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Abstract

Background: There is an urgent need for the discovery of new anti-malarial drugs. Thus, it is essential to explore
different potential new targets that are unique to the parasite or that are required for its viability in order to
develop new interventions for treating the disease. Plasmodium serine hydroxymethyltransferase (SHMT), an enzyme
in the dTMP synthesis cycle, is a potential target for such new drugs, but convenient methods for producing and
assaying the enzyme are still lacking, hampering the ability to screen inhibitors.

Methods: Production of recombinant Plasmodium falciparum SHMT (PfSHMT) and Plasmodium vivax SHMT
(PvSHMT), using auto-induction media, were compared to those using the conventional Luria Bertani medium with
isopropyl thio-β-D-galactoside (LB-IPTG) induction media. Plasmodium SHMT activity, kinetic parameters, and
response to inhibitors were measured spectrophotometrically by coupling the reaction to that of 5,
10-methylenetetrahydrofolate dehydrogenase (MTHFD). The identity of the intermediate formed upon inactivation
of Plasmodium SHMTs by thiosemicarbazide was investigated by spectrophotometry, high performance liquid
chromatography (HPLC), and liquid chromatography-mass spectrometry (LC-MS). The active site environment of
Plasmodium SHMT was probed based on changes in the fluorescence emission spectrum upon addition of amino
acids and folate.

Results: Auto-induction media resulted in a two to three-fold higher yield of Pf- and PvSHMT (7.38 and 29.29 mg/L)
compared to that produced in cells induced in LB-IPTG media. A convenient spectrophotometric activity assay
coupling Plasmodium SHMT and MTHFD gave similar kinetic parameters to those previously obtained from the
anaerobic assay coupling SHMT and 5,10-methylenetetrahydrofolate reductase (MTHFR); thus demonstrating the
validity of the new assay procedure. The improved method was adopted to screen for Plasmodium SHMT inhibitors, of
which some were originally designed as inhibitors of malarial dihydrofolate reductase. Plasmodium SHMT was slowly
inactivated by thiosemicarbazide and formed a covalent intermediate, PLP-thiosemicarbazone.

Conclusions: Auto-induction media offers a cost-effective method for the production of Plasmodium SHMTs and
should be applicable for other Plasmodium enzymes. The SHMT-MTHFD coupled assay is equivalent to the
SHMT-MTHFR coupled assay, but is more convenient for inhibitor screening and other studies of the enzyme. In
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addition to inhibitors of malarial SHMT, the development of species-specific, anti-SHMT inhibitors is plausible due to
the presence of differential active sites on the Plasmodium enzymes.

Keywords: Serine hydroxymethyltransferase, Plasmodium falciparum, Plasmodium vivax, Pyridoxal-5-phosphate
dependent enzyme, Thiosemicarbazide
Background
Despite a clear need, an effective anti-malarial vaccine that
offers a high level of protection against the disease has not
yet become available. Chemotherapy is still the major tool
in the fight against malaria. However, the rapid rise in
drug-resistant malaria is a major factor compromising the
use of current anti-malarial drugs. New drug candidates
can be found either through random screening [1] or from
target-based drug development [2]. In the latter approach,
the major goal is to elucidate and characterize new drug
targets against which inhibitor molecules can be designed
and evaluated. This method can take advantage of the avail-
able Plasmodium genome database and what is known
about the metabolic processes of these parasites. The folate
pathway is attractive for chemotherapeutic targeting, as it
plays a crucial role in 1-C metabolism and purine biosyn-
thesis [3]. Several enzymes in this pathway such as dihy-
dropteroate synthase (DHPS) and dihydrofolate reductase
(DHFR) are validated targets for the clinical treatment of
malaria infection. Nevertheless, there are other enzymes in
the pathway that have received less attention which should
be investigated, as they may prove to be more effective tar-
gets for new anti-folate development.
Serine hydroxymethyltransferase (SHMT; EC. 2.1.2.1) is a

pyridoxal-5-phosphate (PLP) dependent enzyme and belongs
to a member of the α-elimination and replacement reaction
class [4]. SHMTcatalyses the conversion of L-serine and tetra-
hydrofolate (THF) to glycine and 5, 10-methylenetetrahydrofo-
late (5,10-CH2-THF) [5]. In addition to its role in dTMP
synthesis, this reaction involves the cycling of folate derivatives
required for various anabolic and catabolic reactions. The en-
zyme has been characterized from various organisms includ-
ing Plasmodium faciparum and P. vivax [6,7]. The expression
of the Plasmodium SHMTgene is noticeably increased during
late trophozoite to schizont stages when high levels of folate
and nucleotides are needed for cell multiplication process, em-
phasizing the indispensable role of this enzyme [8]. Unlike the
SHMTs of other eukaryotes that are tetrameric enzymes
[9,10], Plasmodium SHMTs are dimers [6,7]. Furthermore, in
contrast to other mammalian enzymes, Plasmodium SHMTs
can bind and use D-serine as a substrate [6,7]. Interestingly,
the Food and Drug Administration (FDA) recently approved a
new anti-folate drug, pemetrexed, for the treatment of cancer
which inhibits several enzymes in the folate pathway including
SHMT [11]. Considering the central metabolic role of SHMT
in the malarial parasite, it is likely to be a molecular target suit-
able for anti-malarial development [6,7,12-14]. Therefore,
further investigation into the mechanism of Plasmodium
SHMTs inhibition is of interest such that the possibility of
developing specific inhibitors against the enzyme can be
explored.
As the first step in developing a convenient method for

obtaining a higher yield of SHMT, the study demonstrates
that the use of an auto-induction system significantly
improves the production of the recombinant Plasmodium
SHMTs in Escherichia coli. A convenient spectrophotomet-
ric enzyme activity assay which does not require radioactive
substrates or anaerobic conditions was developed, based on
coupling the reactions of Plasmodium SHMT with E. coli
5,10-methylenetetrahydrofolate dehydrogenase (MTHFD).
Inhibition of Plasmodium SHMTs was investigated using
anti-folate compounds previously synthesized as inhibitors
against Plasmodium DHFR [15-17]. In addition, inhibition
of Plasmodium SHMTs by the amino acid analogue, thiose-
micarbazide was explored. Results obtained from this study
should be useful for the future rational design of new inhi-
bitors of Plasmodium SHMTs.
Methods
Chemicals and reagents
All chemicals used in the study were analytical grade. L-
serine, NADPH, NADP+, PLP, polyethyleneimine (PEI) solu-
tion (50%w/v), D-glucose, N-Z-amine AS (casein enzymatic
hydrolysate), thiosemicarbazide, and α-lactose were pur-
chased from Sigma-Aldrich (St Louis, MO, USA). [6R,S]
THF, [6 S] THF, and [6R] 5,10-CH2-THF were obtained
from Merck Eprova AG (Schaffhausen Switzerland). D-
cycloserine, dithiothreitol (DTT) and yeast extract were
from Bio-Science Inc. (Allentown, PA, USA). Isopropyl
thio-β-D-galactoside (IPTG) was purchased from
Fermentas Life Sciences (Glen Burnie, MD, USA). All chro-
matographic media were purchased from GE Healthcare
Biosciences (Uppsala, Sweden). N-(2-hydroxyethyl) pipera-
zine-N’-(2-ethane-sulfonic acid) (HEPES) was purchased
from Research Organics (Cleveland, OH, USA). Escherichia
coli BL21 (DE3) (Novagen, Madison, WI, USA) was used as
the host strain for protein expression.
Protein expression and purification
Two expression media types, LB-IPTG and auto-induction
media were used to express the recombinant Plasmodium
SHMTs in an E. coli system. Protein expression of Pf- and
PvSHMT using LB-IPTG media was performed according
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to previous reports [6,7]. The auto-induction media used
was modified from the standard formula previously
described [18]. Briefly, a starter culture was grown at 37°C
overnight in ZYP-0.8G media (1%w/v N-Z-amine AS,
0.5%w/v yeast extract, 62.5 mM (NH4)2SO4, 125 mM
KH2PO4, 125 mM Na2HPO4, 1 mM MgSO4, and 0.8%w/v
D-glucose) supplemented with 50 μg/ml ampicillin. The
starter culture (0.5% v/v) was inoculated in ZYP-5052
media (1% w/v N-Z-amine AS, 0.5% w/v yeast extract,
0.5% w/v glycerol, 0.2%w/v α-lactose, and 0.05% w/v glu-
cose) containing 50 μg/ml ampicillin, and the culture was
vigorously shaken at 37°C until the OD600 reached ~1.0
(6–7 hours). The temperature was lowered to 16°C, and
the cells were incubated at this temperature for 16–18
hours before they were harvested. Protein purification
was carried out according to the procedures previously
described [6,7], except that only a Ni-Sepharose column
was used for PfSHMT purification. For long-term storage
at −80°C, the purified PvSHMT was kept in 50 mM
HEPES, pH 7 containing 0.5 mM EDTA and 1 mM DTT
(Buffer A), and PfSHMT was kept in Buffer A with 10% v/v
glycerol added (Buffer B). Unless otherwise indicated, bio-
chemical studies of Pf- and PvSHMT were performed
in Buffer A.
The expression and purification of E. coli MTHFD was

performed as described in [19] with some modifications.
Briefly, BL21DE3 carrying pET22b(+)::FolD was grown at
37°C until OD600 reached 1.2, at which IPTG was added to
0.4 mM. Cells were cultured until OD600 reached 5 before
harvesting. Cell pellet was re-suspended in 50 mM potas-
sium phosphate buffer pH 6.5, 1 mM DTT, 1 mM EDTA
and 0.1 mM PMSF, and lysed by ultrasonication (Sonic
Vibra cellTM; model VCX750). MTHFD was precipitated
using 0-30% ammonium sulfate and the protein precipita-
tion was dissolved in 50 mM potassium phosphate buffer
pH 6.5, 1 mM DTT, 0.3 mM EDTA (buffer C). The dis-
solved protein was dialyzed against buffer C and loaded
onto a DEAE-column previously equilibrated with the same
buffer. Proteins were eluted with a linear gradient of 0–
300 mM NaCl in buffer C. The activity of MTHFD was
determined spectrophotometrically by monitoring the in-
crease in absorbance at 375 nm due to the formation of
NADPH by the oxidation of 5,10-CH2-THF. The purified
MTHFD stored at −80°C was stable for at least three
months.

Protein quantitation
The concentration of proteins was determined by the Brad-
ford method [20] using the standard dye reagent (Bio-Rad
Life Science, CA, USA). The protein concentration was cal-
culated from a standard curve using bovine serum albumin
as a protein standard. Alternatively, protein concentrations
were determined according to the enzyme UV-visible
absorption using absorption coefficient values at 420
(5,400 M-1 cm-1), 422 nm (6,370 M-1 cm-1), and 280 nm
(14,690 M-1 cm-1) for PfSHMT, PvSHMT, and MTHFD re-
spectively [6,7]. The MTHFD absorption coefficient was
calculated based on the primary amino acid sequence [21].

SHMT activity assay
To monitor Plasmodium SHMT activity during enzyme
preparation, the SHMT reaction was coupled with a
MTHFD reaction (SHMT-MTHFD) and performed under
regular aerobic conditions in Buffer A. A typical assay reac-
tion contained 5 μM MTHFD, 2 mM L-serine, 0.4 mM
THF, 0.25 mM NADP+, and SHMT in a final volume of
1 mL at 25°C. Progression of the reaction was monitored
by an increase in absorbance at 375 nm. Measurement of
steady-state kinetic parameters of Plasmodium SHMTs was
performed using the MTHFD coupled assay with a rapid-
mixing apparatus (SFA-20, TgK Scientific, Bradford-on-
Avon, UK) connected to a double-beam spectrophotometer
(SHIMADZU 2501 PC, Shimadzu corp., Kyoto, Japan). To
prolong the stability of THF, a stock solution of THF was
prepared in an anaerobic glove box. The apparent
Michaelis constant (Km

app) for THF was determined by fixing
the concentration of L-serine at 2 mM and varying the con-
centration of THF between 0.025-0.4 mM. A similar set-up
was used in determining Km

app for L-serine, except that the
concentration of THF was fixed at 0.4 mM and the concen-
trations of L-serine were varied between 0.05-1.6 mM. All
concentrations indicated were final concentrations after
mixing.

Inhibitor screening for Plasmodium SHMTs
Inhibition of SHMT was studied by measuring the initial
rates of the reaction using the SHMT-MTHFD coupling
system, as described in “SHMT activity assay” of the Meth-
ods section, in the presence of inhibitors. Inhibitors used in
this study were anti-folates (2,4-diaminopyrimidine) and
amino acid analogues (D-serine, D-alanine, D-threonine, L-
allo-threonine, D-cycloserine and thiosemicarbazide). Stock
solutions of anti-folates were prepared in absolute dimethyl
sulfoxide (DMSO) and amino acid analogues were prepared
in Buffer A. The final concentrations used for anti-folates
were 0.05-0.5 mM, depending on the solubility of each
compound. The final concentration for the amino acid ana-
logues was 1 mM. The efficacy of the inhibitors is pre-
sented as % inhibition, which is a relative percentage of
enzyme activity compared to the reaction in the absence of
the inhibitor.

Kinetics of Plasmodium SHMT inactivation by
thiosemicarbazide
Inactivation of Pf- and PvSHMT by thiosemicarbazide was
investigated by monitoring the residual SHMTactivity upon
incubation of the enzyme with various thiosemicarbazide
concentrations at various incubation times using a rapid-
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mixing apparatus connected to a double-beam spectropho-
tometer. One syringe of the rapid-mixing apparatus con-
tained 1 μM Pf- or PvSHMT, 5 μM MTHFD and various
thiosemicarbazide concentrations (0.03-1 mM). Another
syringe contained 2 mM L-serine, 0.4 mM THF and
0.25 mM NADP+. All reactions were performed in Buffer A
at 25°C and the reaction was initiated by mixing the solu-
tions from both syringes. Time-dependent inactivation was
performed by varying the incubation time (5–30 min) of en-
zyme with thiosemicarbazide in the first syringe before mix-
ing with the solution in the second syringe.
The inactivation reaction appeared to follow first-order

kinetics since a plot of ln V/V0 versus time was linear. V
and V0 represent initial velocities of the reaction in the
presence and the absence of inhibitor, respectively. An
observed rate constant (kobs) at each thiosemicarbazide
concentration was determined from a slope of the plot of
ln V/V0 versus incubation time. A rate constant for the in-
activation step (kinact) and the equilibrium dissociation con-
stant for binding of the inhibitor (KI) were calculated from
Equation 1, where [I] is the concentration of the inhibitor,
using non-linear algorithms found in KaleidaGraph soft-
ware (Synergy Software, Reading, PA, USA).

kobs¼
kinact I½ �
KI þ I½ � ð1Þ

Analysis of product from the inactivation of PvSHMT by
thiosemicarbazide
The product that resulted from the inactivation of
PvSHMT by thiosemicarbazide was analysed by UV-visible
absorption, retention time analysis after HPLC separation,
and molecular mass determination by LC-MS. PvSHMT
with OD422 ~ 0.4 AU (62.79 μM) was incubated with
10 mM thiosemicarbazide for 50 min in Buffer A at 25 °C,
and the absorption spectrum change was recorded. The en-
zyme was de-natured by adding SDS (final concentration of
1%w/v). The de-natured enzyme was separated from small
molecular weight compounds by a Centricon device with a
10 kDa molecular weight cut-off membrane (Millipore,
Carrigtwohill, Co. Cork, Ireland), and the spectrum of the
filtrate was recorded.
The filtrate from ultrafiltration of the PvSHMT-thio-

semicarbazide mixture was subjected to reverse phase
HPLC chromatography (Polaris 3 C8-A, 50 x 4.6 mm;
Agilent Technologies, Inc. Santa Clara, CA, USA). The
column was pre-equilibrated with 25 mM sodium for-
mate pH 4.3 and was eluted using the same buffer at a
flow rate of 1 mL min-1. The eluted compounds were
detected by UV-visible absorption.
Additionally, the filtrate was analysed by LC-MS (Bruker

AXS Inc., Madison, WI, USA) to separate small molecules
using a Polaris 3 C8-A column pre-equilibrated with 25 mM
ammonium formate pH 6.5 at a flow rate of 0.5 mL min-1 at
25°C. Eluents were analysed for their masses using a linear
ion trap MS equipped with an electrospray ionization (ESI)
source. The parental and fragmented mass profiles were ana-
lysed. All buffers used were pre-filtered through a 0.45 mm
membrane (Millipore, Carrigtwohill, Co, Cork, Ireland).
Similar experiments as described above were applied

for free PLP (OD388 ~ 0.1 AU) in the presence of 10 mM
thiosemicarbazide.
Fluorescence changes of Plasmodium SHMTs upon
binding of amino acids
Changes in the fluorescence properties of Pf- and PvSHMT
upon binding of amino acids and folate analogues were
monitored using a spectrofluorophotometer (SHIMADZU
RF5301 PC, Shimadzu corp., Kyoto, Japan) at 25°C. The
emission and excitation monochromator slits were set at
5 nm, the light source was from xenon lamp (150 W), and
the scanning rate was set at medium speed. The concentra-
tions of free PLP, Pf- and PvSHMT were ~ 23 μM (PLP;
OD388 ~ 0.12, PfSHMT; OD420 ~ 0.12, and PvSHMT;
OD422 ~ 0.15). Free PLP, Pf- and PvSHMT were excited at
the wavelengths 388, 420 and 422 nm, respectively. L-
serine, D-serine, L-alanine, or glycine was added to the pro-
tein or PLP in Buffer A (at the above concentrations) to
give a final amino acid concentration of 10 mM, except for
folinic acid, which was added to a final concentration of
1 mM. The binding of folinic acid to Plasmodium SHMTs
was performed in the absence and presence of 10 mM
glycine. For the measurement performed in the presence of
both ligands, the enzyme was incubated with glycine for
5 min prior to the addition of folinic acid.
Results
Production of Plasmodium SHMT using LB-IPTG and auto-
induction media
The expression of soluble Pf- and PvSHMT using LB-IPTG
media at 16°C was previously reported [6,7]. Although the
production yield was sufficient to achieve a few biochemical
studies (3.53 and 10.48 mg purified protein per litre culture
for Pf- and PvSHMT, respectively), it might not allow
screening of a large inhibitor library or comprehensive
kinetic studies. Therefore, high cell density cultivation using
auto-induction media was investigated for the expression of
Plasmodium SHMTs. The auto-induction system employs
a buffered medium containing various carbon sources in-
cluding glucose and lactose. Therefore, cell growth at high
density can be achieved due to the metabolic balancing of
pH and protein expression is automatically induced [18].
Initially, cells mainly use glucose or other carbon sources
and then switch to use lactose when other carbon sources
are depleted. Allolactose, which is a metabolite of lactose is
an inducer of the lac operon. For Plasmodium SHMTs, the
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expression is driven by T7 RNA polymerase [6,7] which is
in turn regulated by lac promoter.
Based on SDS-PAGE analysis (data not shown) and spe-

cific activity, the expression level of Plasmodium SHMT per
the same amount of cells obtained by growth in the two dif-
ferent media were comparable (Table 1). However, the cell
masses obtained by auto-induction media were 14.3 and
17.26 g/litre media culture for Pf- and PvSHMT, respect-
ively, which are ~ three-fold and five-fold the amount of
cells obtained by the LB-IPTG media system. Therefore,
after purification, the overall protein yield using auto-induc-
tion media showed significant improvement over induction
by the LB-IPTG system, as the yields obtained per the same
culture volume were increased by about two-fold for
PfSHMT and about three-fold for PvSHMT (Table 1).
Therefore, any future work on Pf- and PvSHMT should be
carried out with the auto-induction media because it
significantly reduced the cost and time used for SHMT pro-
duction. The estimated media costs to produce the equiva-
lent amount of protein by an auto-induction system are
one-fourth (0.35 vs 1.40 USD/mg) for PfSHMT and one
fifth (0.09 vs 0.47 USD/mg) for PvSHMT of those for LB-
IPTG. Although many proteins have been expressed suc-
cessfully by the auto-induction system [22-24], there are
only two reports of using this media to express
Plasmodium proteins: SHMT in this study and the bi-
functional dihydrofolate synthase-folylpolyglutamate syn-
thase (DHFS-FPGS) [25]. However, the rationale of using
auto-induction for the expression of DHFS-FPGS was not
given. It is known that the expression level of Plasmodium
proteins in E. coli is typically low, which may be due to
many reasons such as incompatible codon usage between
these organisms. The auto-induction system offers a strat-
egy that may combine with other factors such as using E.
Table 1 Comparison of Plasmodium SHMT production
from auto-induction and LB-IPTG media

Properties PfSHMT PvSHMT

LB-
IPTGa

Auto-
induction

LB-
IPTGb

Auto-
induction

Cell paste (g/litre media
culture)

5.13 14.30 3.62 17.26

Specific activity of SHMT in
crude lysate (unit/mg
protein)

0.02 0.08 0.16 0.18

Total amount of purified
protein (mg protein/g cell
paste)

0.69 0.52 1.44 1.70

Total amount of purified
protein (mg/litre media
culture)

3.53 7.38 10.48 29.29

a and b; data from [6] and [7], respectively.
The data shown are derived from a single protein preparation. The values
reported are reproducible well in routine protein preparations and deviate less
than 20%.
coli with codon optimized strain or plasmid with high
copy numbers to enhance the protein production yield.
SHMT activity measured by coupling with MTHFD
To avoid the need for a radioactive assay [26], different
methods have been developed to assess the THF-
dependent SHMT activity. The coupled assay using 5,10-
methylenetetrahydrofolate reductase (SHMT-MTHFR)
has been shown to be useful for monitoring the activities
of Pf- and Pv-SHMT continuously [6,7,27]. Although this
method is reliable and gives good sensitivity, the assay has
to be conducted anaerobically to minimize the oxidase ac-
tivity of the coupled enzyme, limiting the value of this
technique. Therefore, an improved assay, which can be
carried out aerobically was investigated. In this study, a
coupled assay was developed, using MTHFD [28,29] that
oxidizes 5,10-CH2-THF generated by Plasmodium SHMT
to 5,10-methenyltetrahydrofolate (5,10-CH+-THF) in the
presence of NADP+. The formation of NADPH was moni-
tored at 375 nm to avoid interference from the THF ab-
sorbance. The control reaction omitting any one of the
enzyme or substrate showed no reduction of NADP+ as
the absorbance at 375 nm was not changed, indicating
that SHMT-MTHFD coupling assay is only specific for
the detection of MTHF. For the sensitivity of the assay,
the lowest concentration of the measured product is the
detection limit of a spectrophotometer. The instrument
used in this study gives a reliable measurement for the ab-
sorbance change of 0.01 AU at 375 nm, which is equiva-
lent to 5.2 μM of NADPH formed.
Steady state kinetic parameters of PvSHMT were

determined using the SHMT-MTHFD coupled assay under
aerobic conditions, and the results were compared to those
obtained by the SHMT-MTHFR anaerobic assay to evalu-
ate whether these assays are equivalent and give similar
results. The results are summarized in Table 2. The Km

values of L-serine obtained from the two assays are similar,
while the Km values of THF are different (0.09 + 0.02 vs
0.14 + 0.02 mM). This difference is likely due to the fact
that [6R,S] THF racemic mixture was used for the
PvSHMT-MTHFR assay and pure [6 S] THF was used for
Table 2 Steady-state kinetic parameters of PvSHMT by
SHMT-MTHFR and SHMT-MTHFD assays

Coupling
system

Steady-state kinetic parameters Reference

Km (mM) kcat (s
-1)

L-serine THF
#MTHFR 0.18 ± 0.03 0.14 ± 0.02 0.98 ± 0.06 [7]

*MTHFD 0.19 ± 0.02 0.09 ± 0.02 1.26 ± 0.13 Present work
# racemic [6R,S] THF was used.
*[6 S]-THF was used and the reported kcat (apparent value) was from the
experiment carried out keeping the concentration of L-serine fixed at 2 mM
and varying THF between 0.025-0.4 mM.
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the PvSHMT-MTHFD assay. If the racemic mixture of
THF was assumed to be composed of an equal amount of
6 S- and 6R- forms and that the presence of the 6R form
has no influence on the Km value of 6 S-THF, the Km values
obtained from both coupling methods are not significantly
different. The turnover numbers (kcat) obtained from these
methods were also in a similar range (0.98 + 0.06 s-1 for
SHMT-MTHFR assay and 1.26 + 0.13 s-1 for SHMT-
MTHFD assay). Based on the above results and the added
benefit of its tolerance to aerobic conditions, the SHMT-
MTHFD coupled assay was subsequently used for inhibitor
screening in this study.

Screening of inhibitors towards Plasmodium SHMT
Since folate substrates utilized by enzymes in the dTMP
cycle share common structural features, anti-folates
designed against each of these enzymes may cross inhibit
more than one enzyme. Another group of inhibitors for
SHMTare amino acid analogues with structures similar to
serine and glycine. In this study, fifteen anti-folates and six
amino acid analogues were screened against Pf- and
PvSHMT (Additional file 1). These anti-folates are 2,4-
diaminopyrimidine derivatives and demonstrated strong
inhibition of Plasmodium DHFR (Ki in the nM range) and
effective anti-malarial activity (IC50 in μM level) [15-17].
Both anti-folates and amino acid analogues used in this
study do not absorb light in the visible region; therefore,
they do not interfere the absorption detection at 375 nm.
The results indicated that most of these compounds in
the range of 0.05-0.5 mM did not significantly inhibit Pf-
and PvSHMT. This may be due to the fact that these inhi-
bitors were not designed for SHMT. Similarly, a previous
report also showed that inhibitors of Plasmodium DHFR
did not inhibit the activity of PfSHMT [14]. Interestingly,
the inhibitor TV-P-0-113 (2,4-diaminopyrimidine with a
flexible side chain) at 0.25 mM decreased PvSHMT activ-
ity by 40%, but did not inhibit PfSHMT (Additional file 1).
In contrast to TV-P-0-113, the 2,4-diaminopyrimidine
derivatives with less flexible and bulkier side chains, CT-
57-59-38 and CT-55-59-42 at 0.1 mM decreased PfSHMT
activity by 40% but did not affect PvSHMT activity
(Additional file 1). The control reactions showed that
none of these compounds inhibited MTHFD at the con-
centrations employed. According to the structures of the
inhibitors (Additional file 1), the data suggest that a 2,4
diaminopyrimidine core structure can be used as a
starting template to develop more effective anti-malarial
anti-SHMT compounds. The results also imply that
there are differences in the ligand binding sites of Pf-
and PvSHMT, suggesting the possibility of designing
both broad inhibitors and selective species specific
inhibitors. Additionally, these inhibitors demonstrated
inhibition of both DHFR and SHMT. It can be postu-
lated that inhibitors targeting two enzymes would
improve anti-malarial activity, and that a dual target
compound could be a more favourable choice for a
new drug candidate. With greater insight into the X-
ray structures of malarial DHFR and SHMT, a ra-
tional design for effective multi-target inhibitors can
be achieved.
None of the amino acid analogues (D-serine, D-ala-

nine, D-threonine, L-allo-threonine, D-cycloserine, and
thiosemicarbazide) at 1 mM showed inhibition against
Plasmodium SHMTs. Previous studies showed that
amino acid analogues such as D-cycloserine (2.5 mM)
and thiosemicarbazide (1–3 mM) inhibited mammalian
cytosolic SHMTs, and that some exhibited slow inhib-
ition [30,31]. Therefore, time-dependent inhibition of
Plasmodium SHMTs by thiosemicarbazide was investi-
gated (see following section). The inhibition kinetics
with D-cycloserine was not studied because the com-
pound inhibited both MTHFD and MTHFR coupling
enzymes.

Inactivation of Plasmodium SHMTs by thiosemicarbazide
Incubation of Pf- and PvSHMT with excess thiosemicarba-
zide resulted in time-dependent inactivation of the enzyme
according to pseudo-first order kinetics (Figure 1). The
value of kobs increased when the thiosemicarbazide concen-
tration increased. Rate constants for the inactivation could
be analysed according to Equation 1 to calculate KI and
kinact. The KI for the reaction of Pf- and PvSHMT were
determined as 0.36 + 0.07 and 0.21 + 0.08 mM, respect-
ively. The kinact for Pf- and PvSHMT were determined as
0.0014 + 0.001 and 0.0015 + 0.002 s-1, respectively.
The interaction of PvSHMT and thiosemicarbazide

was further explored using spectrophotometry. Upon in-
cubation of PvSHMT with 10 mM thiosemicarbazide for
50 min at 25°C, the absorbance spectrum peak of the
PvSHMT and thiosemicarbazide mixture slowly shifted
from 422 nm to 392, 451, and 482 nm (Figure 2A). The
spectrum of the absorbing species was stable for at least
90 min. Addition of 1% w/v SDS (final concentration)
into the solution to de-nature the enzyme resulted in a
spectrum of the mixture similar to that of free PLP incu-
bated with thiosemicarbazide which showed absorbance
maxima at 312 and 388 nm (Figure 2B). These findings
suggest that the observed absorbing intermediate
resulted from the formation of a direct adduct between
thiosemicarbazide and the PLP cofactor of the enzyme.
The adduct molecule formed from the reaction of

PvSHMT with thiosemicarbazide was obtained from the fil-
trate of the inactivation product (see Methods section), and
was identified by HPLC and LC-MS. Prior to this study,
HPLC chromatograms of thiosemicarbazide, free PLP, and
PLP mixed with thiosemicarbazide (previously speculated
to form PLP-thiosemicarbazone [30]) were determined.
The HPLC chromatograms monitored at the wavelengths



(A) (B)

(C) (D)

Figure 1 Inactivation of PfSHMT (A, B) and PvSHMT (C, D) by thiosemicarbazide. (A and C) show semi-logarithmic plots of residual
activities (ln V/V0) versus incubation times at different thiosemicarbazide concentrations. The thiosemicarbazide concentrations used to inactivate
PfSHMT (A) were 0.06 mM (�), 0.125 mM (▪), 0.25 mM (△), 0.5 mM (□), and 1 mM (○), while those for PvSHMT (C) were 0.03 mM (�), 0.06 mM (▪),
0.125 mM (△), 0.25 mM (□), and 0.5 mM (○). (B and D) show plots of the observed rate constants (kobs) calculated from the slopes in A and C,
respectively, versus thiosemicarbazide concentrations. Based on Equation 1, KI for Pf- and PvSHMT were 0.36 ± 0.07 mM and 0.21 ± 0.08 mM,
whereas kinact of Pf- and PvSHMT were 0.0014 ± 0.001 s-1 and 0.0015 ± 0.002 s-1, respectively.
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254 and 388 nm clearly identified thiosemicarbazide, free
PLP, and PLP-thiosemicarbazone [30] at retention times of
0.89, 1.28 and 3.56 min, respectively (Figure 3A and B). For
the filtrate of the inactivation product, a compound with a
retention time of 3.56 min with an absorption maxima at
388 nm was detected (Figure 3C and D), which was similar
(A)

Figure 2 Absorption spectrum changes upon the addition of 10 mM
A at 25°C for 50 min. For (A): (−), (○), and (�) represent spectra of PvSHM
392, 451 and 482 nm), and PvSHMT in the presence of thiosemicarbazide a
of PLP (λmax 328 and 388 nm), PLP in the presence of thiosemicarbazide (λ
and 1% SDS (λmax 312 and 388 nm).
to the compound that resulted from the incubation of free
PLP and thiosemicarbazide (Figure 3A and B). MS-MS ana-
lysis revealed that the molecular mass of the peak at
3.56 min was 318.9 Da (Figure 4), in agreement with the
calculated molecular mass of the PLP-thiosemicarbazone
adduct (320.28). Additionally, the compound generated
(B)

thiosemicarbazide into PvSHMT (A) and into free PLP (B) in Buffer
T (λmax 422 nm), PvSHMT in the presence of thiosemicarbazide (λmax

nd 1% SDS (λmax 312 and 388 nm). For (B): (−), (○), and (�) are spectra

max 312 and 388 nm), and PLP in the presence of thiosemicarbazide



(A) (B)

(C) (D)

Figure 3 HPLC chromatograms of compounds detected at wavelengths 254 (A and C) and 388 nm (B and D). (A and B) show the peaks
of thiosemicarbazide, free PLP, and PLP mixed with thiosemicarbazide (PLP-thiosemicarbazone) at the retention times 0.89, 1.28 and 3.56 min,
respectively. (C and D) show the peaks of the filtrate obtained from a mixture of PvSHMT (62.79 μM) with thiosemicarbazide (10 mM), which was
mixed with SDS (1%w/v) and separated by a Centricon filtration unit (10 kDa cut-off). A peak with a retention time of 3.56 min was observed.
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from incubation of PvSHMT and thiosemicarbazide
showed the same parental mass and fragmentation pattern
as that of PLP with thiosemicarbazide (Figure 4). Therefore,
the product from the reactions of PvSHMT and free PLP
with thiosemicarbazide was identified as the PLP-thiosemi-
carbazone adduct (Figure 4).
It should be noted that in principle, amino acid

analogues similar to thiosemicarbazide would also
form a Schiff base with the human SHMT. Therefore,
modifications of the compounds based on the differ-
ences between the host and parasite enzyme active
sites are required so that the inhibitors can specific-
ally inhibit the parasite enzyme. However, the finding
of this PLP-thiosemicarbazone intermediate will have
significant implications in the design of inhibitors for
the enzyme. Inhibitors mimicking the Schiff base of
the PLP-substrate adduct can be used as a direct
competitive transition state inhibitor as demonstrated
for other enzymes [32,33]. Another approach is to de-
sign a pro-drug in the form of a non-phosphorylated
pyridoxyl-substrate adduct to inhibit PLP-dependent
enzymes as recently introduced [34]. The non-phos-
phorylated pyridoxyl-substrate adduct is phosphory-
lated by Plasmodium pyridoxine/pyridoxal kinase
(PdxK), which in turn acts as an inhibitor of the
specific PLP-dependent enzyme. One of the advan-
tages is that the non-phosphorylated pro-drug can be
taken up more easily and trapped in the cell once it
is phosphorylated. An example is PT3, a cyclic pyri-
doxyl-tryptophan methyl ester, which upon phosphor-
ylation by PdxK inhibits Plasmodium ornithine
decarboxylase and kills the parasites. A possible
mechanism by which this inhibitor works is that PLP
in the holoenzyme is displaced by the phosphorylated
pro-drug, or alternatively, the phosphorylated pro-
drug competes with PLP for the PLP binding site of
the pre-synthesized apoenzyme [34].
In general, the results shown here are similar to the in-

hibition study of sheep cytosolic SHMT by thiosemicarba-
zide, where thiosemicarbazide was reported as a slow
binding inhibitor and PLP-thiosemicarbazone was proposed
as a final product [30]. However, it should be mentioned
that in addition to the formation of the PLP-thiosemicarba-
zone Schiff base intermediate, an enzyme quinonoid inter-
mediate might form as indicated by the appearance of
absorbance at 482 nm, which is a general characteristic of a
quinonoid intermediate [4]. It is not known whether this
intermediate is one of the intermediates generated during
the formation of PLP-thiosemicarbazone or whether it is
the conversion intermediate of PLP-thiosemicarbazone.



(A) 

(B) 

(C) PLP-thiosemicarbazone (MW =320.28) 

N

HO

PO
O

OH
OH

NHN
S

NH2

Figure 4 MS analysis of compounds resulting from the reaction of PLP with thiosemicarbazide (A) and PvSHMT with thiosemicarbazide
(B). Compounds generated from these reactions are similar because they have the same parental mass (MW 318.9, indicated by arrow) and
fragmentation pattern (MW 224.7, 242.7, 259.7 and 301.8, insets of A and B), which are in agreement to that of the PLP-thiosemicarbazone
adduct. (C) Chemical structure of PLP-thiosemicarbazone.
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Fluorescence properties of Plasmodium SHMT upon
ligand binding
Since Pf- and PvSHMT revealed dissimilar reactivity toward
inhibitors (Additional file 1), the difference in the binding site
environment of Plasmodium SHMTs was probed using
fluorescence measurements while the proteins were bound
to amino acid and folate. Free PLP, PfSHMT, and PvSHMT
at equivalent concentrations (~23 μM) were subjected to



(A) 

(B) (C)

(D) (E)

Figure 5 Emission spectra of PLP, Pf- and PvSHMT in the absence and presence of ligands in buffer A at 25°C. (A) Free PLP (−−−−),
PfSHMT (�) and PvSHMT (○) at an equivalent concentration (~ 23 μM) were excited at 388, 420 and 422 nm, respectively, and the maximum
emission peaks were 494, 506 and 510 nm, respectively. (B and C) Spectra of PfSHMT alone (�), PfSHMT with L-serine (■, D-serine (✞), L-alanine (△),
glycine (□), folinic acid (▲), and glycine which was later treated with folinic acid (+). (D and E) Spectra of PvSHMT alone (○), PvSHMT with L-serine (■),
D-serine (✞), L-alanine (△), glycine (□), folinic acid (▲), and glycine which was later treated with folinic acid (+).
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excitation at 388, 420 and 422 nm, respectively, and their
emission spectra were recorded. Free PLP showed low
fluorescence emission intensity with a peak at 494 nm,
while Pf- and PvSHMT exhibited higher fluorescence in-
tensity with emission peaks at 506 and 510 nm, respect-
ively (Figure 5A). Upon addition of amino acids (L-, D-
serine, L-alanine, and glycine), the fluorescence signal of
Pf- and PvSHMT was quenched, but the emission
spectrum peaks remained unchanged (Figure 5B-E).
Qualitatively, the binding of ligands caused a similar trend
in the quenching levels of Pf- and PvSHMT fluorescence.
The differences between the binding site environments of
the two enzymes became evident upon binding of L-serine
and glycine. For PvSHMT, L-serine binding decreased the
fluorescence intensity the greatest, while for PfSHMT the
binding of glycine caused the largest decrease in fluores-
cence intensity. In contrast, addition of folinic acid to Pf-
and PvSHMTsolutions only slightly decreased the fluores-
cence intensity of Pf- and PvSHMT (Figure 5C and E).
However, when both of the two ligands (glycine and foli-
nic acid) were included, the intensity and peak of the
emission spectra were decreased, suggesting that binding
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of the amino acid is required in order for the binding of
folinic acid to cause subtle changes in the binding site.

Conclusions
The production yields of Pf- and PvSHMT have been
improved by using auto-induction media. Various amino
acid analogues and anti-folate compounds were screened
for the ability to inhibit SHMT. Most of these com-
pounds are not effective inhibitors for Plasmodium
SHMTs. However, variation in the binding site environ-
ment of Pf- and PvSHMT was seen by the differences in
their response to three inhibitors (TV-P-0-113, CT-57-
59-38 and CT-55-59-42). The chemical structures of
these 2,4-diaminopyrimidine compounds will be further
optimized to develop effective inhibitors with dual inhib-
ition activity against SHMT and DHFR. The data from
fluorescence measurements further confirmed that the
active site environments of Pf- and PvSHMT are differ-
ent. The inhibition study of thiosemicarbazide with Pf-
and PvSHMT showed that thiosemicarbazide inhibits
the enzymes in a time-dependent manner and inacti-
vates the enzyme by forming a PLP-thiosemicarbazone
adduct. This knowledge is useful for the development of
effective inhibitors against SHMT in future studies.

Additional file

Additional file 1: Chemical structures of anti-folates (concentration
indicated) and amino acid analogues (1 mM) and their inhibition
activities. NA; no inhibition activity. (A) 2,4-diaminopyrimidine anti-folates.
(B) amino acid analogues.
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