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Abstract: The mammalian target of the rapamycin (mTOR) system plays multiple, important roles in
the brain, regulating both morphology, such as cellular size, shape, and position, and function, such
as learning, memory, and social interaction. Tuberous sclerosis complex (TSC) is a congenital disorder
caused by a defective suppressor of the mTOR system, the TSC1/TSC2 complex. Almost all brain
symptoms of TSC are manifestations of an excessive activity of the mTOR system. Many children
with TSC are afflicted by intractable epilepsy, intellectual disability, and/or autism. In the brains
of infants with TSC, a vicious cycle of epileptic encephalopathy is formed by mTOR hyperactivity,
abnormal synaptic structure/function, and excessive epileptic discharges, further worsening epilepsy
and intellectual/behavioral disorders. Molecular target therapy with mTOR inhibitors has recently
been proved to be efficacious for epilepsy in human TSC patients, and for autism in TSC model mice,
indicating the possibility for pharmacological treatment of developmental synaptic disorders.

Keywords: mTORopathy; mTOR inhibitor; TSC; epilepsy; intellectual disability; autism; epileptic en-
cephalopathy

1. Introduction

The mammalian target of the rapamycin (mTOR) system is an essential signal trans-
duction system inherent in all mammalian cells [1] (Figure 1). Its upstream area consists of
several branches. One branch receives extracellular signals, such as insulin and insulin-like
growth factors (IGFs), then transmits the information via phosphatidylinositol 3-kinase
(PI3K) and protein kinase B (AKT). Another branch accepts signals, such as platelet-derived
growth factor, nerve growth factor, and epidermal growth factor, then communicates the
information via Ras, mitogen-activated protein kinase kinase (MEK), and extracellular
signal-related kinase (ERK). The other branches play roles as sensors of the cellular energy
status and the availability of amino acids. In the midstream area, these branches merge
into a single flow at the TSC1 (hamartin)/TSC2 (tuberin) complex, a negative regulator of
the system that inhibits the activities of Ras homolog enriched in brain (Rheb) and mTOR
complex 1 (mTORC1) [2–6]. mTORC1 is a target molecule for pharmacological treatment
with rapamycin and its derivatives (rapalogs). Downstream of mTORC1, the flow of signal
transduction is divided again into multiple branches. One stream promotes protein synthe-
sis via ribosomal protein S6 kinase (S6K) and ribosomal protein S6 (S6) [7], one enhances
cap-dependent translation via eukaryotic translation initiation factor-4E (eIF4E)-binding
proteins (4EBPs) and eIF4E [8–10], and another inhibits autophagy via ULK-51-like kinase
1 (ULK1) [11–13]. The mTOR system regulates various cellular functions, such as growth,
proliferation, metabolism, and survival/death. In systemic organs, it is critically involved
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in multiple processes, including neurogenesis [14], nutrition [15], and immunity [16]. In
the brain, its roles are essential in cerebral cortical development, synaptic functions, and
brain activities, such as learning, cognition, and social functions [17–19].
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Figure 1. mTOR signaling pathway. In the upstream region, there are two paths, one transmitting signals of growth factors,
and another transmitting those of energy status. In the midstream region, they converge at the TSC1/TSC2 complex into one
main stream, which divides again at mTORC1 into S6K/S6 (protein synthesis), ULK1 (autophagy), and 4EBP/eIF4E (cap-
dependent translation) pathways. The white circles and blue boxes represent factors that activate and inhibit, respectively,
the activity of this system. Genetic defects in factors with a white and black star cause epilepsy and ASD, respectively.

Medical genetic studies have found many congenital disorders caused by a genetic
defect in factors of the mTOR system, collectively referred to as mTORopathies. These
conditions share the common brain symptoms of cerebral cortical dysgenesis, epilepsy,
intellectual disability (ID), and/or autism spectrum disorder (ASD) [19]. Tuberous sclerosis
complex (TSC) is a typical mTORopathy inherited in an autosomal dominant fashion. The
two causative genes of TSC, TSC1 (chromosome 9q34) and TSC2 (16p13.3) [20,21], are
located at the crossroad midstream of the mTOR pathway. Most brain symptoms of TSC
are manifested by the dysregulation (hyperactivation) of the mTOR system. Since the 1990s,
research has rapidly progressed from the identification of the genetic etiology [20,21] and
elucidation of the molecular pathogenesis [22–24], to the development of molecular target
therapies [25,26]. Currently, mTOR inhibitors are widely used in clinical practice to treat
patients with TSC. Notably, they are efficacious not only for TSC-associated tumors, but
also for some of the TSC brain symptoms, such as epilepsy [27].

2. Pathology and Clinical Picture of TSC
2.1. Systemic Findings

Recent advances in medical imaging and genetics have widened the clinical spectrum
of TSC far beyond the classical triad of facial angiofibroma, epilepsy, and ID [28]. From
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a pathologic point of view, TSC is characterized by the multifocal occurrence of benign
tumors (hamartomas) and focal dysplastic lesions (hamartias) in various organs, such as
the skin, brain, eye, heart, lungs, and kidneys [29] (Table 1). In the vast majority of organs,
these morphologic lesions, especially tumors, are the sole cause of functional problems,
such as dysmorphism, rupture, and pressure to the surrounding normal tissues. In this
context, the cerebrum is a remarkable exception as many patients with TSC have brain
dysfunction, such as ID and ASD [30,31], without an apparent causal relationship with
anatomical lesions. Thus, the clinical findings of TSC can be classified into three groups:
(1) hamartoma, (2) focal dysplasia, and (3) brain dysfunction.

Table 1. Characteristic lesions of TSC (modified from Gomez (1999) [29]).

Organ Hamartias Hamartomas

Skin Hypomelanotic macules
Confetti skin lesions

Facial angiofibromas
Fibrous cephalic plaque

Ungual fibromas
Shagreen patch

Brain Cortical tuber SEGA
Subependymal nodules

Eye Retinal achromic patch Retinal hamartoma
Mouth Gingival fibromas Dental enamel pits

Lung Pulmonary LAM
MMPH

Heart Cardiac rhabdomyoma
Arteries Wall defects/Aneurysm Renal AML
Kidney Renal cysts

Bone Bone cysts

With regard to the occurrence/distribution of lesions and the severity of brain dys-
function, these clinical symptoms are remarkably variable among patients, which is also
true for familial cases with the same mutation. The genotype–phenotype correlation is
reported to be small [32–34], and the reason for the inter-case variability remains largely
unknown. Each lesion or symptom shows a time course that is clearly age dependent. For
instance, cardiac rhabdomyoma arises in the fetal period, facial angiofibroma in childhood,
and pulmonary lymphangioleiomyomatosis (LAM) in adulthood (Table 2). Thus, the
management of TSC patients requires life-long follow up.

Table 2. Age-dependent changes of lesions and symptoms in TSC.

Lesion/Symptom Pathology Age of Occurrence
or Worsening Department in Charge Note

Cardiac rhabdomyoma Tumor Fetal–neonatal period Pediatric cardiology Spontaneous regression in
infancy

Cortical tuber Dysplasia Fetal–neonatal period/Infancy Pediatric neurology Focus of epileptic seizures
Hypopigmented macule Dysplasia Fetal–neonatal period/Infancy Dermatology

Epilepsy Brain dysfunction Infancy/Childhood Pediatric neurology Intractable in many cases

ID/ASD Brain dysfunction Infancy/Childhood Pediatric
neurology/Psychiatry

Retinal hamartoma Tumor Infancy/Childhood Ophthalmology
Renal cyst Dysplasia Infancy/Childhood Pediatrics

SEGA Tumor Childhood/Adolescence Neurosurgery Hydrocephalus,
potentially fatal

Facial angiofibroma Tumor Childhood/Adolescence Dermatology
TAND Brain dysfunction Childhood/Adolescence Pediatrics/Psychiatry

Renal AML Tumor Childhood/Adolescence/Adulthood Pediatrics/Urology Hemorrhage, potentially
fatal

Pulmonary LAM Tumor Adolescence/Adulthood Pulmonology Predominantly affecting
women, potentially fatal
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2.2. Brain Symptoms
2.2.1. Epilepsy

Many (about 80%) TSC patients have epileptic seizures of variable types. Typical
clinical pictures are West syndrome (infantile spasms) in infancy, and focal epilepsy, which
may occur in any age group [30,31]. In the vast majority of patients, the epileptic focus is
located in or adjacent to a cortical tuber (focal dysplasia of the cerebral cortex). Epilepsy is
often resistant to antiepileptic drugs, requiring neurosurgical treatment in many cases.

2.2.2. ID and ASD

The level of intelligence is variable among patients, ranging from normal to profound
ID. ID is present in more than half of patients, and ASD in about half. Even patients with
normal intelligence have a variety of behavioral, cognitive, and psychosocial problems,
which are collectively called TSC-associated neuropsychiatric disorders (TAND) [35].

2.2.3. Brain Tumor

Approximately 10% of patients have subependymal giant cell astrocytoma (SEGA), a
benign tumor on the wall of the lateral ventricle. A large SEGA may cause hydrocephalus
and clinical signs of increased intracranial pressure. Hydrocephaly is usually ascribed
to the occlusion of the foramen of Monro, although the exact mechanism is still poorly
understood. For the treatment of SEGA, the first choice is surgical resection of the tumor.
Chemotherapy with an mTOR inhibitor, everolimus, is also efficacious, and has recently
become another choice of therapy [25].

3. Etiology and Pathogenesis of TSC
3.1. TSC Gene Mutations and Their Consequences

TSC is caused by various loss-of-function mutations in the two genes, TSC1 and
TSC2 [33,34]. No hotspot mutation has been reported. A genotype–phenotype relationship
has been noted, but it is small. There is no qualitative difference between TSC1 and
TSC2. However, TSC2 mutations tend to show more severe brain symptoms and a larger
propensity to develop tumors than TSC1 mutations [32–34].

TSC1 and TSC2 encode for tumor suppressors, hamartin and tuberin, respectively.
These proteins bind to form a complex and then stabilize each other [2,3]. TSC-associated
tumors show a decreased expression in both [36,37]. The TSC1/TSC2 complex is lo-
cated in the midstream of the mTOR pathway and negatively regulates the activity of the
system [2–6] (Figure 1).

In TSC, a decrease in the regulatory function of TSC1/TSC2 causes the chronic hy-
peractivation of the downstream mTOR system, which affects cellular proliferation [38],
migration [39,40], glucose uptake/metabolism [41], and angiogenesis [42], leading to
tumorigenesis and dysgenesis.

3.2. Germline and Somatic Mutations

In patients with TSC, all the somatic cells have a germline mutation (first hit) in
one allele of either the TSC1 or TSC2 gene, which can cause haploinsufficiency of the
TSC1/TSC2 complex. When an additional somatic mutation (second hit) occurs during
mitosis, the function of the TSC1/TSC2 complex becomes null.

Previous studies have demonstrated that TSC-associated tumors (hamartomas) occur
according to the two-hit hypothesis [22,23,43]. The second hit is typically a small deletion
of either 9q34 (TSC1) or 16p13.3 (TSC2), causing loss of heterozygosity (LOH), the incidence
of which is reportedly high in kidney tumors (renal angiomyolipoma) but low in brain
tumors (SEGA).

The genetic mechanisms of TSC-associated focal dysplasia (hamartias) largely remain
to be elucidated. In cerebral dysplastic lesions, namely cortical tubers, LOH has not been
found [22,23,43,44]. Studies using laser capture microdissection have found point muta-
tions (but not LOH) in abnormal giant cells (astrocyte-like balloon cells and cytomegalic
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neurons), which are a histopathological hallmark of cortical tubers [24,45]. A cortical tuber
comprises a small number of abnormal giant cells with null TSC1/TSC2 function, and a
large number of normal-sized neurons/glial cells with haploinsufficiency [46]. The interac-
tion of both cell types may account for the epileptogenicity of cortical tubers (Figure 2).
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mTOR inhibitors are useful in the treatment of TSC-associated tumors in the brain,
heart, and kidneys (everolimus) [25,26,47], as well as in the skin and lungs (sirolimus) [48,49].
Furthermore, clinical studies have recently shown that mTOR inhibitors are effective not
only for tumors, phenotypes predominantly resulting from the second hit, but also for
brain dysfunction (epilepsy) caused by a combination of the first and second hits [27]. The
molecular basis of the efficacy is that the main stream of the mTOR system is essentially
single between the TSC1/TSC2 complex and mTORC1 (Figure 1).

4. Brain Dysfunction in TSC
4.1. ID, ASD, and Epilepsy

Most TSC patients have a variety of behavioral, cognitive, and/or psychiatric prob-
lems, collectively termed as TAND. ID and ASD are the most common, affecting about
80% and 40% of patients, respectively. Notably, the distribution of intelligence quotient
(IQ) is bimodal, dividing patients into two groups: profound ID with IQ (less than 30),
and normal/subnormal mentality with a slight reduction in average IQ (around 90) [50]
(Figure 3). Epidemiologic studies have shown that early-onset epilepsy (represented by
West syndrome) is much more common in the former group than in the latter [51,52].

TSC is a common cause of symptomatic ASD, second only to fragile X syndrome
in prevalence. The sex ratio (male:female) of entire ASD is 4:1, whereas that of TSC-
associated ASD is 1:1 [53,54]. In TSC, ASD is more common in patients with early-onset
epilepsy [35,55].
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4.2. Pathophysiology: Neural and Glial Dysfunction

In TSC-associated epilepsy, the epileptic focus is usually located within or adjacent to
a cortical tuber. As described above, a cortical tuber consists of both abnormal giant cells
caused by a somatic mutation (second hit) and normal-sized neurons/glial cells with a
germline mutation (first hit) only. The abnormal giant cells are abnormal, not only morpho-
logically, but also functionally, as indicated by their immunohistochemical and electron
microscopic features [56,57]. Pathologic collaboration (networking) between severely dys-
functional, abnormal giant cells and mildly dysfunctional, normal-sized neurons/glial cells
forms the epileptogenic focus. Thus, in the brain, mild dysfunction due to germline muta-
tions (first hit) can cause clinical symptoms, in sharp contrast to other organs where all the
symptoms are due to somatic mutations (second hit). There is evidence for the dysfunction
of autophagy/cell clearing, which is implicated in epileptogenesis [12,13,58,59].

Previous studies in human patients and animal models, either in vivo or in vitro,
have documented various abnormalities of TSC neurons and/or glial cells (Figure 4). For
instance, an astrocyte-specific conditional knockout of the Tsc1 gene impairs the astrocytic
transport of glutamate [60]. The expression and function of gamma aminobutyric acid
(GABA) receptors are abnormal in abnormal giant cells of cortical tubers [61–65]. Synapse
formation is defective in human cortical tubers [66], as well as in cultured neurons of
Tsc1 and Tsc2 knockout mice [67]. Synaptic pruning is also defective in Tsc2 knockout
mice [68]. There are also abnormalities of synaptic functions, such as impaired long-
term potentiation (LTP) and long-term depression (LTD) in the hippocampus of Tsc1/Tsc2
knockout mice [17,69,70]. These changes, in turn, cause an excitation/inhibition (E/I)
imbalance toward hyperexcitation [71]. White matter also shows abnormal findings, which
are implicated in the pathogenesis of ASD. Diffusion tensor imaging (magnetic resonance
imaging) reveals an abnormal integrity of cerebral white matter, which is improved after
pharmacologic treatment with an mTOR inhibitor [72,73]. Taken together, these changes
in the morphology and function of neurons and glial cells lead to TSC-associated brain
dysfunction: epilepsy, ID, and ASD [71].
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4.3. Efficacy of mTOR Inhibitors: Animal Experiment

To date, numerous animal models of TSC have been developed and used. One model,
Eker rat, occurred spontaneously, whereas all the other models were produced artificially
by genetic engineering. For translational research on the treatment of TSC-associated brain
functions, we and other investigators often used mice produced by conventional gene
knockout, due to their excellent construct validity.

The Eker rat, harboring a germline Tsc2 mutation, was originally found as a model
of the hereditary cancer, renal cell carcinoma [74–76]. Compared to human TSC, the brain
phenotype of the Eker rat is much milder, with a rare occurrence of cortical tuber-like lesions
(focal cortical dysplasia) [77], an absence of epileptic seizures occurring spontaneously,
and only a mild deficit in social interaction. Experimental studies introducing a second
hit stimulus to the developing brain revealed that irradiation, but not a carcinogen, can
increase the incidence of abnormal giant cells [78,79]. When the developing brain was
pharmacologically exposed to severe epilepsy, the rat displayed ASD-like social deficit
behavior [80].

Except for several Tsc1+/− mouse models [81,82], all heterozygous knockout mice
for either Tsc1 or Tsc2 mutants showed neither cortical tubers nor spontaneous epileptic
seizures. Thus, most Tsc1+/− and Tsc2+/− mice are not suitable as models of TSC-associated
epilepsy, or brain symptoms caused by a combination of the first hit (normal-sized neurons
and glial cells) and the second hit (abnormal giant cells). However, some of them did have
mild, but recognizable, deficits in cognition and behavior [83]. For example, a Tsc2+/−

mouse showed deficits in some hippocampal functions, such as spatial learning and
contextual discrimination. Importantly, these deficits can be reversed by pharmacological
treatment with rapamycin [17]. In two other strains, Tsc1+/− and Tsc2+/−, both male
and female adult mice showed a deficit in social interaction, an ASD-like phenotype,
which again was successfully improved by rapamycin. This improvement in behavior was
accompanied by the normalization of gene expression and protein phosphorylation of the
mTOR pathway factors [18]. These studies demonstrated that cognitive and behavioral
problems in TSC, namely TAND, have not only structural, but also functional aspects,
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and that the latter can be improved even in adulthood. They also established Tsc1+/− and
Tsc2+/− mice as models of mild TAND in the absence of early-onset epilepsy and illustrated
their value in translational research of therapies for TAND.

4.4. Efficacy of mTOR Inhibitors: Clinical Trials

Since the beginning of this century, pharmacological treatment with mTOR inhibitors
has rapidly progressed, especially for TSC-associated hamartomas: everolimus for brain
tumors (SEGA) [25] and renal tumors (AML) [26], and sirolimus (rapamycin) for skin
tumors (facial angiofibroma, topical) [48] and pulmonary tumors (LAM) [49]. When treated
with mTOR inhibitors, these tumors shrink over several weeks or months. If the treatment
continues, the decreased size remains unchanged over years, whereas the tumors often (but
not always) grow back again if the treatment is discontinued. A significant difference in
the efficacy, or the degree of reduction in size, is noted among patients, or among different
types of tumors. For example, brain and kidney tumors decrease in volume, at best, by
70–80%, but never disappear. At worst, the tumor size remains unchanged [25,26], which
nevertheless is usually acceptable in clinical practice because the tumors are benign in
nature. For some tumors, the reasons for the inter-case or inter-lesion differences have been
elucidated. In the treatment of renal AMLs with oral everolimus, the reduction in size is
larger in fat-poor tumors than in fat-rich tumors [84]. In the treatment of skin tumors with
topical sirolimus, the clinical effect is more rapid and remarkable in facial angiofibromas
(those rich in blood vessels and covered by thin skin) than in other types of skin tumors
(those poor in blood vessels and/or covered by thick skin) [85].

During clinical trials of oral (systemic) administration mTOR inhibitors, researchers
noted their ancillary efficacy on brain dysfunctions, such as a decrease in epileptic seizures
and the improvement of ASD symptoms. A phase 3, international clinical trial on the
efficacy of everolimus for focal epilepsy (named EXIST-3) was conducted, and successfully
demonstrated the usefulness of everolimus in the treatment of TSC-associated epilepsy by
showing a clinically meaningful reduction in seizure frequency [27]. On the other hand,
the inter-case variability was even larger in epilepsy than in cerebral and renal tumors;
epileptic seizures totally disappeared in the best case, whereas they increased by three
times in the worst case. With regard to ASD, a Japanese sub-study of EXIST-3 investigated
the effects of everolimus on ASD symptoms using the Pervasive Developmental Disorders
Autism Society Japan Rating Scale (PARS). Similar to the situation with epilepsy, the effect
varied considerably among cases. Of the 11 patients treated by everolimus, 4 showed
improvement (a decrease in PARS score by 5 or more) and one worsened (an increase by 5
or more) [86]. With regard to both epilepsy and ASD, the reasons for the large inter-case
variability remain unclear. The usefulness of mTOR inhibitors as a therapy for ASD still
remains to be established.

5. Epileptic Encephalopathy

Drug-resistant epileptic syndromes with onsets in infancy or childhood, such as West
syndrome and Lennox–Gastaut syndrome, are often accompanied by the impairment of
cognitive/behavioral development, such as ID and ASD, and are collectively termed as
epileptic encephalopathies [87]. The etiologic factors of epileptic syndromes are variable, in-
cluding not only TSC, but also malformation, metabolic error, infection, hypoxia/ischemia,
and many others. Electroencephalographically, epileptic encephalopathy is characterized
by frequent epileptic discharges that appear not only during seizures, but also persist dur-
ing the interictal period in the absence of clinical symptoms of seizures. In the brain, there
is a continuous, severe epileptic discharge causing subclinical electrical status epilepticus
that, in turn, increases the activity of the mTOR pathway [88]. In the developing brains
of infants, sustained hyperactivity of the mTOR pathway affects the synthesis of synaptic
proteins, leading to an abnormal structure of synapses and excessive synchronicity of the
brain network [60–68]. These morphologic and functional changes further worsen epilepsy
and cause ID, ASD, and other TAND symptoms (Figure 4). Thus, epileptic discharges
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and mTOR hyperactivity constitute a vicious cycle (Figure 5). The treatment of epilep-
tic encephalopathies includes various antiepileptic drugs, adrenocorticotropic hormone
(ACTH)/steroids, gamma-globulin and ketogenic diets [89]. The pharmacologic mech-
anism of ketogenic diets is partially accounted for by a decrease in glucose and insulin,
downregulating the activity of the mTOR pathway [90].
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Patients with TSC are particularly at high risk of entering the vicious cycle due to
the presence of another gate, a mutation in the TSC1/TSC2 gene (Figure 5). In the treat-
ment of TSC-associated epilepsy in infancy, the potential efficacy of an mTOR inhibitor is
theoretically expected [91], but still remains to be proven [92,93]. On the other hand, the
usefulness of vigabatrin, a potent antiepileptic drug that increases the synaptic concen-
tration of GABA, has been established [35]. The pharmacological basis for the efficacy of
GABA in TSC is partially accounted for by the defective GABA receptors in cortical tubers
described above [61–65]. According to standard protocols for the treatment of epilepsy,
vigabatrin is prescribed only when the diagnosis of epilepsy was made on the basis of
clinical seizures and electroencephalographic findings. In the case of West syndrome, the
start of vigabatrin treatment was typically in mid-infancy. To improve the neurologic
outcome of TSC-associated epilepsy of infantile onset, some investigators in Europe have
tried early treatment with vigabatrin. In these studies, patients with TSC underwent
serial electroencephalography in early infancy and were “prophylactically” prescribed
with vigabatrin immediately after the appearance of an epileptic discharge. The results
of the preliminary studies were quite promising, with a better outcome at two years of
age for both epilepsy and neurocognitive development [94]. These beneficial effects were
sustained into childhood [95].
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Epilepsy surgery is another way to break out of the vicious cycle of TSC-associated
epileptic encephalopathy (Figure 5). Many investigators have demonstrated that early
resection of an epileptogenic tuber improves the neurologic outcome, both in terms of the
control of epileptic seizures and cognitive/behavioral development, of infants and children
with pharmaco-resistant epilepsy [96–98].

6. Conclusions

Patients with TSC have a mutation in either TSC1 or TSC2, causing a loss of function
of the TSC1/TSC2 complex and the dysregulation of the mTOR system. This loss results in
haploinsufficiency in a large number of cells with only a germline mutation, but completely
nullifies the function in a small number of cells with an additional somatic mutation, such
as the tumor cells of SEGA and abnormal giant cells of cortical tubers. Clinically, haploin-
sufficiency remains harmless, causing neither structural nor functional abnormalities in all
systemic organs. However, the brain is the only organ where haploinsufficiency by itself
causes a mild, but recognizable, disturbance in cognitive and behavioral function, known
as TAND, such as a slight decline of IQ by approximately 10 in human patients (Figure 3),
and a decrease in social interaction in Tsc1+/− and Tsc2+/− mice. If a somatic mutation in
the developing brain affects a subset of neurons, glial cells, or their precursor cells, the
morphology and/or function of the cells may become severely impaired, as is the case
with abnormal giant cells. The pathologic orchestration of the “haploinsufficient cells” and
“null cells” may create a synaptic network with a tendency toward a distorted E/I balance.
When severe epilepsy actually occurs in infancy, which is the critical period of synaptic
formation and pruning, a vicious cycle of epileptic encephalopathy is formed, resulting in
severe disability (ID and/or ASD) and further worsening of epilepsy. Recent advances in
the studies of TSC have provided clinicians with candidates for robust therapeutic mea-
sures to escape from the vicious cycle, such as vigabatrin, mTOR inhibitors, and epilepsy
surgery. Further progress in clinical and basic research is needed to significantly improve
the neurological outcome and quality of life of infants and children with TSC-associated
epilepsy.
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ACTH Adrenocorticotropic hormone
AKT Protein kinase B
AML Angiomyolipoma
ASD Autism spectrum disorder
4EBP Eukaryotic translation initiation factor-4E-binding proteins
eIF4E Eukaryotic translation initiation factor-4E
ERK Extracellular signal-related kinase
GABA Gamma aminobutyric acid
ID Intellectual disability
IGF Insulin-like growth factor
IQ Intelligence quotient
LAM Lymphangioleiomyomatosis
LTD Long-term depression
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LTP Long-term potentiation
MEK Mitogen-activated protein kinase kinase
MMPH Multifocal micronodular pneumocyte hyperplasia
mTOR Mammalian target of rapamycin
mTORC1 Mammalian target of rapamycin complex 1
PARS Pervasive Developmental Disorders Autism Society Japan Rating Scale
PI3K Phosphatidylinositol 3-kinase
Rheb Ras homolog enriched in brain
S6 Ribosomal protein S6
SEGA Subependymal giant cell astrocytoma
S6K Ribosomal protein S6 kinase
TAND Tuberous sclerosis complex-associated neuropsychiatric disorders
TSC Tuberous sclerosis complex
ULK1 Unk-5l-like kinase 1
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