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ABSTRACT
Introduction: A good prediction model plays an important role in determining the progression
to diabetic kidney disease. We aimed to create a model to predict progression to kidney failure
in patients with diabetic kidney disease.
Methods: We retrospectively assessed 641 patients with type 2 diabetic kidney disease as deriv-
ation cohort and 280 patients as external out time validation cohort. We used a combination of
clinical guidance and univariate logistic regression to select the relevant variables. We calculated
the discrimination and calibration of different models. The best model was selected according to
the optimal combination of discrimination and calibration.
Results: During the 3 years follow up, there were 272 outcomes (42%) in derivation cohort and
138 outcomes (49%) in external validation cohort. The final variables selected in the multivariate
logistics regression were age, gender, hemoglobin, NLR, serum cystatin C, eGFR, 24-h urine pro-
tein, and the use of oral hypoglycemic drugs. We developed four different models as clinical,
laboratory, lab-medication, and full models according to these independent risk factors.
Laboratory model performed well in both discrimination and calibration among all the models
(C-statistics: external validation 0.863; p value of the Hosmer–Lemeshow, .817). There was no sig-
nificant difference in NRI among laboratory model, lab-medication model, and full model
(p> .05). So, we chose the laboratory model as the optimal model.
Conclusion: We constructed a nomogram which contained hemoglobin, NLR, serum cystatin C,
eGFR, and 24-h urine protein to predict the risk of patients with diabetic kidney disease initiating
renal replacement in 3 years.
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1. Introduction

Despite advances over the past 20 years in delaying the
progression of diabetic kidney disease (DKD), it is still a
leading cause of end-stage renal disease (ESRD) world-
wide, accounting for approximately 50% of cases in the
developed world [1], and it imposes a heavy burden
not only on individual patients but also on society [2].
The costs associated with ESRD in the United States
reached $34.3 billion, accounting for 6.3% of the
Medicare budget in 2013 [3]. The overall costs of care
for patients with DKD are extraordinarily high. For
example, overall Medicare expenditures for diabetes
and chronic kidney disease (CKD) in the mostly older
(more than 65 years of age) medicare population were
approximately $25 billion in 2011 [1]. As a cross-sec-
tional survey in 2012 demonstrated that the overall
prevalence of chronic kidney disease was 10.8%

(10.2–11.3) in China; therefore, the number of patients
with chronic kidney disease in China is estimated to be
about 119.5 million (112.9–125.0 million) [4]. Diabetes is
one of the major non-communicable diseases that
cause the kidney damage. Therefore, it is important to
be able to predict the risk of initiating renal replace-
ment in patients with DKD so that we could intervene
earlier and allocate medical resources better to high-
risk patients.

There are several prediction models that predict the
progression of chronic kidney disease or diabetic kidney
disease. Tangri et al. developed the kidney failure risk
equation (KFRE) to identify a high-risk population of
CKD 3-5 patients who are likely to developing ESRD
based on demographic, clinical, and laboratory varia-
bles [5]. The simple version of the KFRE uses only four
clinical variables (age, sex, the estimated glomerular
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filtration rate [eGFR], and the urine albumin/creatinine
ratio [ACR]) to identify patients who are at high risk of
developing ESRD with a C-statistic >0.90 (95% CI,
0.894–0.926; p< .001); this equation has been verified
in 721,357 participants with CKD stages 3 to 5 in more
than 30 countries across four continents with very simi-
lar C-statistic values [6]. However, the KFRE does not
account for the etiology of CKD, so it plays an import-
ant role in decision-making for patients with CKD other
than DKD. Due to the clinical manifestations of DKD,
patients with DKD have a much higher risk of progress-
ing to ESRD than other CKD patients [1,7–9]. It has
been unclear whether the KFRE can detect DKD
patients at high risk patients of progressing to ESRD.
Wan et al. developed new gender-specific models pro-
vide a more accurate 5-year ESRD risk predictions for
Chinese diabetic primary care patients than other exist-
ing models such as the ADVANCE and New Zealand
models [10]. But the aim of this study was to develop a
5-year ESRD risk prediction model among Chinese
patients with Type 2 diabetes mellitus instead of DKD.
Moreover the developed models in this study contained
11–12 predictors, which may be difficult to be applied
in clinical practices. Dunkler et al. used the Ramipril
Global Endpoint Trial (ONTARGET) and Outcome
Reduction with Initial Glargine Intervention (ORIGIN)
cohort to develop two risk prediction models for early
CKD in Type 2 Diabetes [11]. However, the participants
of these two cohorts included type 2 diabetes with nor-
moalbuminuria or microalbuminuria at baseline other
than just patients with DKD. What’s more, the outcome
of this study was incidence or progression of CKD,
which was defined as new microalbuminuria or macro-
albuminuria, doubling of creatinine, or ESRD.

Therefore, we aimed to develop and validate a
model to predict the 3-year risk of progression to kid-
ney failure that could be easily implemented in clinical
practice, using the variables routinely measured in
patients with DKD.

2. Materials and methods

2.1. Study population and design

In this population-based retrospective cohort study,
patients with type 2 DKD who were hospitalized in the
First Hospital Affiliated with Zhengzhou University were
screened. A total of 641 patients who were hospitalized
from December 2012 to December 2015 were enrolled
as derivation cohort, while 280 patients hospitalized
from January 2016 to December 2017 were enrolled as
external out time validation cohort. The DKD diagnosis
was based on the guidelines created by the Kidney

Disease: Improving Global Outcomes [12]. The inclusion
criteria were as follows: (i) a verified diagnosis of type 2
diabetes; and (ii) persistent albuminuria or decreased
renal function; or (iii) renal biopsy-certified kidney dis-
ease caused by diabetes. The exclusion criteria were as
follows: (i) patients who did not complete 3 years of fol-
low-up; (ii) a pathological diagnosis of DKD combined
with nondiabetic nephropathy, such as membranous
nephropathy or IgA nephropathy; (iii) patients who had
systemic diseases, such as allergic purpura, vasculitis,
and systemic lupus erythematosus, which might cause
persistent albuminuria or decreased renal function; and
(iv) patients who underwent renal replacement prior
to admission.

2.2. Data collection

Clinical characteristics, including age, sex, duration of
diabetes mellitus (DM), systolic blood pressure, diastolic
blood pressure, the main medical history of hyperten-
sion, coronary heart disease and cancer, body mass
index (BMI) and the use as the drugs such as the oral
hypoglycemic drugs, insulin, renin-angiotensin system
blocker, and statin were collected. Laboratory parame-
ters, including hemoglobin, neutrophil: lymphocyte
ratio (NLR), serum creatinine level, serum urea level,
serum uric acid level, serum total protein level, serum
albumin level, serum calcium level, total cholesterol
level, triglyceride level, serum cystatin C level, serum b
2 microglobulin level, glycated hemoglobin (HbA1c)
level, blood glucose level, C-reactive protein (CRP) level,
erythrocyte sedimentation rate (ESR), estimated glom-
erular filtration rate (eGFR, calculated by the CKD-EPI
formula), 24-h urine protein level, bicarbonate level and
the PH value of urine were initially collected at the time
of diagnosis with DKD.

2.3. Incident outcome

The primary endpoint was kidney failure, as defined by
the initiation of dialysis and renal transplantation.

2.4. Statistical analysis

There were some missing data in several variables.
Variables that indicated the renal function, such as
serum creatine, serum urea, serum cystatin C, serum b2
microglobulin, and serum uric acid, had 3.9% missing
values. There were 2.9% missing data in hemoglobin
and NLR and 6.1% in serum total protein and serum
albumin. The 24-h urine protein had 3.1% missing val-
ues and CRP and ESR had 8.4% missing data. We used
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multivariate multiple imputation with chained equa-
tions to impute missing values to maximize the statis-
tical power and diminish bias [13]. First, we use the
means ± standard deviation (SD) or medians (quartile 1,
quartile 3) to express the continuous data, while the
categorical data are expressed as the absolute values
and percentages. Then, we used the univariate logistic
regression to select the potential variables. Before the
multiple logistic regression, we calculated the collinear-
ity of the variables and remove the factors, serum urea
level and serum creatine level, that exist in collinearity.
Then, we used a combination of clinical guidance and
univariate logistic regression with the enter method to
select the relevant variables and conduct multiple logis-
tic regression. The clinical characteristics, including age,
sex and the use of oral hypoglycemic drugs, and the
statistically significant biochemical measures, including
the hemoglobin level, NLR, serum cystatin C level,
eGFR, and 24-h urine protein level, were selected to
construct the sequential models. Next, the area under
the receiver operating characteristic curve, which is
referred to as the C-statistic, was used to assess the dis-
criminatory ability of the models. The calibration was
assessed by the Hosmer–Lemeshow (H-L) test and cali-
bration curves. The goodness of fit of the models was
evaluated by the Akaike information criterion (AIC). We
divided all the derivation patients into five groups and
selected one group as the internal validation cohort
and the other four groups as the training cohort. We
used the training cohort to develop the models and the

internal validation cohort to validate the models. We
repeated the process 5 times to assess the discrimin-
atory ability and calibration of the models. The C-statis-
tic, the AIC, and the p value of the Hosmer–Lemeshow
(H-L) test shown were the averages of 5 repetitions,
and the detailed values for each individuals repetition
are displayed in the Supplementary Materials. The best
model was selected according to the optimal combin-
ation of the discrimination and calibration calculated by
the fivefold crossvalidation and external validation
which is ‘Bootstrapping’. The net reclassification
improvement and integrated discrimination improve-
ment of models were also used to evaluate the discrim-
inatory ability of the models. Last, we constructed a
nomogram to predict the risk of a patient with DKD ini-
tiating renal replacement in 3 years. All analyses
involved in the development and validation of the
model were conducted with R software, version 3.5.3 (R
Project for Statistical Computing).

3. Results

3.1. Cohort description

The baseline clinical characteristics and laboratory
parameters of the derivation cohort and external valid-
ation cohort are shown in Table 1 and Table 2. During
the 3 years follow up, there were 272 outcomes (42%)
in derivation cohort and 138 outcomes (49%) in exter-
nal validation cohort. There were no significant

Table 1. Baseline clinical characteristics of the study participants.
Characteristics Derivation cohort (n¼ 641) External validation (n¼ 280) p Value

Age, years 56 (48, 64) 51 (45, 59) <.001
Male sex (%) 381 (59) 113 (40) <.001
Duration of DM, years 10 (5, 16) 8.5 (3.75, 13) <.001
Main Medical History
Hypertension (%) 449 (70) 223 (80) .003
Coronary heart disease (%) 58 (9) 33 (10) .408
Cancer (%) 6 (1) 2 (1) .686

Blood pressure
Systolic blood pressure (mmHg) 142 (130, 160) 146 (135, 165) .002
Diastolic blood pressure (mmHg) 84 (77, 90) 88 (80, 96) <.001

BMI (kg/m2) 25.35 (23.05, 28.04) 25.34 (22.97, 27.92) .783
Oral hypoglycemic drugs .199
No (%) 399 (62) 161 (57)
Yes (%) 242 (38) 119 (42)

Insulin <.001
No (%) 226 (35) 173 (62)
Yes (%) 415 (65) 107 (38)

RASB <.001
No (%) 427 (67) 71 (25)
Yes (%) 214 (33) 209 (75)

Statin .001
No (%) 383 (60) 134 (48)
Yes (%) 258 (40) 146 (52)

Outcome .064
No (%) 369 (58) 142 (51)
Yes (%) 272 (42) 138 (49)

DM: diabetes mellitus; BMI: body mass index; RASB: renin-angiotensin system blocker.
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differences in medical history of coronary heart disease
and cancer, BMI, the use of oral hypoglycemic drugs,
NLR, serum creatine, serum urea, serum cystatin C,
serum urine acid, serum b2 hemoglobulin, eGFR, blood
glucose, glycated hemoglobin, bicarbonate, and PH
value of urine between the derivation cohort and exter-
nal validation cohort. Compared to the patients in der-
ivation cohort, the patients in external validation cohort
had lower duration of DM, hemoglobin levels, serum
total protein levels, serum albumin levels, C-reactive
protein levels, serum calcium levels and higher blood
pressure, and 24-h urine protein levels. Moreover, the
use of insulin, RASB and statin were significantly differ-
ent between the two cohort.

3.2. Predictive risk factors

The odds ratios and p value of univariate logistic regres-
sion were shown in Table 3, which can be used to
select the potential risk factors. Patients who had
higher serum cystatin C levels (OR, 7.481; 95% CI,
5.570–10.498; p< .001), higher b2 microglobulin levels
(OR, 1.913; 95% CI, 1.750–2.111; p< .001), higher 24-h
urine protein levels (OR, 2.081; 95% CI, 1.858–2.362
p< .001) and higher NLRs (OR, 1.514; 95% CI,
1.374–1.686; p< .001) had a higher risk of undergoing
renal replacement. In addition, patients who had higher
serum calcium levels (OR, 0.0005; 95% CI, 0.0001–0.002;
p< .001) and higher serum albumin levels (OR, 0.870;
95% CI, 0.848–0.893; p< .001) had a lower risk of renal
replacement. There are also other indicators that are
statistically significant in univariate analysis (p< .05).
We conducted the collinear analysis in Table 4 before
multivariate analysis to eliminate the effect of

collinearity. Consequently, serum creatine and serum
urea were taken out in multivariate analysis due to VIF
was more than 5, which indicates that they have collin-
earity with eGFR (Table 4). The final variables selected
in the multivariate logistics regression were age (OR,

Table 3. Potential risk factors identified by univariate logistic
regression analysis.

OR 95% CI p Value

Age 1.005 0.992 1.018 .475
Gender 1.152 0.837 1.588 .380
BMI 0.990 0.957 1.023 .535
Duration of DM 1.047 1.024 1.071 <.001
Hypertension 3.099 2.138 4.555 <.001
Coronary heart disease 1.297 0.752 2.229 .346
Cancer 1.361 0.250 7.401 .707
Systolic blood pressure 1.031 1.022 1.040 <.001
Diastolic blood pressure 1.014 1.000 1.028 .050
Hemoglobin 0.917 0.905 0.928 <.001
NLR 1.514 1.374 1.686 <.001
Serum creatinine 1.015 1.012 1.017 <.001
Serum urea 1.406 1.340 1.485 <.001
Serum uric acid 1.010 1.008 1.012 <.001
Serum total protein 0.888 0.866 0.909 <.001
Serum albumin 0.870 0.848 0.893 <.001
Total cholesterol 1.199 1.068 1.350 .002
Triglyceride 0.966 0.871 1.064 .486
Serum calcium 0.0005 0.0001 0.002 <.001
Serum cystatin C 7.481 5.570 10.498 <.001
b 2 microglobulin 1.913 1.750 2.111 <.001
Glycated hemoglobin 0.624 0.560 0.691 <.001
C-reactive protein 1.013 1.006 1.022 .001
ESR 1.038 1.031 1.045 <.001
24-h urine protein 2.081 1.858 2.362 <.001
eGFR 0.911 0.895 0.925 <.001
Blood glucose 0.976 0.930 1.025 .335
Bicarbonate 0.926 0.891 0.961 <.001
PH value of urine 1.137 0.940 1.376 .185
Oral hypoglycemic drugs use 0.300 0.210 0.424 <.001
Insulin use 0.621 0.447 0.861 .004
RASB use 0.593 0.421 0.832 .002
Statin use 0.697 0.503 0.961 .028

DM: diabetes mellitus; BMI: body mass index; NLR: neutrophil: lymphocyte
ratio; ESR: erythrocyte sedimentation rate; eGFR: estimated glomerular fil-
tration rate; RASB: renin-angiotensin system blocker.

Table 2. Baseline laboratory parameters of the study participants.
Characteristics Derivation cohort (n¼ 641) External validation (n¼ 280) p Value

Hemoglobin (g/L) 114 (88, 134) 105 (93, 124) .029
NLR 2.58 (1.77, 3.88) 2.45 (1.85, 3.36) .240
Serum creatinine (lmol/L) 101 (62, 533) 121.5 (89, 188) .758
Serum urea (mmol/L) 8.6 (5.3, 21.4) 9.6 (6.99, 12.8) .987
Serum uric acid (lmol/L) 330 (259, 426) 339 (287.5, 402.25) .227
Serum cystatin C (mg/L) 1.49 (0.87, 4.04) 1.62 (1.24, 2.26) .161
b 2 microglobulin (mg/L) 3.67 (1.68, 8.95) 3.68 (1.3, 8.29) .472
eGFR (ml/min/1.73 m2) 55.17 (8.58, 106.09) 52.8 (33.95, 79.47) .981
Serum total protein (g/L) 63.4 (57.3, 68.1) 58.65 (53.2, 65.97) <.001
Serum albumin (g/L) 38.8 (31.9, 42.8) 32 (27.2, 38.1) <.001
Total cholesterol (mmol/L) 4.3 (3.56, 5.12) 5.39 (4.46, 6.47) <.001
Triglyceride (mmol/L) 1.4 (0.98, 2.06) 1.77 (1.25, 2.55) <.001
Serum calcium (mmol/L) 2.22 (2.08, 2.32) 2.11 (1.99, 2.23) <.001
C-reactive protein (mg/L) 2.45 (1.08, 7.1) 1.21 (0.5, 3.13) <.001
ESR (mm/h) 21 (9, 56) 36.5 (21, 63) <.001
24-h urine protein (g) 0.52 (0.1, 4.64) 4.35 (2.21, 7.54) <.001
Blood glucose (mmol/L) 8.86 ± 3.25 8.87 ± 3.06 .109
Glycated hemoglobin (%) 7.4 (6.45, 9.24) 7.44 (6.3, 8.91) .623
Bicarbonate (mmol/L) 23.1 ± 4.33 23.77 ± 3.92 .482
PH value of urine 5.96 ± 0.82 5.93 ± 0.90 .503

NLR: neutrophil: lymphocyte ratio; eGFR: estimated glomerular filtration rate; ESR: erythrocyte sedimentation rate.

RENAL FAILURE 553



0.949; 95% CI, 0.913–0.985; p, .007), gender (OR, 2.952;
95% CI, 1.196–7.718; p, 0.022), hemoglobin (OR, 0.970;
95% CI, 0.948–0.990; p, 0.004), NLR (OR, 1.099; 95% CI,
1.008–1.198; p, .028), serum cystatin C (OR, 1.932; 95%
CI, 1.369–2.804; p< .001), eGFR (OR, 0.945; 95% CI,
0.924–0.964; p< .001), 24-h urine protein (OR, 1.215;
95% CI, 1.055–1.427; p, .011) and the use of oral hypo-
glycemic drugs (OR, 0.373; 95% CI, 0.143–0.941; p, .039;
Table 5).

3.3. Prediction model performance in the cohort

We constructed sequential models using the variables
selected by multivariate logistic regression analysis in
Table 5. The performance for the clinical model, labora-
tory model, lab-medication model, and full model were
reported in Table 6. The calibration curves calculated
by external validation of four models were shown in
Figure 1. As we have mentioned before, the C-statistic,
AIC, p value of the Hosmer–Lemeshow (H-L) test, and
calibration curves were used to depict the discrimin-
atory ability and calibration of the models. A higher
C-statistic reflected a good discriminatory ability, while
a p value of the Hosmer–Lemeshow (H-L) test close to 1
and a relatively lower AIC suggested that the predicted
probability was not significantly different from the
observed probability in the models. Clinical model,
including age, gender and the use of oral hypoglycemic
drugs only, performed poorly in both the training
cohort (C-statistic, 0.626; p value of H-L test, 0.315) and
the validation cohort (internal: C-statistic, 0.616; p value
of H-L test, 0.524; external: C-statistic, 0.506). The
remaining three models, laboratory model, lab-medica-
tion model, and full model, had similar C statistics in
both internal and external validation (Table 6).

Table 6. Performances of the sequential models with different combinations of predictive variables in the deriv-
ation and validation cohorts.

Clinical model Laboratory model Lab-medication model Full model

Age 1.005 0.950
Gender 1.174 2.560
Hemoglobin 0.973 0.975 0.969
NLR 1.105 1.094 1.098
Serum cystatin C 2.057 2.061 1.901
24-h urine protein 1.296 1.305 1.242
eGFR 0.957 0.957 0.951
Oral hypoglycemic drugs use 0.299 0.424 0.343
C-statistic
training cohort 0.626 0.986 0.986 0.986
Internal validation cohort 0.611 0.983 0.983 0.975
External validation cohort 0.506 0.863 0.860 0.878

p value of the Hosmer–Lemeshow test
training cohort 0.315 0.755 0.438 0.540
Internal validation cohort 0.524 0.817 0.713 0.510

AIC
training cohort 665.639 150.867 149.381 142.648
Internal validation cohort 167.297 44.0503 44.161 40.929

NLR: neutrophil: lymphocyte ratio; eGFR: estimated glomerular filtration rate.

Table 5. Potential risk factors identified by multivariate logis-
tic regression analysis.

OR 95% CI p Value

Age 0.949 0.913 0.985 .007
Gender 2.952 1.196 7.718 .022
Hemoglobin 0.970 0.948 0.990 .004
NLR 1.099 1.008 1.198 .028
Serum cystatin C 1.932 1.369 2.804 <.001
24-h urine protein 1.215 1.055 1.427 .011
eGFR 0.945 0.924 0.964 <.001
Oral hypoglycemic drugs use 0.373 0.143 0.941 .039

NLR: neutrophil: lymphocyte ratio; eGFR: estimated glomerular filtra-
tion rate.

Table 4. Collinear analysis of potential risk factors.
Tolerance VIF

Age 0.719 1.390
Gender 0.819 1.222
Duration of DM 0.763 1.310
hypertension 0.751 1.331
Systolic blood pressure 0.646 1.547
Diastolic blood pressure 0.777 1.286
Hemoglobin 0.287 3.481
NLR 0.385 2.599
Serum creatinine 0.136 7.372
Serum urea 0.181 5.511
Serum uric acid 0.481 2.080
Serum total protein 0.518 1.932
Serum albumin 0.554 1.805
Total cholesterol 0.741 1.349
Serum calcium 0.946 1.057
Serum cystatin C 0.226 4.421
b 2 microglobulin 0.284 3.516
Glycated hemoglobin 0.790 1.265
C-reactive protein 0.500 2.001
ESR 0.533 1.874
24-h urine protein 0.510 1.960
eGFR 0.124 8.041
Bicarbonate 0.878 1.139
Oral hypoglycemic drugs use 0.796 1.257
Insulin use 0.906 1.104
RASB use 0.907 1.103
Statin use 0.895 1.117

DM: diabetes mellitus; NLR: neutrophil: lymphocyte ratio; ESR: erythrocyte
sedimentation rate; eGFR: estimated glomerular filtration rate; RASB:
renin-angiotensin system blocker.
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However, the full model, which included age, gender,
hemoglobin, NLR, serum cystatin C, eGFR, 24-h urine
protein, and the use of the oral hypoglycemic drugs
showed the poor p value of the Hosmer–Lemeshow
test with 0.510 in internal validation. The lab-medica-
tion model, which included hemoglobin, NLR, serum
cystatin C, eGFR, 24-h urine protein, and the use of the
oral hypoglycemic drugs showed the poor p value of
the Hosmer–Lemeshow test with 0.438 in training
cohort. Thus, the laboratory model, including

hemoglobin, NLR, serum cystatin C, eGFR, and 24-h
urine protein, had good discriminatory ability and good
calibration.

3.4. Net reclassification improvement and
integrated discrimination improvement of
the models

To further evaluate the discriminatory ability of the
models, we considered the following categories of the

Figure 1. Calibration curves of four models.
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risk kidney failure within 3 years: 0% to 24.9% was low,
25.0% to 74.9% was intermediate, and 75.0% or more
was high. The cutoff values used to calculate the net
reclassification were 25% and 75%. The net reclassifica-
tion improvement (NRI) and integrated discrimination
improvement (IDI) of laboratory, lab-medication, and
full models were shown in Table 7. Compared with
laboratory model, lab-medication model, which added
the use of oral hypoglycemic drugs, had no further
improvement in either the net reclassification or inte-
grated discrimination. The integrated discrimination
improvement showed a 1.7% (95% CI, 0.7%,2.7%; p
value, .001) improvement in full model compared with
laboratory model, while the NRI of the two model was
not statistically significant (p value, .278). The IDI

between the comparison of full model and lab-medica-
tion model showed a 1.4% (95% CI, 0.6%, 2.3%; p value,
.001) improvement, but NRI was not significant (p
value, .057).

3.5. The nomogram of the optimal model

Based on the above analysis, laboratory model per-
formed well in terms of both discrimination and calibra-
tion. Therefore, we regarded laboratory model, which
contained hemoglobin, NLR, serum cystatin C, eGFR,
24-h urine protein as the optimal model. The nomo-
gram to predict the probability of DKD initiating renal
replacement in 3 years is shown in Figure 2. The nomo-
gram was created based on the following five

Table 7. Net reclassification improvement and integrated discrimination improvement of the models.
Categorical NRI p Value IDI p Value

Laboratory vs. lab-medication �0.015 (–0.040–0.011) .258 0.003 (–0.002–0.008) .213
Full vs. laboratory 0.019 (–0.016–0.054) .278 0.017 (0.007 –0.027) .001
Full vs. lab-medication 0.033 (–0.001–0.068) .057 0.014 (0.006–0.023) .001

Figure 2. Nomogram of the laboratory model.
Abbreviations: EGFR: estimated glomerular filtration rate; HTP: 24-h urine protein; CYS: serum cystatin C; NLR: neutrophil: lymphocyte ratio;
HB: hemoglobin.
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independent prognostic factors: hemoglobin level,
serum cystatin C level, eGFR, 24-h urine protein level,
and the NLR. A higher total number of points on the
basis of the sum of the assigned number of points for
each factor in the nomogram indicates a worse progno-
sis for the patient. For example, a patient with normal
hemoglobin (120 g/L), lower eGFR (43mL/min/1.73 m2),
higher serum cystatin C level (2.1mg/L), lower NLR
(2.83), and very high urine protein level (7.8 g/d) would
have a total of 186 points, indicating a predicted 3-year
probability of the onset of renal replacement of 58.6%.

4. Discussion

We have developed and validated a set of risk predic-
tion models using laboratory data that are obtained
routinely in patients with DKD and could be easily inte-
grated into a laboratory information system to predict
the progression to kidney failure among patients with
DKD. The laboratory model behaved good performance
among the sequential models. The C-statistic for labora-
tory model was 0.986 in the training cohort, 0.983 in
the internal validation cohort and 0.863 in the external
validation cohort, showing good discriminatory per-
formance, and the calibration was good, with p¼ .817.
Our study demonstrated that lower eGFR, higher cysta-
tin C levels, lower hemoglobin, higher NLR level and
higher 24-h urine protein significantly increased the risk
of renal replacement therapy in patients with DKD.

K-fold crossvalidation is one of the most commonly
used methods of evaluating the predictive performan-
ces of a model [14]. In K-fold crossvalidation, (K� 1)
fold is allocated to model development, and the
residual fold is adopted for the model validation. Jung
suggested the nearest integer value of log(n) as a rule
for choosing K [15], while Zhang and Yang considered
endorsing fivefold crossvalidation is also commonly
used for model selection [14]. Consequently, we choose
fivefold crossvalidation according to the sample cap-
acity and variables available for inclusion in the model.

In recent decades, risk prediction has gained increas-
ing attention, and several prediction models have been
developed to predict CKD in the general population
[5,11,16–18]. Our findings also partially overlap with
those from previous studies on prognostic factors in
patients with T2DM. Jardine et al. developed risk pre-
diction models based on data from the ADVANCE
cohort for a 5-year risk prediction of new-
onset albuminuria and major kidney-related outcomes
in patients with type 2 diabetes [16]. Chen et al. dem-
onstrated that eGFR is a strong outcome predictor [19].
Dunkler et al. also found eGFR to be a prognostic

predictor based on data from ONgoing Telmisartan
Alone in combination with data from the Ramipril
Global Endpoint Trial (ONTARGET) and the Outcome
Reduction with Initial Glargine Intervention (ORIGIN)
study [11]. In our study population, eGFR was also sig-
nificant and was included in our final model. The glom-
erular filtration rate (GFR) is the most common
prognostic factor used to predict ESRD in both clinical
practice and clinical trials [20]. The CKD-EPI and MDRD
equations are commonly used to estimate the GFR. One
study found that the CKD-EPI gives a better estimation
of the GFR compared with the MDRD [21]. Therefore,
we chose the eGFR (calculated by the CKD-EPI equa-
tion) as a predictor. The Table 1 demonstrated that,
there were more patients initiating renal replacement
in the group of lower eGFR, which indicated that eGFR
is a convincing prognostic factor for the progression of
DKD to kidney failure. Simultaneously, more strong
prognostic factors, the serum cystatin C levels, 24-h
urine protein levels and the neutrophil: lymphocyte
ratio were in detection in our prediction model, which
played a vital role in our predictive model.

Proteinuria is a strong prognostic factor for the pro-
gression of DKD to kidney failure. In some studies, pro-
teinuria was demonstrated to be a predictor of kidney
failure [10,11,19]. Some studies have certified that
patients with diabetes and microalbuminuria or macro-
albuminuria are at a particularly high risk of death prior
to reaching ESRD [22,23]. In our study population,
which excluded patients who died during follow-up,
the 24-h urine protein level played an important role in
predicting kidney failure.

Cystatin C, a cysteine protease inhibitor, has been
demonstrated to be an early renal marker in diabetic
patients [24–26]. Our study suggested that the level of
cystatin C is also a strong predictive factor for kidney
failure. It was showed in Table 2 that the odds ratio of
cystatin C was higher than serum creatine, which
means that cystatin C is more sensitive in predicting
the progression of diabetic kidney disease than
serum creatine.

In patients with DKD, the NLR was demonstrated
to be associated with the 24-h urine protein level
and albumin excretion in 80 Turkish patients with
newly diagnosed type 2 diabetes [27]. Wheelock
et al. found that the NLR predicted the loss of renal
function in 941 SURDIAGENE participants during a
median follow-up of 4.5 years [28]. In our study, the
NLR was associated with renal replacement in
patients with DKD. The odds ratio of the NLR dem-
onstrated that it is a sensitive factor in predicting
the progression of DKD.
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However, a number of limitations of this study
should be considered. DKD was mostly clinically diag-
nosed from the presence of macroalbuminuria and
renal impairment in patients with diabetes. Therefore,
there might be other types of kidney disease that were
included. It is possible that adding pathological infor-
mation may have improved the predictive ability of the
models. In addition, our study population was limited
to Chinese patients with type 2 diabetes and advanced
CKD, so our findings may not be widely generalizable.
What’s more, the time of follow-up is short. A long term
prospective cohort study of multicenter is required
in future.

Future studies into the prognostication of DKD
should aim to optimize the inclusion criteria and stratify
renal function to improve the precision of the predic-
tion model. External validation through multicenter
studies is also necessary.
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