2006; Deutsch et al., 2009). 

Virtual reality therapy is an effective therapy in stroke, 
spinal cord injury, cerebral palsy and other motor function 
deficient diseases. Wii games combined with virtual reality 
technology have been used to treat balance dysfunction. In 
clinical trials, Deutsch and colleagues randomly allocated 
stroke patients into a wii exercise training group and a con-
ventional training group, and the experiment demonstrated 
that the wii group exhibited a higher degree of functional 
recovery of balance and the patients had higher enthusiasm 
when they performed the virtual reality exercises (Deutsch 
et al., 2009). In another study, children with spastic CP com-
pleted ankle selective motor control exercises using a virtual 
reality exercise system and conventional exercises. Ankle 
movements were recorded by an electrogoniometer. The re-
sults showed that greater fun and enjoyment were expressed 
during the virtual reality exercises, and children completed 
more repetitions of conventional exercises. Furthermore, 
the range of motion and hold time in the stretched position 
were greater during virtual reality exercises. These data sug-
gest that using virtual reality to train or guide exercises may 
improve exercise compliance and raise exercise effectiveness 
(Bryanton et al., 2006). However, a randomized controlled 
trial by Eser et al. (2008) did not find a statistically signifi-
cant difference between virtual reality therapy and conven-
tional therapy in terms of lower extremity motor recovery, 
mobility or activity level.  

Discussion
There is no doubt that the intervention time for equilibrium 
dysfunction rehabilitation is one of the most critical factors 
in functional recovery after stroke, which has important re-
search value. At present, many studies about virtual reality 
training mainly focus on the clinical effects; the mechanisms, 
especially of neural reorganization and neuroplasticity, and 
which regions are mainly activated at cortical and sub-cor-
tical levels, are still not clear. In addition, how virtual real-
ity training influences the individual involves the central 
nervous system at multiple levels. Virtual reality therapy is 
mostly used in the chronic phase of stroke rehabilitation 
(Lacour et al., 1976; Kizony et al., 2005; Kim et al., 2009), 
instead of the early stages. However, the early stages are the 
prime time of exercise for balance recovery in patients with 
balance dysfunction. According to the literature, sufficient 
and early rehabilitation training can greatly improve the 
prognosis of patients with stroke, and reduce complications 
(Langhorne et al., 2010; Dennis et al., 2011; Guo et al., 2012), 
improve motor function of the hemiplegic limb (Li et al., 
2011), promote their skills (Craig et al., 2010) and improve 
their quality of life (Tyedin et al., 2010). Therefore, the early 
phase of brain injury rehabilitation is the most important 
time in the recovery of patients with stroke. However, during 
this phase the patients are often too paretic to do training, 
an important reason for which is that they have a lack of 
cortical stimulation. Therefore, using virtual reality in the 
early phase of brain injury could be feasible. In addition, to 
explore the safety and therapeutic effects and search for the 
most suitable intervention time point for balance recovery, 
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virtual reality exercise training should be used for acute and 
subacute patients, which is a necessary and valuable research 
direction.  

Meanwhile, the study should also explore virtual reality 
exercise training methods and intensity. Many studies (Flynn 
et al., 2007; Cikajlo et al., 2012; Pluchino et al., 2012) have 
shown that virtual reality exercise training is likely to be 
an effective therapy for patients with balance dysfunction 
at home in the future. But there are still many problems to 
solve, such as the evaluation criteria for the treatment and 
the interactive performance of the virtual reality system. In 
addition, what kind of model of virtual reality should be 
chosen, how long the use should be and what precautions 
should be taken need to be carefully considered when per-
forming virtual reality training. There is still no clear refer-
ence index at present.

The next stage of the study of virtual reality technology 
applied to the rehabilitation of balance function needs to 
explore the mechanism of the integrated central and periph-
eral nervous system, visual, vestibular and proprioceptive 
sensation, and more detailed clinical techniques. Estab-
lishing a quantitative standard of virtual reality therapy is 
highly warranted. Furthermore, the most appropriate way of 
applying virtual reality intervention and suitable interven-
tion intensity according to different patients’ brain function 
mechanisms should be determined. In these ways, func-
tional recovery of stroke patients will be promoted and the 
operational feasibility of virtual reality will be improved by 
formulating better plans, and the technology can be widely 
used in the family in the future. In conclusion, virtual reality 
technology based on the study of the mechanisms of func-
tional rehabilitation and its application following stroke has 
wide space to develop. 
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