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Despite universal salt iodization programmes implemented over the last decades,

iodine deficiency remains a major public health problem in many countries worldwide.

Endeavors are still required to ensure sufficient iodine intake in the populations at risk

in order to eliminate deficiency. Iodine is crucial for the synthesis of thyroid hormones

triiodothyronine (T3) and thyroxine (T4), as well as for the thyroid health. When iodine

levels are insufficient, T4 attests toward the lower limit of the physiological range,

causing subtle fluctuations in the T3:T4 ratio. Monitoring these variations may be

an accurate way to assess patient’s iodine status. Recently, a number of published

clinical studies documented a growing interest toward the use of myo-inositol in thyroid

diseases. Myo-inositol, a carbocyclic polyol, regulates the generation of hydrogen

peroxide (H2O2) in thyrocytes, crucial for iodine organification and thyroid hormone

biosynthesis. Thus, combined supplementation of iodine and myo-inositol may promote

higher iodine availability in thyrocytes improving thyroid functionality. This review presents

novel strategies for the diagnosis and the management of iodine deficiency, focusing on

the potential role of myo-inositol combined with iodine.
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INTRODUCTION

Iodine deficiency (ID) is a major health problem in many countries worldwide. Even though the
salt iodization programme has been operational for decades, 1.9 billion people are estimated at risk
for ID (1). In case of severe ID, endemic goiter occurs, leading to cretinism as its most serious
manifestation. Less severe forms have a broader spectrum of clinical manifestations. A higher
incidence of ID is found among preschool children and gestating women in low-income countries.
The condition exposes to several risks such as stillbirth, miscarriage, poor growth, and cognitive
impairment (2). Several studies reported that even mild-to-moderate ID during pregnancy may
have long-term adverse effects on child cognition (3). Goiter is the earliest sign of ID disorders
(4) and incidence rate exceeds higher than 20% amongst children and women (5). Since iodine is
needed to produce thyroid hormones, diminished levels can lead to hypothyroidism at any stage of
life (6). Hence, the primary need is to drive the global elimination of ID (7).

Until the 1990s, the main indicator for the assessment of ID was the incidence of
total goiter prevalence (TGP). Nowadays, urinary iodine (UI) concentration is used as a
reliable indicator of iodine nutrition in the population. Interventions are planned accordingly.
Surveillance is primarily done in preschool- and school-aged children to classify the national
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iodine status and the UI concentration distribution (8).
According to the International Council for Control of Iodine
Deficiency Disorders median UI concentrations below 100 µg/L
for non-pregnant women and children define iodine deficient
populations, while normal values for pregnant women should be
between 150 and 249 µg/L. Regional and worldwide estimates of
iodine status were collected between 1993 and 2003 from 126
countries (9). Only 75 of these have nationally representative
surveys reporting data on UI that cover 45.7% of the school-
age children population. These surveys have estimated in 2003 a
global TGP incidence of 15.8%. Universal salt iodization is the
most widely used strategy to manage ID, and globally, 68% of
households worldwide now have access to iodized salt (10). The
iodization program was previously restricted to the areas with
severe endemic ID or with no access to iodized salt (2, 11).
However, the presence of severe risks correlated with ID has
extended the urgency of iodine supplementation to children and
pregnant women worldwide (12). The survey in 2003 estimated
that the iodine intake in school-aged children worldwide is
insufficient (UI < 100 µg/L), covering ∼285 million children
(36.5%) (9) (Table 1). Iodine intake is insufficient (UI < 100
µg/L) in 35.2% of the general population. Among the World
Health Organization (WHO) regions, the European general
population has the highest proportion of insufficient iodine
intake (56.9%) (9) (Table 1), while only 66% of school-aged
children having adequate intakes in 2015 (13). Salt iodization
programme has now started in many countries worldwide, and
71% of the population is covered by iodized salt (10). As
recommended by WHO a low salt intake is advisable, and it
should be iodized or “fortified” with iodine. According to the
WHO guidelines, 150 µg per day of iodine are recommended
for adults and 90–120 µg for children. During pregnancy a
higher iodine intake is recommended (250 µg per day) because
of additional thyroid hormones required to cover both maternal
and fetal needs (2). In fact, fetal thyroid begins to work around
the 12th week of gestation and, in early pregnancy, the fetus relies
exclusively on maternal thyroid hormones supplied through the
placenta. Therefore, an adequate nutritional intake of iodine
guarantees maternal euthyroidism and fetus health. The Italian
guidelines LARN (Reference Intake of nutrients and energy for
Italian Population) (14), suggest the supplementation with 220
µg of iodine per day during pregnancy and with 290 µg during
breastfeeding. Nevertheless, a survey study reported inadequate
iodine intakes in two thirds of pregnant women in Europe (15).
In Italy, the National Observatory for Monitoring the Iodine
prophylaxis (OSNAMI) carries out routine surveillance activities.
An interesting topic recently highlighted by a meta-analysis is
the link between different levels of iodine intake and thyroid
disease. Indeed, a higher incidence of thyroid nodules was
observed in areas with medium and low iodine concentrations,
compared to those with higher concentrations (16). This note
was largely addressed also in the Medical Guidelines of the
American Association of Clinical Endocrinologists (AACE), the
American College of Endocrinology (ACE), and the Associazione
Medici Endocrinologi (AME), where iodine supplementation
is recommended in iodine-deficient geographic regions for the
treatment of nodules (6). The importance of adequate nutritional

TABLE 1 | Percentage of population (school-age children, 6–12 years and general

population, all age groups) with insufficient iodine intake (UI < 100 µg/L) by WHO

region: surveys carried out in 2003*.

WHO region School-age children

insufficient iodine intake

(%)

General population

insufficient iodine intake

(%)

Africa 42.3 42.6

Americas 10.1 9.8

South-East

Asia

39.9 39.8

Europe 59.9 56.9

Eastern

Mediterranean

55.4 54.1

Western

Pacific

26.2 24.0

Total 36.5 35.2

*Modified from WHO (9).

intakes of iodine lies in the fact that it is an essential constituent of
the thyroid hormones, triiodothyronine (T3) and thyroxine (T4).
Such hormones play a critical role in cell differentiation, in the
development of the central nervous system at the early stages
of life and contribute to maintain the metabolic homeostasis
during adult life. Recently, a number of published clinical trials
documented a growing interest toward the use of myo-inositol
for restoring proper functioning of the thyroid. Since the use of
myo-inositol is gaining a positive opinion in the endocrinological
field, exploring its potential role in the ID management is
very appealing.

THYROID HORMONES

Thyroid hormones T3 and T4 are produced and released through
four important processes: uptake and oxidation of iodide,
iodination of tyrosine, synthesis, resorption, and proteolysis of
thyroglobulin (Tg). These processes depend on the availability of
thyroid stimulating hormone (TSH) and iodine. Physiologically,
a daily amount of 75 µg of iodine is required to produce 85 µg
of T4. The thyroid actively incorporates the iodide through the
basolateral plasmamembrane of thyrocytes by the sodium/iodide
symporter (NIS). Afterward the intracellular iodide is deposited
in the lumen of thyroid follicles, storage site of Tg—a 660
kDa glycoprotein whose tyrosyl residues serve as substrate
for iodination and hormone formation. The enzyme thyroid
Peroxidase (TPO), sitting at the apical plasma membrane, uses
hydrogen peroxide (H2O2) to oxidize and incorporate iodide
in the tyrosyl groups of Tg. Dual oxidase (DUOX), a NADPH
enzyme, endogenously generates H2O2 necessary for the process
of the apex of the thyrocyte. Initial iodination of tyrosyl residues
of Tg produces monoiodotyrosine (MIT) and diiodotyrosine
(DIT). Homocoupling of DIT produces T4, while the coupling
of DIT and MIT produces T3; both reactions are TPO-mediated.
When thyroid hormones are required, Tg is transferred to the
apical pole of thyrocytes, where it is then digested by proteases,
namely endopeptidases cathepsins B, L, D, and exopeptidases.
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Following Tg digestion, hormones T3 and T4 are released.
Approximately 70% of iodine from Tg (non-hormonal iodine)
is recaptured intra-thyroidally by DEHAL1, an iodotyrosine
deiodinase, and recycled within the gland. TSH is the stimulator
that affects virtually every stage of thyroid hormone synthesis and
release. The thyroid gland produces mainly T4, which reaches
the organs where it is converted into T3, the most active form
of thyroid hormones (17). The conversion of T4 into T3 is
mediated by 5′-iodothyronine deiodinase either type I or II.
Physiologically, a small amount of T4 is converted to reverse
T3 by a 5-deiodinase (type III deiodinase): 80% of circulating
T3 derives from deiodinase type I in liver and kidneys, while
20% is secreted directly from the thyroid gland (18, 19). In
some diseases of the thyroid gland, the ratio of serum free T3

(FT3) to free T4 (FT4) can be altered. In case of inadequate
intake of iodine, the T3:T4 ratio increases, presumably because
the synthesis of T4 required 25% more iodine compared to T3

(20). Altered T3:T4 ratio was found in rats with iodine shortage
(21) and in humans undergoing treatment with levothyroxine
(L-T4). Arntzenius et al. demonstrated that the autoregulatory
response to a lower iodine intake leads to decreased levels of
circulating T4 (22), while serum T3 remains stable, or might even
increase (23, 24). Altered T3:T4 ratios during endocrinological
examination might be exploited as a novel tool for identifying
iodine insufficiency.

IODINE

Iodine, a trace element found in soil and seawater, is relatively
abundant in seafood, fruit and vegetables. It is ingested in several
chemical forms that are reduced to iodide (25), which is absorbed
in the stomach and in the duodenum. About 90% is excreted in
the urine within 24–48 h (3, 7, 25, 26). Iodine is also released
into the mammary gland in the breast milk to provide for the
newborn (11, 27). The only physiological role known for iodine
is the synthesis of thyroid hormones, comprising 58% of T3’s
weight, and 65% of T4’s (2). Once T4 and T3 are degraded
peripherally, iodide re-enters the plasma iodine pool and can
be taken up again by the thyroid gland or excreted by the
kidneys (10). When the thyroid works normally, plasma iodine
has a half-life of about 10 h, shorter when the thyroid becomes
overactive (25). Dietary iodine naturally occurs in the ion form,
as potassium or sodium iodide, which is the preeminent substrate
of the specific metabolism of thyrocytes, controlling thyroid
functions. Either in vitro and in vivo iodide main roles are: (1)
decreasing the response of TSH; (2) inhibiting its own oxidation
(theWolff-Chaikoff effect); (3) reducing its trapping after a delay;
(4) at high levels, inhibiting thyroid hormone secretion (28).
The Wolff–Chaikoff effect is an autoregulatory phenomenon
that prevents the thyroid gland from synthesizing and releasing
large quantities of thyroid hormones (19, 29) through the
inhibition of organification when inorganic iodide levels in
thyrocytes are too high (30, 31). The mechanism responsible
for such effect is still unknown, but it may be ascribable to the
inhibitory effect of iodide on TPO or other enzymes (19). Indeed,
iodide is able to block the cyclic adenosine monophosphate

cascade and the Ca2+-phosphatidylinositol 4, 5-bisphosphate
(PIP2) cascade in thyrocytes and to induce H2O2 generation
(28). H2O2 is crucial for the TPO-catalyzed thyroid hormone
formation (32). In 1993, Chen at al. demonstrated in vitro that
H2O2 specifically regulates iodide transport and organification
in a dose-dependent manner (33). High H2O2 concentrations
inhibit these functions and can be detrimental to the thyroid,
although protection mechanisms prevents damages to the
thyrocytes under physiological conditions (34). Intrathyroidal
H2O2 generation, first reported about 50 years ago (35), and
iodination are both stimulated by TSH. H2O2 can regulate
iodination either directly, as a substrate of TPO, or indirectly by
regulating the activity of TPOwhen iodide and Tg concentrations
are kept constant.

MYO-INOSITOL

Myo-inositol, a carbocyclic polyol, belongs to the inositol family.
Of nine possible structural isomers, it is the most widely
distributed in nature, being present in fresh fruits, vegetables,
cereals, legumes, and nuts. Myo-inositol is a fundamental
component of structural lipids in cell membranes (36), such as
phosphatidylinositol (PI) and the various phosphatidylinositol
phosphates (PIPs). Myo-inositol is endogenously synthesized
from glucose-6-phosphate and represents, in some tissues,
about 99% of intracellular inositol. Initially incorporated at the
level of cell membranes as phosphatidyl-myo-inositol, it is a
precursor for many inositol-containing compounds involved
in membrane biogenesis, signal transduction, vesicle trafficking
and chromatin remodeling. It exerts important physiological
functions, such as cell and tissue development, lipid synthesis,
cell growth, and metabolism regulation. Myo-inositol is one
of the precursors for the synthesis of PIPs, which are a
source of second messengers like diacylglycerol. The latter
regulates numerous species: members of the protein kinase
C family; phosphatidylinositol-3,4,5-phosphate; inositol-1,4,5-
triphosphate, which modulates intracellular calcium levels. As
precursor also of the second messenger phosphoinositide, myo-
inositol is involved in cell signaling and regulates the activities
of hormones such as TSH, follicle-stimulating hormone (FSH)
and insulin (37–39). It recently proved to be a very efficacious
and safe treatment for subclinical hypothyroid patients with
Autoimmune Thyroiditis (40–46). In 2013, Nordio and Pajalich
demonstrated that treatment with myo-inositol plus selenium for
6 months in patients with subclinical hypothyroidism reduced
significantly TSH concentrations by 31% (4.4 ± 0.9 mIU/mL
vs. 3.1 ± 0.6 mIU/mL), compared to the control group treated
only with selenium. These results were later corroborated by
the same authors in a further clinical trial. Another study
monitored TSH levels in Hashimoto patients with subclinical
hypothyroidism receiving myo-inositol plus selenium for 6
months: significant decrease after only 3 months of treatment
(from 4.38 ± 0.31 mIU/L at baseline to 3.42 ± 0.3 mIU/L)
was observed, and even a greater reduction after 6 months
(4.38 ± 0.31 mIU/L at baseline to 3.11 ± 0.2 mIU/L) was
reported. No significant changes in the TSH levels in the control
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group, treated with only selenium, were observed (45). These
data demonstrated that myo-inositol plus selenium effectively
reduce TSH levels after a short-term supplementation, with
even better results achieved after longer periods of treatment.
Ferrari et al. confirmed that TSH levels significantly decreased
in Hashimoto patients with subclinical hypothyroidism receiving
myo-inositol plus selenium for 6 months. Interestingly, among
these patients 46% of cases reached the normal TSH range (46).
Furthermore, the treatment improved the levels of hormones
and antibodies. In different studies, the action of myo-inositol
was reported to balance the normal production of T3 and T4

hormones in patients with autoimmune thyroiditis (40, 43–45),
as well as to reduce the blood TPO and Tg antibodies (47). A
clinical trial reported a reduction in the antibody titer of 44
and 48%, respectively for anti-TPO and anti-Tg (40). A very

recent study confirmed the immunomodulatory effect of myo-
inositol combined with selenium in patients with autoimmune
thyroiditis. In particular, the treatment maintained the euthyroid
state, reducing the risk of developing either subclinical or over
hypothyroidism (42).

The studies evaluating fT3 and fT4 reported a significant
increase of serum fT4 levels after 6-month treatment with
myo-inositol plus selenium, although remaining in the normal
reference range (43, 45). Both studies reported significantly
higher fT4 in patients treated for 6 months (from 1.05 ± 0.02
ng/dL at baseline to 1.142 ± 0.03 ng/dL, and from 0.93 ±

0.15 ng/dL at baseline to 1.06 ± 0.14 ng/dL, respectively).
Interestingly, myo-inositol helps thyroid-hormone-producing
cells to become more efficient and faster at building T4 (32, 41).
This might be ascribable to a higher availability of iodine, whose

FIGURE 1 | Iodine organification. Iodine organification into thyroid follicular cells. Iodide uptake is mediated by the sodium-iodide symporter, through the gradient

generated by Na+. TPO, using H2O2 produced by DUOX2 system, mediates the oxidation, organification and coupling. The secretion of thyroid hormones is shown

at the basolateral membrane. Myo-inositol regulates H2O2-mediated iodination through the phospholipase C-dependent inositol phosphate Ca2+/diacylglycerol

pathway, resulting in a boost of H2O2 generation. The cAMP cascade, induced by the TSH activity (through the TSH receptor activation), is also shown. I−, Iodine; MI,

Myo-inositol; TSH, thyroid stimulating hormone; T3, triiodothyronine; T4, thyroxine; TPO, thyroid peroxidase; Tg, thyroglobulin; H2O2, hydrogen peroxide; MIT,

monoiodotyrosine; TH, thyroid hormone.
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organification is boosted by myo-inositol action. Indeed, myo-
inositol is involved in one of the first steps of thyroid hormone
production and modulates the H2O2-mediated iodination
through the phospholipase C-dependent inositol phosphate
Ca2+/diacylglycerol pathway, resulting in increased H2O2

generation (Figure 1). Differently, the cAMP cascade, induced
by the TSH activity (through the TSH receptor activation), is
more involved in cell growth and differentiation, and in thyroid
hormones secretion. As myo-inositol plays a crucial role in
the regulation of iodine organification, supplementation may
promote faster recovery from ID. Indeed, H2O2 generated
under the stimulus of myo-inositol is available for iodine
incorporation inside the thyroid (33, 48). Such activity makes
myo-inositol very appealing as a novel molecule to increase
iodine availability.

CONCLUSION

The use of myo-inositol has gained a positive opinion
in the endocrinological field for the restoration of proper
thyroid functioning. To date, endocrinologists and gynecologists
recommend taking myo-inositol for several benefits in different
pathologies, from thyroid diseases to polycystic ovary syndrome
and gestational diabetes. Due to its action in regulating iodine

organification and thyroid hormone biosynthesis, myo-inositol

supplementation along with iodine may improve thyroid
functionality and possibly lead to a faster recovery from ID.
Under normal conditions, the thyroid gland preferentially
synthesizes T4 whereas, in pathologies such as ID, T4 biosynthesis
is closer to the lower cut-off limit of normality. When iodine
intake is insufficient, the T3:T4 ratio increases along with the
decrease of T4 production, which however remains within
the reference range. These subtle fluctuations might describe the
patient’s iodine status, representing a new simple approach to
diagnose ID. Under certain circumstances the supplementation
of myo-inositol, along with iodine can be used to restore the
normal balance of T3:T4. Clinical studies to investigate the
combined effect of myo-inositol and iodine in counteracting
ID are warranted. They might open new scenarios and pose
novel challenges for clinical experts and researchers to prevent
and treat ID.
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