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Abstract: Ellagitannins constitute the largest group of hydrolyzable tannins of plants, and, from this
group, casuarictin (Casu) was identified in some plant species. However, to our knowledge,
no investigation of secretory phospholipase A2 (sPLA2) inhibition by Casu has been performed yet.
Casuarictin was isolated by chromatography n-butanol (n-BuOH) partition of Laguncularia racemosa
leaves. The pharmacological and biological effects of Casu were evaluated on isolated sPLA2 from
the rattlesnake (Crotalus durissus terrificus) and using a plant bacterial strain. The compound was able
to form a protein complex consisting of a stable sPLA2 + Casu complex. Analyses carried out with
matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF) revealed
that the molecular mass of sPLA2 increased from 14,425.62 to 15,362.74 Da. The enzymatic activity of
the sPLA2 + Casu complex was significantly lower than that of native sPLA2. Besides, molecular
interactions of Casu with sPLA2 were able to virtually abolish the native edematogenic effect as
well as myonecrosis induced by the protein when injected 10 min after sPLA2. Therefore, Casu may
be considered a potential anti-inflammatory that can be used to treat edema and myonecrosis
induced by serine-secreting phospholipase A2. In addition, the compound also showed great
antimicrobial potential.

Keywords: casuarictin; Laguncularia racemosa; secretory phospholipase A2; Crotalus durissus terrificus;
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1. Introduction

Phospholipase A2 from snake venom, such as that isolated from Crotalus durissus terrificus
(Cdt), shares structural similarity with mammalian secretory phospholipase A2 (sPLA2) and uses
the same enzymatic and non-enzymatic mechanisms for its pharmacological actions [1,2]. Thus,
the pharmacological activity of snake venom which produces phospholipase A2 can be driven by
the interaction of the "pharmacological site" of this enzyme on the target cell and by the ability to
generate arachidonic acid (AA) through its enzymatic activity [1,3]. The interaction of sPLA2 from
venom with enzyme receptors, or the enzymatic capacity, involves complementarity in terms of charge,
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hydrophobicity, and other amino acid residues with the pharmacological or enzymatic site of sPLA2.
Therefore, compounds capable of inhibiting the enzymatic activity of sPLA2 or interacting with the
pharmacological site of this enzyme can significantly decrease its toxicity [4,5]. Mangroves represent a
complex coastal ecosystem placed between marine and terrestrial ecosystems that is subjected to a tidal
regime. In Brazil, mangroves occur on almost the whole coast and cover approximately 13,762 km2.
Only four plant species are available in Brazilian mangroves: Avicennia schaueriana, Avicennia germinans,
Laguncularia racemosa, and Rhizophora mangle [6].

In several cultures, mangrove plants have been used in folk medicine, and their extracts exhibit
inhibitory activity against human, animal, and plant pathogens. From this ecosystem, secondary
metabolites, such as alkaloids, polyphenols, steroids, and terpenoids, have been characterized, revealing
toxicological, pharmacological, and ecological significance [7,8]. Polyphenolic compounds, such as
glycosylated flavonoids, inhibit the activity of certain essential pharmacological enzymes such as
thrombin and sPLA2 [8]. Other studies showed that mangrove plants and their parts, including
roots, barks, and leaves, produce several chemical compounds, which are used in folk medicine with
diverse applications such as antiparasitic and antimicrobial treatments, treatment of skin disease, pains,
diarrhea, and inflammation [8–12]. Among these compounds, tannins are a large, heterogeneous, and
diverse group of polyphenolic compounds found in various plant species, which provide protection
against biotic and abiotic stressors. Depending on their chemical composition, tannins can be classified
into two main groups: Condensed tannins and hydrolyzable tannins [13]. Mangrove plants exhibit
both groups of tannins, which are found in all parts of the plant. For example, the presence of tannins in
L. racemosa is found mainly in the bark; however, this group of compounds can also be found in leaves
in a lower concentration [7,14,15]. Casuarictin (Casu) is a hydrolyzable ellagitannin with antioxidant
and antiviral activities, and despite this compound constituting a major group in some plants, there
are no descriptions of its presence in L. racemosa.

2. Results

2.1. Isolation, Structural Characterization, and Biological and Pharmacological Trials of Casuarictin, a Tannin
from Laguncularia racemosa Leaves

Polar phases (ethyl acetate (EtOAc) and n-butanol (n-BuOH)) obtained from L. racemosa leaves
were evaluated in the enzymatic activity of sPLA2 from Cdt, and the results are shown in Figure 1.
It was observed that both phases significantly decreased the enzymatic activity of the enzyme, with
the EtOAc phase (sPLA2 + EtOAc) showing greater inhibition capacity than the n-BuOH phase.
Both fractions were inhibited in the same manner during the first 40 min of the enzymatic assay
time course; however, the EtOAc phase clearly showed an irreversible enzymatic diminishing effect
(Figure 1A). Figure 1B shows that sPLA2-treated phytobacteria previously incubated with the EtOAc
phase reversed the native sPLA2 antibacterial activity, indirectly confirming the data of Figure 1A.
Figure 1C,D shows that the EtOAc phase was able to significantly decrease the pharmacological activity
of sPLA2 by decreasing edema and the myotoxic activity, i.e., the in vivo activities. Figure 1E,F shows
the effects of administration of the BuOH partition phase 10 min after the injection of sPLA2, and
this phase inhibited edema but was not able to inhibit myotoxic activity. These results show that the
EtOAc phase revealed a better inhibition effect on enzymatic activity and a better pharmacological
inhibition capacity than BuOH. EtOAc from a methanolic extract of L. racemosa was subjected to the
Sephadex LH-20 column to separate components, yielding four groups. Group L1 revealed a major
component with a retention time of 3.7 min. The 1H NMR spectra showed a singlet at δ 7.18 (2H),
characteristic of a galloyl group, and four other singlets at δ 6.69, δ 6.57, δ 6.45, and δ 6.38, which
were assignable to two hexahydroxydiphenoyl (HHDP) groups. Additionally, the sugar moiety was
assigned by the four doublets at δ 3.22 (J = 3.8 Hz), δ 3.62 (J = 3.8 Hz), δ 3.52 (J = 2.9 Hz), and δ 3.26
(J = 2.9 Hz), a multiplet at δ 3.80 and a double–doublet at δ 4.01 (J = 9.0, 2.0 Hz), indicating the
presence of glucopyranose. The 13C NMR spectra confirmed the presence of a galloyl and two HHDP
groups esterifying the glucose moiety. HMBC correlations confirmed the galloyl unit at C-1 and
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two HHDP groups at C-2,C-3 and C-4,C-6. Therefore, the compound was identified as casuarictin
1-O-galloyl-2,3:4,6-di-O-(4,4′,5,5′,6,6′-hexahydroxydiphenoyl)-glucopyranose by comparison with the
literature data [16]. Figure 2 shows the structure of casuarictin, the tannin isolated from L. racemosa
(Figure 2).
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Figure 1. Laguncularia racemosa extracts and the enzymatic and pharmacological activities of secretory
phospholipase A2 (sPLA2). (A) Activity of the buthanolic (BuOH) and ethyl acetate (EtOAc) phases
on phospholipase A2 enzymatic activity, where saline represents the control group, BuOH represents
sPLA2 treated with the buthanolic partition, and EtOAc represents sPLA2 treated with the ethyl acetate
partition. The results are expressed as a variation of enzymatic velocity Vo, and the error bars indicate
the SEM. * Statistically significant differences (n = 5, p < 0.05) compared to native sPLA2. (B) Effect
of native sPLA2 and the proteins treated with the BuOH and EtOAc partitions against Clavibacter
michiganensis pv. michiganensis (gram-positive bacteria). The error bars indicate the SEM of n = 6. * p <

0.05 compared with the saline control. (C,E) show paw edema induced after the injection of sPLA2
and sPLA2 treated with EtOAc and BuOH, respectively, into the right paws of Swiss mice. Edema is
expressed as volume in µL and measurements were performed after 30, 60, 120, 180, and 240 min. The
error bars indicate the SEM of five experiments. * p < 0.05 compared to native sPLA2. (D,F) show the
myonecrosis assay and the results are expressed as creatine kinase (CK) units of enzymatic activity per
liter (U/L). The error bars indicate the SEM of five experiments. * p < 0.05 compared with native sPLA2.
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Figure 2. Chemical structure of casuarictin and chromatographic profiles of the EtOAc and BuOH
phases obtained from the ethanolic extraction of L. racemosa leaves.

2.2. Biochemical Characterization of Tannin and sPLA2 Interaction

HPLC SEC analysis (size exclusion chromatography) of sPLA2 and Casu showed that the tannin
is able to interact with sPLA2 and form a molecular complex, which appears to be stable (Figure 3A).
The complex remained stable after purification of the molecular complex (sPLA2:Casu) through
fractionation with reverse phase chromatography (Figure 3B). Figure 3A shows that sPLA2 isolated
from the Cdt snake venom exhibits a single peak eluted at 10.5 min, with an estimated molecular
weight of 30 kDa. After sPLA2’s incubation with Casu, we observed a single peak with an estimated
molecular mass of 13 kDa. PAGE-SDS analysis was used to calculate the molecular mass using a 12%
resolution gel in acrylamide. In addition, reverse phase HPLC analysis of sPLA2 isolated from Cdt
snake venom in native form or after treatment with Casu tannin (sPLA2:Casu) showed that native
sPLA2 was eluted at 3 min into the chromatogram, whereas the sPLA2:Casu peak was eluted as a single
peak at 42 min. The molecular analysis of sPLA2 and sPLA2 + Casu performed in matrix-assisted
laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF) showed that the enzyme
exhibits a molecular mass of 14,425.62 Da, whereas the sPLA2:Casu complex showed 15,362.74 Da.
The results of analyses between sPLA2 and sPLA2:Casu showed a difference of 937 Da, which is the
molecular mass of the tannin. These results show that the Casu tannin was able to form a stable
complex with sPLA2, which probably involves strong non-covalent interactions such as hydrogen
bonds and hydrophobic interactions. Figure 3D reveals that the chemical interaction of sPLA2 with
Casu significantly decreased sPLA2 enzymatic activity.
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Figure 3. Chromatographic and enzymatic casuarictin (Casu) assays. (A) Chromatographic profiles of
sPLA2, sPLA2 treated with Casu, and Casu alone. All fraction samples were analyzed under the same
chromatographic conditions by size exclusion chromatography (SEC). (B) Shows the same samples
treated with Casu subjected to reverse phase HPLC analysis. Both analyses provide some information
on the molecular stability of Casu treated with sPLA2 that includes formation of the stable molecular
complex sPLA2:Casu. (C) Shows the sPLA2:Casu complex and native sPLA2 with molecular masses of
15,362.74 and 14,425.62 Da, respectively. (D) Shows the enzymatic velocity of sPLA2 before and after
treatment with Casu.

2.3. Effects of Casu on the Enzymatic and Pharmacological Activities of sPLA2
Figure 4 shows the effects of the treatment of sPLA2 with the tannin isolated from the aerial

parts of L. racemosa. Native sPLA2 induced acute edema with a maximal edema peak of 108 ± 5 µL
(n = 5, * p ≤ 0.05) at 30 min, subtracting the saline value (n = 5, * p ≤ 0.05). In animals treated with
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the tannin (200 mg/kg), the compound was injected intraperitoneally (100 µL/animal) after 10 min of
sPLA2 injection, showing an edema peak of 64 ± 7 µL (n = 5, * p ≤ 0.05) at 30 min, subtracting the saline
value (n = 5, * p ≤ 0.05). In addition, we used the flavonoid naringenin (Nar) as an anti-inflammatory
control, which was administered under the same experimental conditions used for Casu (Figure 4A).
The results presented in Figure 4A show that Casu significantly diminished the edema induced by
sPLA2. Moreover, previous incubation of sPLA2 with L. racemosa tannin (sPLA2:Casu) showed an
edema value of 36 ± 11 µL (n = 5, * p ≤ 0.05) at 30 min, subtracting the saline value (n = 5, * p ≤ 0.05),
and the other edema values were close to the saline value. Myotoxicity was evaluated by the creatine
kinase (CK) level and sPLA2 injection into muscle induced a significant increase in plasmatic CK
levels (n = 5, * p ≤ 0.05). Casu showed a significant inhibitory or protective effect against myonecrosis
induced by the enzyme, revealing a CK level close to that of saline (negative control) when injected
for 10 min intraperitoneally (200 mg/kg; 100 µL/animal). This anti-myonecrotic effect of Casu tannin
was supported by microscopy investigation. For animals that received sPLA2, consistent muscle
disorganization was observed with swelling and diffuse muscle fibers. However, animals treated with
Casu exhibited muscle fibers with great similarities to animals that received saline.Mar. Drugs 2019, 17, x 7 of 16 
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Figure 4. (A) Shows the protective effect of Casu injected into animals 10 min before the injection
of native sPLA2 and edema induced by Casu alone. In (A), we also show the protective effect of
naringenin (Nar) administered under the same conditions as Casu. This compound was used as an
anti-inflammatory effect control. (B) Reveals the protective effective of Casu injected in the same
manner as shown in (A). This figure shows that Casu injected 10 min after sPLA2 application neutralizes
the myotoxic effects induced by sPLA2 once the CK levels decrease, revealing a histological similarity
with saline. (C) Exhibits an irreversible profile of Casu, in which the enzymatic activity of sPLA2 is
diminished in a dose-dependent manner.
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Otherwise, sPLA2 previously treated with L. racemosa tannin (sPLA2:Casu) induced an increase in
CK plasmatic levels, similar to sPLA2. In Figure 4C, the effects of different substrate concentrations
on the enzymatic activity of sPLA2 purified from Cdt venom can be observed. When Casu tannin
was added to the enzymatic solution 10 min after the addition of sPLA2, the enzymatic activity was
irreversibly inhibited, as shown by the enzymatic activity.

2.4. Antimicrobial Effects of Casu Tannin
In addition, Casu decreased the bacterial growth rate expressed as colony formation units (CFUs

in percent) in a dose-dependent manner. Figure 5 exhibits the antimicrobial effect of the tannin
against two different phytobacteria, revealing that the growth rate of gram-positive bacteria (Clavibacter
michiganensis pv. michiganensis) was strongly inhibited by this compound, whereas gram-negative
bacteria (Xanthomonas axonopodis pv. passiflorae) were more resistant. Electronic transmission microscopy
revealed that Casu was able to induce several bacterial wall destabilizations characterized by rupture
and extension.
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Figure 5. Antimicrobial effects of Casu against gram-positive and gram-negative phytobacteria. In
both cases, antimicrobial effects occurred in a dose-dependent manner. The effect of Casu is shown
against Xanthomonas axonopodis pv. passiflorae (A) and C. michiganensis pv. Michiganensis (E). Electron
microscopy images show that Casu induces a massive membrane rupture, leading to a decrease in
bacterial survival, in a dose dependent manner, as shown in (B–D). One-way ANOVA with Dunnett’s
test was used, and values of p < 0.05 were considered significant as indicated by asterisk.
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3. Discussion

Tannins are polyphenolic compounds found throughout the plant kingdom, which can be divided
in two groups: Condensed tannins and hydrolyzable tannins. In mangrove plants, these compounds
play a key role in defense against attacks by microorganisms and other predators [17,18]. Besides their
defensive function, tannins from mangrove plants are essential for the maintenance and physiological
sustentation of these plants, as mangroves are an ecosystem with an extreme environment due to the
presence of high concentrations of salts [19]. These polyphenolic compounds have been employed
for millennia in cosmetics, folk medicine, and food industry uses. Tannins have great potential
for the protection of plants against insects, diseases, and herbivores. Additionally, several studies
have revealed the potential of these compounds in the development of pharmaceuticals and the
conservation of wood [20,21]. Likewise, these compounds are able to induce protein, carbohydrate, and
metal ion precipitation, revealing their use as tools for the precipitation of proteins and other organic
molecules [22]. Furthermore, tannins in general display several pharmacological actions including
anti-inflammatory, antioxidant, blood clotting, antidiarrheal, and anti-adherent effects [17,23].

Casu isolated from different plant species such as Carpinus tschonoskii and strawberry is able to
inhibit allergic reactions induced by BSA (bovine serum albumin) and leads to NF-kβ inhibition, exerting
a gastric anti-inflammatory function [24,25]. However, the evaluation of Casu anti-inflammatory
activity in the presence of sPLA2 as a pro-inflammatory agent is essential considering the fundamental
role of this enzyme in the inflammatory process [26]. This study showed that Casu can inhibit the
pro-inflammatory effect induced by sPLA2, strongly decreasing the enzymatic activity of the enzyme
isolated from the Cdt total venom, both in vitro and in vivo.

In vitro, tannin was able to form a stable molecular complex, and SEC analyses showed that Casu
was able to abolish sPLA2 homodimeric complex formation from approximately 30 to 13 kDa. Some
electrophoresis and spectroscopic studies have suggested that the dimer-like structure in solution is
similar to sPLA2s from other snake venoms. The presence of the dimeric form is an essential feature
for the pharmacological and physiological function of sPLA2, but self-oligomerization of the enzyme
seems to be essential for catalysis [27–29]. SEC and reverse phase HPLC showed that Casu chemically
reacts with sPLA2 to inhibit the development of the dimeric form of this enzyme. Otherwise, this
compound was able to diminish access of the substrate to the catalytic site, as shown in Figure 4C,
which shows that the “switch-like” transition found for native sPLA2 disappeared after chemical
treatment of sPLA2 with Casu in the enzymatic assay.

Considering these results, it is possible that the tannin decreases the enzymatic activity of sPLA2
from C. durissus terrificus through the inhibition of sPLA2 dimerization. sPLA2 hydrolyzes a wide
range of phospholipid substrates depending on the isoform, and several studies have shown that
catalytic activity plays a crucial role in triggering pharmacological activity [30,31]. Hence, drugs that
inhibit the catalytic activity of sPLA2 may lead to a decrease in its pharmacological and biological
activity [32,33]. Figure 2 shows Casu as a compound abundantly distributed in the BuOH and EtOAc
partitions. This compound would be the agent responsible for strongly decreasing the enzymatic
and pharmacological activity of sPLA2. In the case of the anti-inflammatory activity induced by the
partitions, studies show that extracts of plants rich in tannins are able to inhibit the inflammatory
process [27]. Therefore, the results observed for the tannin-rich partitions are compatible with data in
the literature.

Figure 4 reveals that the tannin applied 10 min after the sPLA2 injection was able to significantly
decrease the edema as well as the myotoxic activity induced by sPLA2. On the other hand, protection
against edema and/or myotoxicity may also result from the antioxidant capacity of the compound [34,35].
Some studies have shown that small increases in AA can induce a cascade of reactions that culminates
with the increase of reactive oxygen species. In addition, AA metabolism itself can also generate
other reactive oxygen species [27]. Thus, the protective activity of Casu tannin on the course of
pharmacological activity induced by sPLA2 could involve three mechanisms of action: Inhibition of
the enzymatic activity of sPLA2, the antioxidant capacity of the compound, and the ability to form
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aggregates with proteins. In Figure 4A, we also show the effect of naringenin, which was used as the
reference compound for anti-inflammatory activity. In addition, naringenin (Nar) also neutralizes the
enzymatic and pharmacological effects induced by sPLA2 [36], and its anti-inflammatory activity also
involves intracellular and extracellular mechanisms [37,38]. The Casu compound generally showed
efficient and comparable anti-inflammatory activity to the control of naringenin, mainly after 60
min of the edema experiment. Additionally, regarding the anti-inflammatory effect of Casu purified
from L. racemosa, this tannin exhibited significant antimicrobial activity against gram-positive and
gram-negative bacteria, which suggests that this compound has potential therapeutic application.

4. Materials and Methods

4.1. Materials and Animals

The crotoxin and sPLA2 used in this work were commercially purchased from Sigma Aldrich,
St. Louis, MO 63103, USA (product numbers C3737 and P5910, respectively) and subjected to a
fractionation process for final purification. Reagents for the experimental trials were purchased from
Promega, Sigma-Aldrich, Fisher, Across, BioRad, and GE Healthcare Life Sciences. Chromatographic
columns were purchased from Phenomenex (Torrance, CA, USA) or Sigma-Aldrich (Supelco, Darmstadt,
Germany). Sephadex LH-20 (GE Healthcare) was used for column chromatographic separation, while
silica gel 60 PF254 (Merck, Darmstadt, Germany) was used for analytical thin layer chromatography
(TLC) (0.25 mm). 1H NMR and 13C NMR spectra were recorded at 300 and 75 MHz, respectively, in a
Bruker DPX-300 spectrometer (Bruker, Billerica, MA, USA). CD3OD (Aldrich) was used as solvent and
Tetramethyldisilazine (TMS) (Aldrich) as an internal standard.

Chemical shifts are reported in δ units (ppm) and coupling constants (J) are reported in Hz.
Analytical HPLC analysis was performed using a Dionex chromatograph model P680 (Thermo,
Waltham, MA, USA) with a UV–Vis detector (model UVD 340U) (Thermo, Waltham, MA, USA) and a
C-18 column (3.5 µm, 150 × 5 mm) with a flow rate of 0.6 mL.min−1 using H2O:HOAc 2% and MeOH
as the eluent. Mass spectra were obtained on a Bruker Daltonics MicrOTOF mass (Bruker, Billerica,
MA, USA), Spectrometer (Electrospray ionization (ESI-MS)) and Bruker Daltonics UltrOTOF mass
spectrometer (ESI-MS/MS) (Bruker, Billerica, MA, USA). The animals used in the in vivo tests were
Swiss female mice (20–30 g), from the Central Animal House of the State University of Campinas, with
appropriate certification from the Animal Ethics Committee of Universidade de Campinas (UNICAMP)
(413141), as well as the ethics committee of University São Paulo State, Biosciences Institute of the São
Paulo Coast (UNESP IB-CLP), CEUA 002/2014, where the tests were carried out. The animals were
kept in polypropylene cages and placed in a Controlled Animal Housing System, with photoperiod
control, temperature controlled between 22 and 24 ◦C, and a ventilation system equipped with HEPA
filters. Food and water were provided ad libitum.

4.2. Plant Material, Extraction, Isolation, and Identification of Compounds

Leaves from L. racemosa were collected in a mangrove in Praia Grande city, São Paulo, Brazil
(23◦59′15” S, 46◦24′18” W). The voucher specimen was deposited at the Herbarium of the University
of Santa Cecília under the number HUSC8256. Leaves were washed in distilled water, dried, and
lyophilized. Powdered leaves of L. racemosa (39.4 g) were completely degreased with hexane (at
room temperature). Sequentially, the plant material was exhaustively extracted with MeOH, yielding
29.4 g of a green extract after removal of the solvent under reduced pressure. The MeOH extract was
resuspended in MeOH:H2O (1:2, v/v) and then partitioned successively with hexanes, dichloromethane,
ethyl acetate (EtOAc), and n-butanol (n-BuOH). Extracts with higher enzymatic activity (EtOAc and
n-BuOH) were analyzed for compound identification. The BuOH extract was subjected to Sephadex
LH-20 with MeOH as the eluent to give four groups. The L1 group was analyzed by NMR, resulting in
the identification of casuarictin (Casu) by comparison with literature data. For further use of extracts,
they were solubilized in saline and 5% DMSO (dimethyl sulfoxide).
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4.3. Purification of sPLA2 from Commercial Crotoxin

Samples (1 mg) of commercial crotoxin from Sigma Aldrich (C3737 Sigma, St. Louis, MO, USA)
were dissolved in 250 µL of buffer A and duly clarified and applied to the chromatographic column (C5
column, semi analytical), which was pre-equilibrated with buffer A for 20 min. Elution of sPLA2 was
performed with a continuous linear gradient of buffer B (66% acetonitrile in 0.1% TFA), and monitoring
of the chromatographic profile was done at 280 nm. The samples were submitted to enzymatic kinetics
to verify the activity of the fractions.

4.4. Biochemical Analysis

4.4.1. Treatment of sPLA2 with Extracts and Mangrove Tannin

Incubation of sPLA2 with the tannin, BuOH, or EtOAc partitions was performed as described [11].
Initially the compounds were completely dissolved in DMSO with the final concentration in the
solution never exceeding 5% by volume during incubation. An aliquot of the solution or tannin (400 µL
of 0.1 mM solution) was added to 400 µL of purified sPLA2 of C. durissus terrificus (1 mg/mL). The
mixture was then incubated for 90 min at room temperature, and aliquots of 200 µL were loaded onto
a preparative reverse phase column to separate the treated enzyme (sPLA2:Casu or sPLA2:partition).
After equilibrating the column with an HPLC A buffer (aqueous trifluoroacetic acid (TFA)), the samples
were eluted using a discontinuous gradient of HPLC B buffer (acetonitrile in TFA) at a constant flow
rate of 1.0 mL/min. The chromatographic run was monitored at 214 nm.

4.4.2. Mass Spectrometry

The molecular masses of sPLA2 and sPLA2:Casu were determined by matrix-assisted laser
desorption ionization-time-of-flight mass spectrometry (MALDI-TOF) using a Voyager-DE PRO
MALDI-TOF mass spectrometer (Applied Biosystems, Thermo, Waltham, MA, USA). One microliter of
sample (sPLA2 and sPLA2:Casu) with a concentration adjusted to 3 mg/mL in TFA was mixed with
2 µL of the matrix α-cyano-4-hydroxycinnamic acid (v/v). The matrix was prepared with acetonitrile
and TFA (v/v). Ion masses were determined with an acceleration voltage of 25 kV, and the laser was
operated at 2890 kJ/cm2 with a 300 ns delay and the linear analysis mode.

4.4.3. Phospholipase A2 Assay

PLA2 activity was measured using the assay described by [4,11], adapted for 96-well plates. The
standard assay mixture contained 200 µL of buffer (10 mM Tris-HCl, 10 mM CaCl2, 100 mM NaCl,
pH 8.0), 20 µL of substrate, 20 µL of water, and 20 µL of PLA2 in a final volume of 260 µL. After the
addition of PLA2 (20 µg), the mixture was incubated for up to 40 min at 37 ◦C, with the absorbance
being read at 10 min intervals. The enzyme activity, expressed as the initial velocity of the reaction
(Vo), was calculated based on the increase in absorbance after the desired time in min. All assays were
conducted in triplicate, and the absorbance at 425 nm was measured using a SpectraMax 340 multiwell
plate reader (Molecular Devices, San Jose, CA, USA). The results are expressed as the variation of Vo in
comparison with the native enzymatic activity of native sPLA2. Each treatment was conducted for
n = 12.

4.5. Pharmacological Assay and Antimicrobial Assays

4.5.1. Paw Edema

A paw edema assay was performed using a previously described protocol [4,11]. Female swiss
mice (23 g) were anesthetized and subsequently euthanized by cervical dislocation posterior to a paw
edema induced by a single subplantar injection of sPLA2. Paw volumes were measured immediately
before the injection of the samples and at selected time intervals thereafter (0, 30, 60, 180, and 240 min)
using a hydroplethysmometer (model 7150, Ugo Basile, Monvalle, Italy). The results are expressed as
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the increase in paw volume (mL) calculated by subtracting the initial volume. Each treatment was
conducted for n = 5.

4.5.2. Evaluation of Myonecrosis

Myotoxic activity was evaluated by the measurement of plasma creatine kinase (CK) released
from damaged muscle cells. For this, we used a commercial creatine kinase kit measurement CK-NAC
kit (Laborlab, London, UK), as described elsewhere. In the right gastrocnemius muscle, 50 µL of the
0.5 mg/mL sPLA2 sample was injected while the control mice received only an equal volume of 0.15 M
NaCl. After 3 h, the animals were anesthetized, and samples were collected from the abdominal cavity
into tubes containing heparin as an anticoagulant. Plasma was stored at −10 ◦C for a maximum of 12 h
before the assay. The level of CK was then determined with 40 µL of plasma, which was incubated
for 3 min at 37 ◦C with 1.0 mL of the reagent according to the kit protocol. The resulting activity was
expressed in U/L. Each treatment was conducted for n = 5.

4.5.3. Electron Microscopy

The gastrocnemius muscle was fixed for 5 min with a solution consisting of 2.5% glutaraldehyde,
1% paraformaldehyde, and 0.01% sodium azide in 0.05 M sodium cacodylate at pH 7.2 and then
removed. The specimens were further fixed in the same solution overnight, followed by post-fixation
in 1% OsO4 in 0.1 M sodium cacodylate, dehydration, and infiltration with epoxy resin (Agar 100), in
accordance with routine procedures. Ultrathin sections were cut with diamond knives in a Reichert
Ultracut E microtome and contrasted with lead citrate and uranyl acetate before examination in a Zeiss
CEM 902 electron microscope.

4.5.4. Antibacterial Activity

X. axonopodis pv. passiflorae (gram-negative) and C. michiganensis pv. michiganensis (gram-positive)
bacterial strains were harvested from fresh agar plates and suspended in distilled sterilized water
(A600 nm = 3 × 108 CFU/mL). Aliquots of the bacterial suspension were diluted to 103 CFU/mL and
incubated with PLA2 and modified PLA2 (250 µg/mL) for 1 h at 28 ◦C. After incubation, survival
was assayed on nutrient (Difco) plates (n = 5). Electron microscopic assessments for observation of
morphological alterations of X. axonopodis pv. passiflorae were made for both the control samples and
samples containing PLA2-treated bacteria (A600 nm = 3 × 108 CFU/mL). Samples were fixed with
4% glutaraldehyde in a buffer A (0.1 M cacodylate buffer, pH 7.4) for 1 h at 4 ◦C, embedded in 3%
low-gelling-temperature agarose (SeaPlaque, Thermo, Waltham, MA, USA) and stored for 12 h in a
fixative at 4 ◦C. Agarose pellets were immersed in the fixative for 2 h at 25 ◦C, washed three times for
10 min with buffer A, and fixed with 1% osmium tetroxide (Agar Scientific Ltd, Essex, UK) in buffer A
for 2 h at 25 ◦C. Sections were washed three times, dehydrated in increasing concentrations of ethanol
and propylene oxide, and embedded in Epon resin (Agar Scientific, Essex, UK). Polymerization was
performed at 60 ◦C for 48 h, and ultrathin sections were prepared with a Sorvall MT2 ultramicrotome.,
Du Pont Company, Clinical and Instrument System Division, Sorvall® Products, Wilmington, DE
19898, USA).

The sections were placed on 5% collodion-coated 100-mesh grids, and stained with 4% uranyl
acetate (Agar Scientific) for 15 min, followed by staining with 2.6% lead citrate (Agar Scientific) for
15 min. Samples were observed under a Hitachi 1100 transmission electron microscope operating at
100 kV (Hitachi Scientific Instruments, Berkshire, UK).

4.6. Statistical Analysis

The results are reported as the means ± SEM of the replicated experiments. The significance of
the differences between the means was obtained by one- or two-way analysis of variance (ANOVA)
followed by the Dunnett or Bonferroni test, when several experimental groups were compared with
the control group. The confidence limit for significance was 5%.
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5. Conclusions

In this paper, we isolated casuarictin (Casu), a tannin characterized for the first time in L. racemosa.
This tannin showed anti-inflammatory capacity by neutralizing the enzymatic and pharmacological
activity induced by sPLA2 from C. durissus terrificus. In addition, it was able to strongly inhibit
edematogenic and myonecrotic activity. Likewise, the compound induced structural changes in sPLA2
and could also act as a source of external antioxidants. In relation to the antibacterial activity, this
compound was able to interact with the bacterial membrane and induce the death of bacterial cells.
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