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Global discovery of lupus genetic risk variant allelic
enhancer activity
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Genome-wide association studies of Systemic Lupus Erythematosus (SLE) nominate 3073
genetic variants at 91 risk loci. To systematically screen these variants for allelic transcriptional
enhancer activity, we construct a massively parallel reporter assay (MPRA) library comprising
12,396 DNA oligonucleotides containing the genomic context around every allele of each SLE
variant. Transfection into the Epstein-Barr virus-transformed B cell line GM12878 reveals 482
variants with enhancer activity, with 51 variants showing genotype-dependent (allelic)
enhancer activity at 27 risk loci. Comparison of MPRA results in GM12878 and Jurkat T cell
lines highlights shared and unique allelic transcriptional regulatory mechanisms at SLE risk loci.
In-depth analysis of allelic transcription factor (TF) binding at and around allelic variants
identifies one class of TFs whose DNA-binding motif tends to be directly altered by the risk
variant and a second class of TFs that bind allelically without direct alteration of their motif by
the variant. Collectively, our approach provides a blueprint for the discovery of allelic gene
regulation at risk loci for any disease and offers insight into the transcriptional regulatory
mechanisms underlying SLE.
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ARTICLE

ystemic lupus erythematosus (SLE) is an autoimmune dis-

ease that can affect multiple organs, leading to debilitating

inflammation and mortality!. Up to 150 cases are found per
100,000 individuals, and the limited treatment options contribute
to considerable economic and social burden!2. Epidemiological
studies have established a role for both genetic and environmental
factors in the development of SLE2. SLE has a relatively high
heritability?. The vast majority of patients do not have a single
disease-causing mutation (such as mutations in complement
protein 1q); instead, genetic risk is accumulated additively
through many genetic risk loci with modest effect sizes*.

Genome-wide association studies (GWASs) have identified 91
genetic risk loci that increase disease risk of SLE in a largely
additive fashion*. Each SLE-risk locus is a segment of the genome
containing a polymorphic “tag” variant (i.e., the variant with the
most significant GWAS p-value) and the genetic variants in
linkage disequilibrium with the tag variant. The majority (68%) of
the established SLE-risk loci do not contain a disease-associated
coding variant that changes amino acid usage®. Instead, variants
at these loci are found in non-coding regions of the genome such
as introns, promoters, enhancers, and other intergenic areas.
Enrichment of these variants in enhancers and at transcription
factor (TF) binding sites®” implies that transcriptional pertur-
bation may be a key to the development of SLES. However, given
the large number of candidate variants identified by GWASs,
identification of the particular causal variant(s) remains
challenging.

SLE is a complex disease that involves multiple cell types?.
Previous systematic studies demonstrate that SLE-risk loci are
enriched for B cell-specific genes® and regulatory regions!0.
Established biological mechanisms further highlight a key role for
B cells in SLE—as the autoantibody-secreting cell type, B cells are
critical to the pathoetiology of SLE, a disease characterized by
autoantibody production!l. B cells also present self-antigens to
T cells in the development of an autoantigen-focused (i.e., “self”)
inflammatory response!2. Meanwhile, Epstein-Barr virus (EBV)-
infected B cells have been implicated in SLE, with patients having
a greater number of EBV-infected B cells and a higher viral load
than people without SLE!314, In addition, EBV infection is sig-
nificantly more prevalent in SLE cases than controls!>!®, and
EBV-encoded EBNA2 interactions with the human genome are
concentrated at SLE-risk loci in EBV-transformed B cell lines!©.
In vitro, EBV infection can transform B cells into a lympho-
blastoid cell line (LCL)!7. We have recently shown that histone
mark and human and viral protein chromatin immunoprecipi-
tation followed by sequencing (ChIP-seq) datasets from EBV-
transformed B cell lines are highly and specifically enriched at
SLE-risk loci relative to non-EBV-transformed B cell lines®10.
Given the above evidence, we chose the EBV-transformed B
cell line GM12878 to study the effects of SLE-risk variants at
SLE-risk loci.

In this work, we design and apply a massively parallel reporter
assay (MPRA)!8-27 to systematically identify the SLE genetic risk
variants that contribute to transcriptional dysregulation in the
EBV-transformed B cell line GM12878 (Fig. 1 and Supplementary
Fig. 1). MPRA extends standard reporter assays, replacing low-
throughput luciferase with high-throughput mRNA expression
detection. We use MPRA to simultaneously screen the full set of
genome-wide significant SLE-associated genetic variants for
effects on gene regulation. Using this experimental approach, we
nominate 51 putative causal variants that result in genotype-
dependent (allelic) transcriptional regulation. Comparison of
MPRA results between GM12878 and the Jurkat T cell line
reveals shared and cell-type-specific allelic behavior. Integration
of these data with TF binding site predictions and functional
genomics data reveals two distinct mechanisms whereby TFs bind

risk variants in an allelic manner—directly impacted by a given
variant (i.e., the variant directly alters the TF’'s DNA-binding site)
or indirectly impacted by the variant (i.e., the variant alters the
DNA binding of the TF’s physical interaction partner or mod-
ulates chromatin accessibility). Collectively, these results provide
an important resource for understanding SLE disease risk
mechanisms and reveal an important role for groups of TFs in the
mediation of allelic enhancer activity at plausibly causal SLE-risk
variants in EBV-transformed B cells.

Results

MPRA library design and quality control. We first collected all
SLE-associated risk loci reaching genome-wide association sig-
nificance (p < 5 x 1078) published through March 2018 (Supple-
mentary Data 1). Studies of all ancestral groups were included,
and independent risk loci were defined as loci with lead (tag)
variants at 12 <0.2. For each of these 91 risk loci, we performed
linkage disequilibrium (LD) expansion (r2>0.8) in each ancestry
of the initial genetic association(s), to include all possible disease-
relevant variants (Supplementary Data 2). In total, this procedure
identified 3073 genetic variants. All established alleles of these
variants were included, with 36 variants having three or more
alleles. We also included 20 additional genetic variants from a
previously published study!® as positive and negative controls to
assess the library’s performance (Supplementary Data 3).

For each variant, we generated a pair of 170 base pair (bp)
DNA oligonucleotides (subsequently referred to as “oligos”) for
each allele, with the variant located in the center and identical
flanking genomic sequence across the alleles (Supplementary
Data 4). A total of 12,478 oligos (3093 variants with 6239 alleles)
were synthesized. For barcoding, a random 20mers were added to
each oligo through PCR. Each unique barcode was matched with
perfectly synthesized oligos. The number of unique barcodes per
oligo had an approximately normal distribution with a median of
729 barcodes per oligo (Supplementary Fig. 2a and Supplemen-
tary Data 5). Only oligos with at least 30 unique barcodes were
used for downstream analyses. A fragment containing a minimal
promoter and an eGFP gene was inserted between the oligo and
barcode to generate the MPRA transfection library. We note that
the use of a minimal promoter allows us to effectively measure
the ability of alleles to enhance, but not reduce, transcriptional
activity. Three aliquots of the library were independently
transfected into the EBV-transformed B cell line GM12878. We
then used nucleic acid capture to enrich for eGFP mRNA and
sequenced the barcode region. The normalized barcode ratio
between the eGFP mRNA and the plasmid DNA was used to
quantify the amount of enhancer activity driven by each oligo
(Supplementary Note 1 and Supplementary Fig. 5f, g). This
mRNA to DNA ratio measures the enhancing effect of an allele
on eGFP expression under the control of a minimal promoter
(Fig. 1 and Supplementary Fig. 1). We observed strong
correlation of enhancer activity between experimental replicates
(mean pairwise Pearson correlation of 0.99) (Supplementary
Fig. 2b-d). Likewise, calibration variants showed high accuracy,
with 17 of the 20 variants matching the results of a previous
study!® (87.5% sensitivity and 75% specificity), collectively
demonstrating a robust experimental system (Supplementary
Data 3).

Hundreds of SLE-risk variants are located in genomic regions
with enhancer activity in EBV-transformed B cells. Using the
SLE MPRA library, we next identified genetic variants capable of
driving enhancer activity in the EBV-transformed B cell line
GM12878. An SLE-risk variant was considered a candidate for
enhancer activity if an oligo corresponding to any allele had
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Fig. 1 Massively parallel reporter assay workflow. Schematic of study design. Representative Manhattan plot of SLE-associated risk loci reproduced from

ref. 78,

significantly increased transcriptional regulatory activity com-
pared to controls (see “Methods”). Not all statistically significant
changes in transcriptional activity are necessarily biologically
relevant—a highly consistent, but slight change in expression
levels is statistically, but not biologically, meaningful. We there-
fore considered an oligo to have enhancer activity only when (1)
the oligo had statistically significant enhancer activity (paq; < 0.05)
and (2) we observed at least a 50% increase in transcriptional
activity compared to the corresponding barcode counts in the
plasmid control. Based on these criteria, 16% of SLE-risk variants
(482 variants, 853 alleles) demonstrated enhancer activity, hen-
ceforth referred to as “enhancer variants” (enVars) and “enhancer
alleles” (enAlleles), respectively (Fig. 2a and Supplementary
Data 6).

We next explored the potential effects of enVars on gene
expression. We connected each enVar to one or more genes using
an approach that takes into account chromatin looping interac-
tions, expression quantitative trait loci (eQTLs), and gene
proximity (Supplementary Data 2 and 7) (see “Methods”). This
approach identified 1006 genes in total, which are enriched for
expected SLE-related processes such as the interferon pathway,
the antigen processing and presentation pathway, and cytokine-
related pathways (Supplementary Fig. 3 and Supplementary
Data 8), providing functional support for the enVars we
identified.

Next, we searched for functional genomic features enriched
within enVars relative to non-enVars using the RELI algorithm!?
In brief, RELI estimates the significance of the intersection
between an input set of genomic regions (e.g., enVars) and each
member of a collection of functional genomics datasets (e.g.,
ChIP-seq for a particular histone mark or TF). For this analysis,
we identified, curated, and systematically processed the 576
GM12878 ChIP-seq datasets available in the NCBI Gene
Expression Omnibus (GEO) database (see “Methods”). Using
RELI, we observed significant enrichment for overlap between
enVars and multiple histone modification marks, including
H3K4me3 (5.8-fold, peorrected < 10721) and H3K27ac (2.0-fold,
Peorrected < 10713)  (Fig. 2b and Supplementary Data 9). As
expected, we did not identify enrichment for repressive marks
such as H3K9me3 or H3K27me3?8 (Fig. 2b and Supplementary
Data 9). Altogether, the genomic features present within enVars

confirm that many SLE genetic risk loci likely alter transcriptional
regulation in EBV-transformed B cells.

We next asked if the genomic binding sites of particular TFs
were enriched within our enVars using RELI and the TF ChIP-
seq datasets from GM12878. As expected, the enVars are highly
enriched for ChIP-seq signal of TFs involved in regulation of
the immune response, relative to variants lacking enhancer
activity (Fig. 2c and Supplementary Data 9). In particular, we
found significant enrichment for all members of the NFkB TF
family: REL/C-Rel (6.4-fold, peorrectea < 10~26), NFKB1/p50 (3.0-
fold, Peorrected < 10718), RELA/p65 (3.1-fold, peorrected < 10719),
RELB (2.7-fold, peomected < 10~19), and NFKB2/p52 (2.2-fold,
Peorrected < 1077). These results are consistent with our previous
findings that altered binding of NF«kB TFs is likely an important
mechanism conferring SLE risk!?. We also found significant
enrichment for other TFs that have been previously implicated in
SLE pathogenesis, such as PAX52%, MED130, IKZF13!, ELF132,
and the EBV-encoded EBNA2 transactivator!? (Fig. 2c and
Supplementary Data 9). As a complementary approach, we next
assessed enrichment for TF binding site motifs in the enAllele
DNA sequences using HOMER3? and motifs contained in the
Cis-BP database3* (see “Methods”). This analysis also revealed
enrichment of multiple TF families with known roles in SLE,
including ETS, NFxB, and IRF? (Fig. 2d and Supplementary
Data 10). Many of these same TFs also have enriched ChIP-seq
peaks at SLE-risk locil?. Collectively, these results indicate that
particular TFs tend to not only concentrate at SLE-risk locil?, but
also concentrate at alleles capable of driving gene expression in
EBV-transformed B cells.

MPRA identifies 51 SLE-risk variants with allelic enhancer
activity in EBV-transformed B cells. We next used our MPRA
library to identify SLE genetic risk variants that drive allele-
dependent (allelic) enhancer activity. Allelic activity was assessed
for each enVar by comparing enhancer activity between each
pairs of alleles. We considered a SLE variant allelic if (1) at least
one of its alleles is an enAllele; (2) we observed significant
genotype-dependent activity using Student’s ¢-test!®3> (Supple-
mentary Note 2 and Supplementary Fig. 6); and (3) the oligos had
more than a 25% change between any pair of alleles. Using these
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Fig. 2 Regulatory activity of enhancer variants (enVars). a Distribution of MPRA regulatory activity. The normalized fold change of MPRA activity relative
to plasmid control (X-axis) was calculated using DESeq2 (n =3 biological replicates). Enhancer alleles (enAlleles) (blue) were identified as those alleles
with significant activity relative to control (p,g; < 0.05) and at least a 50% increase in activity (see “Methods"). The p-values were generated by two-sided
Wald tests with Benjamini-Hochberg multiple testing correction. Full results are provided in Supplementary Data 6. b Enrichment of histone marks in
GM12878 cells at enVars compared to non-enVars. p-values were estimated by one-sided z-test with Bonferroni multiple testing correction using RELI (see
“Methods"). Full results are provided in Supplementary Data 9. ¢ Enrichment of regulatory protein and transcription factor (TF) binding at enVars
compared to non-enVars. p-values were estimated by one-sided z-test with Bonferroni multiple testing correction using RELI (see “Methods"). The top 15
TFs (based on RELI p-values) that overlap at least 10% of enVars are shown. Full results are provided in Supplementary Data 9. d TF binding site motif
enrichment for enVars compared to non-enVars. p-values were estimated by one-sided hypergeometric test with Benjamini-Hochberg multiple testing
correction by HOMER using the full oligo sequences of enVars and non-enVars (see “Methods"). The top 15 enriched TF motif families are shown. Full

results are provided in Supplementary Data 10.

criteria, we identified 51 SLE-risk variants (11% of enVars, 1.7%
of all SLE-risk variants) as allelic enVars in GM12878 (Fig. 3a and
Supplementary Data 11). For 31 of these 51 allelic enVars, the risk
allele decreased enhancer activity relative to the non-risk allele,
which is statistically indistinguishable from the 20 variants with
increased risk allele activity (p = 0.1). Three of the allelic enVars
can also alter the amino acid sequence of proteins—rs1059702
(IRAK1), rs1804182 (PLAT), and rs3027878 (HCFC1), consistent
with previous studies identifying dual-use codons in the human
genome3°. Collectively, these 51 variants represent causal variant
candidates for 27 SLE-risk loci (30% of all tested loci) (Supple-
mentary Data 12). For these 27 risk loci, our approach reduced
the number of potential causal variants with allelic activity in
GM12878 from an average of 84 variants to an average of two
variants per risk locus (Fig. 3b). For example, at 17q12 (marked
by rs8079075), we reduce the candidate causal variant set from
249 to one, with the rs112569955 “G” risk allele showing a 36%
increase in enhancer activity compared to the “A” non-risk allele.

Particular TFs have altered binding at SLE loci with allelic
enhancer activity. To identify candidate regulatory proteins
that might participate in allelic SLE mechanisms, we next used
RELI to identify GM12878 ChIP-seq datasets that significantly
overlap allelic enVars (Supplementary Data 13). Many of the top

results are consistent with our previous study!?, including the
enriched presence of general enhancer features such as the
H3K27ac histone mark (17 of 51 allelic enVars, 13.6-fold enri-
ched, peorrectea < 10738), mediator complex subunit MED1 (17 of
51 allelic enVars, 13.0-fold enriched, peorrected < 1073%), and the
histone acetyltransferase p300 (16 of 51 allelic enVars, 12.4-fold
enriched, Peorrected < 10732), along with particular regulatory
proteins that participate in “EBV super enhancers”3” and play key
roles in B cells such as ATF7 (15 of 51 allelic enVars, 11.3-fold
enriched, peorrected < 10720), Tkaros/IKZF1 (19 of 51 allelic enVars,
9.7-fold enriched, peorrectea < 10~2°), and the NF«B subunit RELA
(13 of 51 allelic enVars, 12.4-fold enriched, peorrected < 10724).
Also consistent with our previous study!0, we observe strong
enrichment for the EBV-encoded EBNA2 protein (7 of 51 allelic
enVars, 17.7-fold enriched, peorrected < 10719). Collectively, these
data reveal particular regulatory proteins that might participate in
the mechanisms contributing to SLE at multiple risk loci by
driving allelic enhancer activity.

We next used the MARIO pipeline!® to search for allelic
binding events (ie., allelic imbalance between sequencing read
counts) at SLE variants within 1058 LCL ChIP-seq datasets (576
from GM12878). By necessity, this approach is limited to the 47
allelic enVars that are heterozygous in at least one of these cell
lines. In total, this procedure identified 11 wvariants with
strong allelic imbalance (MARIO ARS value >0.4) in at least
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a significant difference in MPRA activity (p,q; < 0.05) between any pair of alleles and at least a 25% change in activity difference (see “Methods"). The p-
values were generated by two-sided Student's t-test with Benjamini-Hochberg multiple testing correction. Full results are provided in Supplementary
Data 11. b MPRA enhancer activity at the 27 risk loci with at least one allelic enVar. Bar plots indicate the total number of variants at each locus. Variants
with allelic enhancer activity (allelic enVars) are shown in red. Variants lacking allelic enhancer activity are shown in gray.

one ChIP-seq dataset (Supplementary Data 14), revealing groups
of TFs and transcriptional regulators that allelically bind SLE-risk
variants with genotype-dependent MPRA enhancer activity. For
example, the rs3101018 variant, which is associated with SLE38
and rheumatoid arthritis®® in Europeans, shows 1.7-fold stronger
enhancer activity for the reference/non-risk ‘C’ allele compared
to the non-reference/risk “I” allele (Fig. 4a). These results are
consistent with a previously established eQTL obtained from
GTEx%0, which demonstrates higher Complement C4A (C4A)
expression in EBV-transformed B cell lines for the rs3101018 ‘C
allele than the “T” allele (Fig. 4b). Our MARIO allelic ChIP-seq
analysis reveals 15 regulatory proteins that prefer the ‘C allele
and 2 that prefer the “T” allele (Fig. 4c and Supplementary Fig. 4a).
Among these, particularly robust signal is obtained for ATF?7,
with one experimental replicate in GM12878 displaying 77 vs. 18
reads (‘C’ vs. “T’) and another showing 66 vs. 23 reads (‘C’ vs. I")
(Supplementary Data 14). Moreover, CREB1 and CREM strongly
favor the ‘C’ allele as well (Supplementary Data 14). In agreement
with these data, computational analysis of the DNA sequences
surrounding this variant predicts that ATF7, CREB1, and CREM
will all bind more strongly to the ‘C’ than the ‘T” allele (Fig. 4d).
Intriguingly, ten additional proteins (FOXK2, PKNOXI,
ARID3A, ZBTB40, ZNF217, ARNT, ELF1, IKZF2, MEF2B, and
FOXM1) also bind allelically and have known DNA-binding
motifs*!, but none of them have binding sites altered by the
variant. Further, we do not observe allelic chromatin accessibility
in an available GM12878 ATAC-seq dataset (9 vs. 7 unique
reads). Together, these results reveal a potentially causative SLE
regulatory mechanism involving weaker direct binding of ATF7/
CREB1/CREM to the “I” risk allele, altering the recruitment of
additional proteins to the locus and lowering the expression
of C4A.

We observe a similar phenomenon for the rs2069235 variant,
which is associated with SLE in Asian ancestries*> and
rheumatoid arthritis in Europeans*>. rs2069235 displays much
stronger enhancer activity for the ‘A’ (non-reference/risk) allele
compared to the ‘G’ (reference/non-risk) allele (Fig. 4e), con-
sistent with the established synaptogyrin 1 (SYNGRI) eQTL in

EBV-transformed B cell lines#? (Fig. 4f). Inspection of our allelic
ChIP-seq data reveals 14 proteins preferentially binding the ‘A’
allele, with none preferring the ‘G’ allele (Fig. 4g and
Supplementary Fig. 4b). Among these 14 proteins, only ELF1
has its binding site directly altered by the variant (Fig. 4h).
Strikingly, 55 of the 78 available H3K27ac datasets are allelic at
this variant, with all 55 preferring the ‘A’ allele. Likewise, 24 of 46
H3K4mel datasets are allelic, with all of them also preferring the
‘A’ allele. Both of these histone marks are indicative of active
chromatin?8. Only a single histone mark dataset prefers the ‘G’
allele—the H3K27me3 mark, which is indicative of silenced
chromatin?® (Fig. 4g and Supplementary Fig. 4b). Together, these
data are consistent with a potentially causative SLE molecular
mechanism involving an allele-dependent enhancer consisting of
stronger direct binding of ELF1 to the ‘A’ risk allele, along with
indirectly altered binding of multiple additional TFs to this locus.

Genotype-dependent binding to SLE variants with allelic
enhancer activity by variant overlapping and variant adjacent
TFs. As illustrated by the above examples, a particular TF can be
involved in allelic mechanisms that are either directly impacted
by a given variant (i.e., the variant directly alters the TF’'s DNA-
binding site) or indirectly impacted by the variant (i.e., the variant
alters the DNA binding of the TF’s physical interaction partner,
modulates chromatin accessibility, or affects another mechan-
ism). At a given locus, we designate such TFs as variant over-
lapping and variant adjacent TFs, respectively (Fig. 5a). We next
sought to discover such TFs at the 51 allelic enVars. At each
allelic enVar locus, we identified variant overlapping TFs as those
TFs predicted to have strong binding to one allele and weak
binding to the other allele. Likewise, we identified variant adjacent
TFs as those TFs with proximal strong predicted binding sites
that do not directly overlap the variant (see “Methods”). We then
searched for particular TFs that tend to act as variant overlapping
TFs or as variant adjacent TFs at the 51 allelic eVars using a
proportion test (see “Methods”) and confirmed that their binding
site locations are distributed relative to the variant as expected
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Fig. 4 Lupus risk allele-dependent gene regulatory mechanisms at the C4A and SYNGR1 genomic loci. a, e Normalized MPRA enhancer activity of each
experimental replicate for rs3101018 and rs26069235. b, f Expression trait quantitative loci (eQTLs) revealing genotype-dependent expression of C4A and
SNYGRI for rs3101018 (CC, n =127 biologically independent samples; CT, n=17; TT, n=3) and rs26069235 (GG, n = 72 biologically independent
samples; GA, n=66; AA, n=9) in EBV-transformed B cell lines (GTEx). ¢, g Genotype-dependent activity of transcription factors, transcriptional
regulators, and histone marks in EBV-transformed B cell lines for rs3101018 and rs26069235. Results with MARIO ARS value >0.4 and consistent allelic
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the given variant is inside a ChlP-seq peak and is also heterozygous in the given cell line. Variant overlapping TFs are indicated in black. Variant adjacent
TFs are shown in green (see definition in Fig. 5a). d, h DNA-binding motif logos are shown for the ATF/CREB/CREM family, and ELF1 in the context of the
DNA sequence surrounding rs3101018 and rs2069235, respectively. Tall nucleotides above the X-axis indicate preferred DNA bases. Bases below the X-
axis are disfavored. In (b) and (f), data are represented as a violin plot where the middle line is the median, the lower and upper hinges correspond to the
first and third quartiles, with the rotated kernel density plot shown on each side. The data used for the analyses were obtained from the Genotype-Tissue
Expression (GTEx) Portal on 11/12/2020. The GTEx Project was supported by the Common Fund of the Office of the Director of the National Institutes of

Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.

(Fig. 5b). Consistent with our results at the C4A and SYNGRI
loci, variant overlapping TFs include members of the ETS (e.g.,
ELF1) and ATF-like (e.g., ATF7) families, along with other TFs
whose genetic loci are associated with SLE, including IRF5%
(Fig. 5c and Supplementary Data 15). Variant adjacent TFs
represent a distinct class, but also include several TFs with SLE
genetic associations, including NFkB*>, the Ikaros (IKZF)
family4®, and HMGA family members#’ (Fig. 5d and Supple-
mentary Data 15). Collectively, these analyses reveal two distinct
classes of TFs at a given SLE-associated locus that both likely play
key roles in SLE mechanisms, along with particular TFs that tend
to participate in one class or the other.

Allelic transcription regulatory mechanisms shared and unique
across cell types. To explore the cell-type specificity of allelic
enhancer activity, we transfected our SLE MPRA library into
Jurkat cells, a T cell line, as T cells are another important cell type

in SLE2. We identified 92 SLE-risk variants as allelic enVars in
Jurkat cells, 25% of which were also found in GM12878 (Sup-
plementary Fig. 5a, b and Supplementary Data 11). We then
repeated the experiment in Jurkat cells stimulated with the
inflammatory cytokine TNFa, a key cytokine in SLE develop-
ment#8, to identify stimulation-dependent allelic enVars. This
resulted in the identification of 102 allelic enVars, 28 of which
were specific to the stimulated Jurkat cells (Supplementary
Fig. 5¢, d and Supplementary Data 11). Altogether, our study
identified a total of 145 allelic enVars across 50 independent SLE-
risk loci (Supplementary Fig. 5e). These results highlight allelic
transcriptional regulatory mechanisms that are both cell-type and
inflammatory signaling-dependent.

In summary, through the application of an allelic MPRA
library to the EBV-transformed B cell line GM12878, we
identified global transcriptional enhancer activity at 16% of
SLE-associated genetic variants (enVars), with particular

6 NATURE COMMUNICATIONS | (2021)12:1611 | https://doi.org/10.1038/s41467-021-21854-5 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21854-5

ARTICLE

a
Variant Variant Variant
Adjacent Overlapping Adjacent
TFs TF TFs
Variant
Cc

Variant overlapping TFs

Ets-like (CGGAA) 1
IRF5 (monomer) A
XBP1 (short) 1

ZHX1

ATF-like (TGACTCA) 1
E-box (CAGCTG)

E-box (CACGTG)

ATF-like (TGACGTA)
GMEB1/2 1

o

5 10 15
Motif disruption
(Proportion test p—value (-log10))

b TF binding site distribution
—Overlapping TFs
0.010 — Adjacent TFs
>
o
c
[}
=)
o
o
[T
100 -75 50 25 0 25 50 75 100
Distance to variant
d . .
Variant adjacent TFs
ATF-like (GTGACGT) _
OTX/PITX-like 4 _
merzasico | [N
TCF/LEF dimer - _
IKZF1/2/3 -
ZFX/ZFY | -
Hox-like - -
cressL1/2/41 [
NFkB-like - -
0 5 10 15 20
Motif enrichment

(Proportion test p—value (-log10))

Fig. 5 Identification of variant overlapping and variant adjacent TFs. a Model of variant overlapping and variant adjacent transcription factors (TFs).
Variant overlapping TFs (blue) allelically bind on top of variants, while variant adjacent TFs (orange) allelically bind near variants. b TF binding site location
distribution for variant overlapping (blue) and variant adjacent (orange) TFs, relative to allelic enVars. ¢ TF motif families enriched for participating as
variant overlapping TFs at allelic enVars. Motif disruption p-values were estimated by a two-sided proportions test by comparing the fraction of motif
disruption events at allelic enVars to the fraction observed at non-allelic enVars (see “Methods"). d TF motif families enriched for participating as variant
adjacent TFs at allelic enVars. Motif enrichment p-values were estimated by a two-sided proportions test by comparing the fraction of predicted TF binding
sites in allelic enVars to random expectation (see “Methods"). For both the variant overlapping and variant adjacent analyses, motif families are shown with
Pagi < 0.0001 and three or more allelic events at allelic enVar loci, or five or more predicted binding sites at allelic enVar loci, respectively.

transcriptional regulatory proteins concentrated at these genomic
locations. We further identified 51 SLE-risk variants with allelic
enhancer activity (allelic enVars) that we now nominate as
plausibly causal by acting through genotype-dependent changes
to enhancer activity in GM12878. Upon comparison to allelic
enhancer activity in the Jurkat T cell line, we identified shared
and unique allelic transcriptional regulatory mechanisms at SLE-
risk loci. Using experimental TF ChIP-seq data and TF binding
site motif scanning, we propose a model where the collective
action of the genotype-dependent binding of particular variant
overlapping and variant adjacent TFs leads to genotype-
dependent transcriptional activity at SLE-risk loci.

Discussion
Genome-wide association studies identify genetic loci with sta-
tistical disease associations. However, each risk locus often con-
tains many plausibly causal variants due to linkage
disequilibrium. This study is the first direct genome-wide mea-
surement of enhancer activity at the ~3000 known SLE genetic
risk variants in any context. Unbiased experimental approaches
such as MPRA are vital for resolving causal variants and their
molecular mechanisms of action.

Our results indicate that 16% of the SLE-risk variants exam-
ined in this study have enhancer activity in the EBV-transformed
B cell line GM12878. Furthermore, 51 of these enhancer variants

at 27 loci have allelic enhancer activity. These findings are con-
sistent with the theory that a large proportion of the genetic risk
of SLE is mediated through transcriptional perturbation of critical
B cell genes. Importantly, SLE-risk loci exhibit cell-type and
inflammatory signaling-dependent allelic enhancer activity, with
only 25% of allelic enVars shared between GM12878 and Jurkat
cells. These results highlight both shared and unique allelic
transcriptional regulatory mechanisms for SLE risk, which
underlines the importance of the cell-type and cell-state in which
the MPRA is performed.

In this study, we used the EBV-transformed B cell line
GM12878 as a model for exploring the effects of SLE-risk var-
iants. Previous studies have shown that B cells play a critical role
in SLE development as immune cells that secrete autoantibodies
driving etiology!!. The relationship between EBV and SLE is
widely appreciated. For example, EBV-infected B cells are more
prevalent in SLE patients than in healthy people!314 and patients
with SLE have a higher EBV viral load and infection rate relative
to controls!>16. In addition, the EBV transcriptional regulator
EBNA2 occupies SLE-risk loci in a genotype-dependent man-
ner!0. In vivo, EBV infection can convert primary B cells to
activated lymphoblasts*>>>0. EBV will eventually enter latency in
resting memory B cells and establish lifelong infection>!. In vitro,
EBV infection transforms B cells into immortalized lympho-
blastoid cell lines (LCLs)!7. While we chose the EBV-transformed
B cell line GM12878 as the primary disease model for our study,
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there are limitations to the use of EBV-transformed B cell lines.
For example, GM12878 is an immortalized cell line with differ-
ences in DNA methylation and gene expression levels from
resting and activated B cells’®°3. A recent study also suggests that
EBV infection causes B cells to undergo a germinal center-like
differentiation into cells partially resembling plasmablasts and
early plasma cells®*, which is only a transient stage in vivo.
Altogether, these limitations need to be considered when inter-
preting allelic transcriptional regulation of SLE-risk variants in
EBV-transformed B cell lines.

A critical finding of this study is that SLE-risk variants with
allelic enhancer activity likely alter the binding of many TFs.
Although variants can directly affect the binding of variant
overlapping TFs via disruption of a DNA-binding site, they can
also simultaneously alter the binding of other variant adjacent
TFs, presumably via genomic mechanisms such as altered chro-
matin accessibility, altered histone marks, indirect TF recruitment
through physical interactions, changes in DNA shape, or changes
to protein interaction partner DNA binding. This finding cor-
roborates the previously proposed genetic variation-mediation
model of motif-dependent and motif-independent TF binding>>-
57, In general, a given TF can be variant overlapping at one locus
and variant adjacent at another, as exemplified by ATF7 (Fig. 4c,
g). Nonetheless, particular TF families tend to act as variant
overlapping TFs at SLE loci (such as Ets, E-box, and ATF),
whereas others tend to act as variant adjacent TFs (such as
HMGA, Hox, and NFkB). Notably, many of these variant over-
lapping and variant adjacent TFs are themselves encoded by
genetic risk loci associated with SLE (e.g., IRF544, NF«B%>, and
ETS1°8), suggesting that there are multiple means through which
a particular TF can contribute to disease-based genetic mechan-
isms. For example, IRF5 targets might be mis-regulated in an SLE
patient due to genetic associations in the promoter of IRF5 that
result in altered IRF5 protein levels*4, or by genetic variants
located within or adjacent to IRF5 binding sites at other genomic
loci. It is currently unknown if these TF attributes are shared with
other human diseases.

This study reveals possible causal genetic mechanisms invol-
ving altered binding of particular TFs at two important SLE-risk
loci. C4A is a component of the inflammatory complement
pathway that is critical for the appropriate clearance of apoptotic
cells®®. People without C4A due to rare, protein-changing
mutations are at a greatly increased risk for autoimmune dis-
eases, including type I diabetes and SLE®C. Further, the risk of
developing SLE is 2.62 times higher in subjects with low total
C4A>. Consistent with this observation, the SLE-risk allele of
rs3101018 at this genetic locus identified in our MPRA is asso-
ciated with lower C4A expression (Fig. 4a). Moreover, this variant
is an eQTL for C4A in EBV-transformed B cell lines and whole
blood cells, with the risk allele displaying lower C4A expression®!
(Fig. 4b and Supplementary Data 7). rs3101018 is located in the
Human Leukocyte Antigen (HLA) region of the genome. While
many genetic variants at this locus alter amino acid usage in
major histocompatibility complex molecules and affect antigen
presentation, non-coding genetic variants across the HLA region
have also been demonstrated to affect gene expression indepen-
dently of HLA-type®2-64, In addition, the SLE-risk locus encoding
SYNGRI was recently identified in a high-density genotyping
study of subjects with Asian ancestry#? and also increases disease
risk for schizophrenia®, primary biliary cirrhosis®, and rheu-
matoid arthritis®’. SYNGRI is an integral membrane protein that
is most robustly expressed in neurons of the central nervous
system; however, there is measurable transcription and transla-
tion of SYNGRI in other tissues, including developing B cells®8.
eQTL data from EBV-transformed B cell lines and whole blood
cells®! (Fig. 4f and Supplementary Data 7) further support our

MPRA-based findings of SLE-risk genotype-dependent enhancer
activity and gene expression at this locus. Altogether, the results
of our MPRA study provide mechanistic insight into these var-
iants through the identification of allelic enVars that facilitate
SLE-risk genotype-dependent gene expression.

GWAS provides important discernment of the genetic origins
of disease. In conjunction with other genome-scale assays such as
ATAC-seq, ChIP-seq, and HiChIP-seq, MPRA reveals likely
causal variants and genes, and enables the assembly of causal
mechanisms affecting gene expression. In this study, we used
MPRA to uncover specific genetic variants within the risk hap-
lotypes of a complex disease in specific cell types. Our integrative
analyses reveal specific molecular mechanisms underlying
genotype-dependent transcriptional regulation and SLE disease
risk. We conclude that the MPRA is a robust tool for the
nomination of causal genetic risk variants for any phenotype or
disease with risk loci that act through genotype-dependent gene
regulatory mechanisms, with this study providing a blueprint for
dissecting the genetic etiology of many complex human diseases.

Methods

Variant selection and DNA sequence generation. All SLE-associated genetic risk
loci reaching genome-wide significance published through March 2018 were
included in this study31-38:44.58.69-78 ' A total of 91 genetic risk loci were used for
linkage disequilibrium (LD) expansion (r2 > 0.8) based on 1000 Genomes Data’? in
the ancestry(ies) of the initial genetic association using PLINK(v1.90b)%" (Sup-
plementary Data 1). All expanded variants were updated to the dbSNP 151 table8!
from the UCSC table browser®? based on either variant name or genomic location.
Unmappable variants were discarded. We also included 20 genetic variants from
the Tewhey et al.! study as positive and negative controls.

For single nucleotide polymorphisms, we pulled 170 base pairs (bps) of hg19-
flanking DNA sequences for every allele, with the variant located in the center (84
bps upstream and 85 bps downstream of the variant). For the other types of
variants (indels), we designed the flanking sequences to ensure that the longest
allele has 170 bps. Adapters (15 bps) were added to each sequence at either end (5’
ACTGGCCGCTTGACG - [170 bp oligo] - CACTGCGGCTCCTGC-3') to make a
200 bp DNA sequence (Supplementary Data 4). For all resulting sequences, we
created a forward and reverse complement sequence to compensate for possible
DNA synthesis errors. A total of 12,478 oligos (3093 variants, 6239 alleles) were
obtained from Twist Bioscience.

Library assembly. For assembly of the MPRA library, we followed the procedure
described by Tewhey et al.!® with minor modifications. In brief, we first created the
empty vector pGL4.23AxbaAluc from pGL4.23[luc2/minP] using primer
Q5_deletion_rev and Q5_deletion_fwd following the manufacturer’s instruction of
the Q5 Site-Directed Mutagenesis Kit. Then, 20 bps barcodes were added to the
synthesized oligos through 24X PCR with 50 pL system, each containing 1.86 ng
oligo, 25 pL NEBNext® Ultra™ II Q5® Master Mix, 1 uM MPRA_v3_F, and
MPRA_v3_201_R. PCR was performed under the following conditions: 98 °C for 2
min, 12 cycles of (98 °C for 10s, 60 °C for 15, 72 °C for 455s), 72 °C for 5 min.
Amplified product was purified and cloned into Sfil digested pGL4.23AxbaAluc by
Gibson assembly at 50 °C for 1 h. The assembled backbone library was purified and
then transformed into Escherichia coli (E. coli) through electroporation (2 kV, 200
ohm, 25 uF). Electroporated E. coli was expanded in 200 mL of LB Broth buffer
supplemented with 100 pg/mL of carbenicillin at 37 °C for 12 to 16 h. Plasmid was
then extracted using the QIAGEN Plasmid Maxi Kit.

We next created the pGL4.23[eGFP/miniP] plasmid. An eGFP fragment was
amplified from MS2-P65-HSF1_GFP (Addgene #61423) through PCR with a 50 ul
system containing 1 ng plasmid, 25 pL NEBNext® Ultra™ II Q5® Master Mix, 0.5
uM GFP_seq_MS2-P65-HSF1_GFP_FWD, and GFP_seq_MS2-P65-
HSF1_GFP_REV. PCR was performed under the following conditions: 98 °C for 2
min, 20 cycles of (98 °C for 10, 60 °C for 155, 72 °C for 30's), 72 °C for 5 min. The
amplified fragment was purified and then inserted into Xbal and Ncol digested
pGL4.23[luc2/minP] through Gibson assembly at 50 °C for 1h. The assembled
plasmid was purified and then transformed into E. coli through chemical
transformation. Transformed E. coli was expanded in 100 mL of LB Broth buffer
supplemented with 100 ug/mL of carbenicillin at 37 °C for 12-16 h. Plasmid was
then extracted using the QIAGEN Plasmid Maxi Kit.

A miniP 4 eGFP fragment was amplified from pGL4.23[eGFP/miniP] through
8X PCR with 50 pL system, each containing 1 ng plasmid, 25 pL NEBNext® Ultra™
II Q5° Master Mix, 0.5 uM 200-MPRA_v3_GFP_Fusion_v2_F, and 201-
MPRA_v3_GFP_Fusion_v2_R. PCR was performed under the following
conditions: 98 °C for 2 min, 20 cycles of (98 °C for 10's, 60 °C for 15, 72 °C for 45
s), 72 °C for 5 min. The amplified product was purified and then inserted into AsiSI
digested backbone library through Gibson assembly at 50 °C for 1.5 h to create the
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transfection library. The resulting library was re-digested by RecBCD and AsiSI,
purified, and then transformed into E. coli through electroporation (2 kV, 200 ohm,
25 puF). Transformed E. coli was cultured in 5L of LB Broth buffer supplemented
with 100 pg/mL of carbenicillin at 37 °C for 12-16 h. The plasmid was then
extracted using the QIAGEN Endo-free Plasmid Giga Kit.

Sequencing library for oligo and barcode association. The oligo and barcode
regions were amplified from the backbone library through 4X PCR with a 100 uL
system containing 200 ng plasmid, 50 pL NEBNext® Ultra™ II Q5® Master Mix, 0.5
uM TruSeq_Universal_Adapter_P5, and MPRA_v3_TruSeq_Amp2Sa_F_P7. PCR
was performed under the following conditions: 95 °C for 20s, 6 cycles of (95 °C for
20, 62°C for 155, 72 °C for 30s), 72 °C for 2 min. The product was then purified,
and indices were added through a 100 pl system containing all purified product, 50
ul NEBNext® Ultra™ II Q5® Master Mix, 0.5 uM TruSeq_Universal_Adapter_P5,
and index primer. PCR was performed as above, except for only five cycles.
Samples were purified, molar pooled, and sequenced using 2 x 125 bp on Illumina
NextSeq 500.

Transfection. The GM12878 cell line was grown in RPMI medium supplemented
with 10% FBS, 100 units/mL of penicillin, and 100 pg/mL of streptomycin. Cells
were seeded at a density of 5 x 10° cells/mL the day before transfection. For tri-
plicate transfections, we collected a total of 5x 107 cells per replicate. Cells were
then suspended with 50 ug transfection library plasmid in 400 puL Buffer R. Elec-
troporation was performed with the Neon transfection system in 100 pl tips with 3
pulses of 1200 V, 20 ms each. After transfection, cells were recovered in 50 mL pre-
warmed RPMI medium supplemented only with 10% FBS for 24 h. Cells were then
collected for preparation of the sequencing library for barcode counting.

The Jurkat cell line was grown in RPMI medium supplemented with 10% FBS,
100 units/mL of penicillin, and 100 pg/mL of streptomycin. Cells were seeded at a
density of 5x 10° cells/mL the day before transfection. For each experimental
group, we collected a total of 5 x 107 cells per replicate for 5 replicates. Cells were
then resuspended with 50 pg transfection library plasmid in 400 pL Buffer R.
Electroporation was performed with the Neon transfection system in 100 pl tips
with 3 pulses of 1350 V, 10 ms each. After transfection, cells were recovered in 50
mL pre-warmed RPMI medium supplemented only with 10% FBS for 24 h. After
recovery, cells were supplemented with or without 100 ng/ml TNFa for 24 h. Cells
were then collected for preparation of the sequencing library for barcode counting.

Sequencing library for barcode counting. For samples from GM12878 cells, total
RNA of transfected cells was extracted by the RNeasy Midi Kit following the
manufacturer’s instruction. Extracted RNA was subjected to DNase treatment in a
375 pL system with 2.5 uL Turbo DNase and 37.5 L Turbo DNase Buffer at 37 °C
for 1 h. 3.75 uL 10% SDS and 37.5 uL 0.5 M EDTA were added to stop DNase with
5min of incubation at 75 °C. The whole volume was used for eGFP probe hybri-
dization in an 1800 pL system, with 450 ul 20X SSC buffer, 900 uL Formamide and
1 uL of each 100 uM Biotin-labeled GFP probe One to Three. The probe hybri-
dization was performed through incubation at 65 °C for 2.5 h. 200 pL Dynabeads™
MyOne™ Streptavidin C1 was prepared according to the manufacturer’s instruc-
tion. The beads were suspended in 250 uL 20X SSC Buffer and incubated with the
above probe hybridization reaction at room temperature for 15 min. Beads were
then collected on a magnet and washed with 1X SSC Buffer once, and 0.1X SSC
Buffer twice. eGFP mRNA was eluted first through adding 12.5 uL ddH,O, heating
at 70 °C for 2 min and collecting on a magnet, then adding another 12.5 uL ddH,O0,
heating at 80 °C for 2 min and collecting on a magnet. All collected elution was
performed with another DNase treatment in a 30 uL system containing 0.5 pL
Turbo DNase and 3 puL Turbo DNase Buffer at 37 °C for 1 h. 0.5 uL 10% SDS was
added to halt DNase reaction. Eluted mRNA was purified through RNA Clean
SPRI Beads. mRNA was reverse transcribed to cDNA using SuperScript™ IV First-
Strand Synthesis System with gene specific primer MPRA_v3_Amp2Sc_R, fol-
lowing the manufacturer’s instruction. cDNA and plasmid control were then used
for building sequencing libraries following the Tag-seq Library Construction sec-
tion in the paper of Tewhey et al.!%. In brief, 1 uL of cDNA and plasmid control
samples were used to estimate the relative concentration of eGFP in the 10 puL
system containing 5 uL NEBNext® Ultra™ IT Q5® Master Mix, 0.6 pL SYBR green I
diluted 1:1000 (Life Technologies, S7563), and 0.5 uM TruSeq_Universal _A-
dapter_P5 and MPRA_V3_Illumina_GFP_F. PCR was performed under the fol-
lowing conditions: 95 °C for 20's, 40 cycles of (95 °C for 20's, 65 °C for 20, 72 °C
for 30's), 72 °C for 2 min. According to the cycle threshold, all cDNA and plasmid
control samples were diluted to match the sample with the lowest concentration. A
total of two PCRs were needed for building the sequencing library. The first PCR
was performed with 10 pL of normalized samples in the 50 puL system containing
25 pL NEBNext® Ultra™ IT Q5® Master Mix, 0.5 pM TruSeq_Universal_A-
dapter_P5, and MPRA_V3_Illumina_GFP_F. PCR was performed under the fol-
lowing conditions: 95 °C for 20 s, corresponding cycles of (95 °C for 20's, 65 °C for
20, 72 °C for 30's), 72 °C for 2 min. The product was then purified, and indices
were added through a 100 pl system containing all purified product, 50 ul NEB-
Next® Ultra™ I Q5® Master Mix, 0.5 pM TruSeq_Universal_Adapter_P5, and
index primer. PCR was performed as above, except for only 6 cycles. Samples were
purified, molar pooled, and sequenced using 1 x 75 bp on Illumina NextSeq 500.

For samples from Jurkat cells, total DNA and RNA of transfected cells were
extracted by the Qiagen ALLPrep DNA/RNA Mini Kit following the
manufacturer’s instruction3. Extracted RNA was processed the same as above to
obtain cDNA. ¢cDNA, extracted DNA, and plasmid control were then used for
building sequencing libraries with the same protocol described above. Samples
were purified, molar pooled, and sequenced using 1 x 100 bp on Illumina
NovaSeq 6000.

All primers used in this study are provided in Supplementary Table 1.

Oligo and barcode association. Paired-end, 125 bp reads were first quality filtered
using Trimmomatic (v0.38)%3 (flags: PE -phred33, LEADING:25, TRAILING:25,
MINLEN:80). Read 1 was then separated into the 20 bp barcode region and the
oligo-matching region. The trimmed oligo-matching regions of Read 1 and Read 2
were mapped back to the synthesized oligo sequences using Bowtie2 (v2.3.4.1)84
(flags: -X 250, -very-sensitive, -p 16). Barcodes were then associated with the oligo
sequences using the read ID. Only uniquely mapped barcodes were used for
downstream analysis.

Barcode counting. Single-end 75/100 bp reads were first quality filtered using
Trimmomatic (v0.38)83 (flags: PE -phred33, LEADING:3, TRAILING:3, MIN-
LEN:70). Each read was then separated into the 20 bp barcode region and the
constant region. The trimmed constant regions of the reads were mapped back to
the constant region within the eGFP 3’ UTR using Bowtie2 (v2.3.4.1)%4 (flags:
-very-sensitive, -p 16). Only reads with Levenshtein distance of 4 or less within the
constant region and perfect matches to the two bases directly adjacent to the
barcode were kept. Barcodes were then associated with the retained reads using the
read ID. Only barcodes that met our quality threshold requirements described
above in the Methods section “Oligo and barcode association” were used for
downstream analysis.

Enhancer variant (EnVar) identification. We followed the procedures described
in the “Identification of Regulatory Oligos” section of Tewhey et al.!” with minor
modifications. In brief, oligos (alleles) with 30 or more unique barcodes from the
plasmid control were included for analysis. All barcodes were summarized at the
oligo level. Barcode count totals for each oligo, including all SLE variants and the
20 control variants, were passed into DESeq2 (v1.28.1)8° in R (v3.5.3) to estimate
the fold change and significance between plasmid controls (Supplementary Note 1
and Supplementary Fig. 5f, g) and the experimental replicates. A
Benjamini-Hochberg FDR adjusted p-value of <0.05 was required for significance.
Only significant alleles with greater than or equal to a 1.5x fold change were
identified as enhancer alleles (enAlleles). A variant was identified as an enhancer
variant (enVar) if any allele of this variant was an enAllele. Results for the 20
control variants were compared to data from Tewhey et al.!? to estimate accuracy,
sensitivity, and specificity.

Allelic enVar identification. Only enVars were considered for allelic analysis. The
barcode counts from every allele of each enVar were used for calculating p-values
by comparing the log2 ratios of the non-reference allele vs the reference allele,
normalized by plasmid controls, using Student’s t-test!®3°. p-values were adjusted
with the Benjamini-Hochberg FDR-based procedure. A corrected p-value of <0.05
was required for significance. Only significant alleles with 25%-fold changes or
greater were identified as allelic enVars (Supplementary Note 2 and Supplementary
Fig. 6). We have created an R package (mpraprofiler) for performing this analysis,
which is available on the Weirauch lab GitHub page (https://github.com/
WeirauchLab/mpraprofiler).

Gene annotation. We annotated each SLE genetic variant with its nearest gene
using the NCBI RefSeq table8® downloaded from the UCSC table browser®2.
enVars were annotated using a combination of DNA looping interactions
(GM12878 Capture Hi-C data’”-88) and eQTL data obtained from the eQTL
Catalog, a resource that contains quality-controlled, uniformly re-computed eQTLs
from 19 eQTL publications®!:89-108 EBV-transformed B cell lines (GTEx Analysis
V7 (dbGaP Accession phs000424.v7.p2))*° and other individual studies!?°-112, For
all variants, the target genes were annotated (Supplementary Data 2) using the
union of promoter interacting genes and eQTL genes from B cells with and without
EBV transformation, when available. Otherwise, target genes were annotated as the
nearest gene. Allelic enVar gene targets were classified into four tiers: a Tier (1)
variant is both an eQTL and also loops to the promoter of the same gene; a Tier (2)
variant has an eQTL for at least one gene; a Tier (3) variant only loops to the
promoter of at least one gene; a Tier (4) variant is neither an eQTL nor loops to the
promoter of any gene (Supplementary Data 12).

TF binding site motif enrichment analysis. To identify specific TFs whose
binding might contribute to the enhancer activity observed in our MPRA experi-
ments, we performed HOMER (v4.9)33 TF binding site motif enrichment analysis.
Specifically, we used HOMER to calculate the enrichment of each motif in the
sequence of enAlleles compared to the sequences of non-enAlleles. HOMER was
modified to use the large library of human position weight matrix (PWM) binding
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site models contained in build 2.0 of the Cis-BP database>* and a log base 2
likelihood scoring system.

GO enrichment analysis. Enrichr!!3114 was used for GO enrichment analysis. In
short, the target genes of enVars were passed to Enrichr for analysis. Results from
the GO biological process (2018) category were used (Supplementary Data 8,
Supplementary Fig. 3).

Identification and processing of publicly available LCL ChilP-seq data. 1058
ChIP-seq datasets were obtained from the Gene Expression Omnibus (GEO)!!®
using custom scripts that searched for ChIP-seq experiments performed in EBV-
transformed lymphoblastoid cell lines (LCLs). The annotations for every dataset
(assay type, cell line, assayed molecule) were manually checked by two authors
(MTW and LCK) to ensure accuracy. The Sequence Read Archive (SRA) files
obtained from GEO were analyzed using an automated pipeline. Briefly, the
pipeline first runs QC on the FastQ files containing the sequencing reads using
FastQC (v0.11.2). If FastQC detects adapter sequences, the pipeline runs the FastQ
files through Trim Galore (v0.4.2)!1, a wrapper script that runs cutadapt (v1.9.1)
117 to remove the detected adapter sequence from the reads. The quality-controlled
reads are then aligned to the reference human genome (hg19/GRCh37) using
bowtie2 (v2.3.4.1)%4. The aligned reads (in .BAM format) are then sorted using
samtools (v1.8.0)!18 and duplicate reads are removed using picard (v1.89)!1°.
Finally, peaks are called using MACS2 (v2.1.2) (flags: callpeak -g hs -q 0.01 -f
BAM)*4. ENCODE blacklist regions!2? were removed from the peak sets using the
hg19-blacklist.bed.gz file available at https://github.com/Boyle-Lab/Blacklist/tree/
master/lists/Blacklist_v1. ChIP-seq datasets GSM1666207, GSM2748907, and
GSM1599157 were removed due to the low number of cells used in the
experiments.

Functional genomics dataset enrichment analysis with RELI. We used the RELI
(v0.9)10 algorithm to identify genomic features (TF binding events, histone marks,
etc.) that coincide with enVars. As input, RELI takes the genomic coordinates of
enVars. RELI then systematically intersects these coordinates with one of the
GM12878 ChIP-seq datasets, and the number of input regions overlapping the
peaks of this dataset (by at least one base) is counted. Next, a p-value describing the
significance of this overlap is estimated using a simulation-based procedure. To this
end, a ‘negative set’ is created for comparison to the input set, which in this study
contains the set of non-enVars (i.e., variants with no allele having an adjusted p-
value of <0.05 and more than 10%-fold change in the DESeq2 result). A dis-
tribution of expected overlap values is then created from 2000 iterations of ran-
domly sampling from the negative set, each time choosing a set of negative
examples that match the input set in terms of the total number of genomic loci.
The distribution of the expected overlap values from the randomized data
resembles a normal distribution and can thus be used to generate a Z-score and
corresponding p-value estimating the significance of the observed number of input
regions that overlap each ChIP-seq dataset.

We performed similar RELI analysis for allelic enVars. As input, we used the
allelic enVar sites. For the ‘negative set’, we used the set of common SNPs taken
from the dbSNP142 database downloaded from the UCSC table browser®2.

Identification of allelic ChIP-seq reads using MARIO. To identify possible
mechanisms underlying our allelic enVars, we applied our MARIO(v3.93)10
method to the LCL ChIP-seq dataset collection described above. In brief, MARIO
identifies common genetic variants that are (1) heterozygous in the assayed cell line
and (2) located within a peak in a given ChIP-seq dataset. It then examines the
sequencing reads that map to each heterozygote in each peak for imbalance
between the two alleles. Results are combined across experimental replicates to
produce a robust Allelic Reproducibility Score (ARS). Results with MARIO ARS
value >0.4 that also pass the following three post-processing filters were considered
allelic. (1) The variant must be significantly allelic for a given protein/histone mark
(ARS >0.4) in at least 50% of the datasets in which that variant was heterozygous;
(2) The same allele must be significantly preferred (ARS > 0.4) in at least 75% of the
datasets where that variant shows significant allelic behavior; and (3) The replicates
of a given experiment must all prefer the same strong allele. These post-processing
filters were applied to remove results with inconsistent allelic imbalance, extending
the procedures of our previous study!®.

Identification of variant overlapping and variant adjacent TFs. Variant over-
lapping TFs were identified using an algorithm that compares predicted TF binding
motif scores between the different alleles of each allelic enVar. First, we padded
each allele of a given allelic enVar with 25 bps of upstream and downstream DNA
sequence (a sufficient length to account for any known human TF binding sites!2!).
The algorithm consists of two major components: (1) individually scoring the two
alleles of a given variant with a given TF model; and (2) quantifying the difference
in the binding intensity between these two alleles. DNA sequences are scored using
the large collection of human TF position weight matrix (PWM) models contained
in the Cis-BP database®* and the log-likelihood PWM scoring system!22. Since log-
likelihood score distributions vary substantially (depending on the information

content of a given motif), we employ a simple scaled scoring system that maps a
given log-likelihood score to the percentage of the maximum achievable log-
likelihood score of the given motif—we refer to this value as the “relative PWM
score”. We identify binding site altering events (i.e., “creating” or “breaking” a
predicted binding site for a given TF motif) as cases where one allele has a relative
PWM score of 70% or higher, and the other allele has a score of <40%. For a given
variant, any TF with allelic ChIP-seq sequencing reads (see above) and a binding
site altering event for any of its motifs was deemed a variant overlapping TF. Any
TF with allelic ChIP-seq sequencing reads and a lack of a binding site altering event
for any of its motifs was deemed a variant adjacent TF.

We next sought to identify particular TFs that tend to be variant overlapping
TFs at SLE allelic enVars. To this end, we calculated the fraction of times each TF
motif has a binding site altering event (as defined above) at SLE allelic enVars. As
background, we calculated the fraction of times each TF motif has a binding site
altering event at non-allelic enVars. The significance of the difference between
these two fractions was then calculated using a proportions test. Results are
provided in Supplementary Data 15.

We used a similar procedure to identify particular TFs that tend to be variant
adjacent TFs at SLE allelic enVars. We performed HOMER(v4.9) motif enrichment
analysis using the full 170 bp allelic enVar DNA sequences as input. The
dinucleotide scrambled version of input sequences were used as background. The
fractions of motif “hits” obtained in the foreground vs. background set were then
compared, and significance was again calculated using a proportions test. Results
are provided in Supplementary Data 15.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All sequencing data that support the findings of this study are available in the Gene
Expression Omnibus (GEO) database under accession number GSE143792. Full datasets
and processed results are provided in the Supplementary Data. All other relevant data are
available from the corresponding author upon request.

Code availability

Source code, with full documentation and examples, are freely available under the GNU
General Public License on the WeirauchLab GitHub page: https://github.com/
WeirauchLab/mpraprofiler. Additional modified scripts can be accessed upon request.
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