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Abstract

Background: Carotid paragangliomas (CPGLs) are rare neuroendocrine tumors that arise from the paraganglion at the
bifurcation of the carotid artery and are responsible for approximately 65% of all head and neck paragangliomas. CPGLs
can occur sporadically or along with different hereditary tumor syndromes. Approximately 30 genes are known to be
associated with CPGLs. However, the genetic basis behind the development of these tumors is not fully elucidated, and
the molecular mechanisms underlying CPGL pathogenesis remain unclear.

Methods: Whole exome and transcriptome high-throughput sequencing of CPGLs was performed on an Illumina
platform. Exome libraries were prepared using a Nextera Rapid Capture Exome Kit (Illumina) and were sequenced
under 75 bp paired-end model. For cDNA library preparation, a TruSeq Stranded Total RNA Library Prep Kit with Ribo-
Zero Gold (Illumina) was used; transcriptome sequencing was carried out with 100 bp paired-end read length.
Obtained data were analyzed using xseq which estimates the influence of mutations on gene expression profiles
allowing to identify potential causative genes.

Results: We identified a total of 16 candidate genes (MYH15, CSP1, MYH3, PTGES3L, CSGALNACT2, NMD3, IFI44, GMCL1,
LSP1, PPFIBP2, RBL2, MAGED1, CNIH3, STRA6, SLC6A13, and ATM) whose variants potentially influence their expression (cis-
effect). The strongest cis-effect of loss-of-function variants was found in MYH15, CSP1, and MYH3, and several likely
pathogenic variants in these genes associated with CPGLs were predicted.

Conclusions: Using the xseq probabilistic model, three novel potential causative genes, namely MYH15, CSP1, and
MYH3, were identified in carotid paragangliomas.
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Background
Paragangliomas are rare neuroendocrine neoplasms de-
rived from paraganglionic tissue. In the head and neck,
paragangliomas most frequently arise from carotid glo-
mus at the bifurcation of the carotid artery [1]. Carotid
paragangliomas (CPGLs) are highly vascularized tumors
and are anatomically classified on three groups based on
the size and involvement of the carotid artery [2]. The
majority of carotid paragangliomas belong to groups 2
and 3 (primarily large size CPGLs with moderate or high
arterial attachment), which are surgically challenging.
CPGLs are typically characterized by slow-growing and
non-aggressive tumors. Up to 10% of CPGLs form re-
gional or distant metastases (malignant CPGLs) [3]. Ap-
proximately 10% of CPGLs are hereditary [4]. The new
WHO classification describes paragangliomas as tumors
with variable metastatic potential [5].
Almost all tumors, including paragangliomas, are

characterized by altered energy metabolism [6–8]. Sev-
eral genes involved in energy metabolism were found
to be critical for CPGL pathogenesis. Germline variants
in the SDHB [9], SDHC [10], SDHD [11], RET [12], and
VHL [13, 14] genes were associated with carotid paragan-
gliomas. Somatic variants in these genes, as well as ones
in SDHA, SDHAF2, IDH1, NF1, MEN1, and KIF1 have
also been described in sporadic CPGLs [10, 15, 16].
Germline and somatic variants in SDHx genes are

often found in head and neck paragangliomas [17, 18].
These genes encode the four subunits (SDHA, SDHB,
SDHC, and SDHD) of succinate dehydrogenase (SDH),
also known as the mitochondrial complex II. SDH is a
component of both the oxidative phosphorylation
(OXPHOS) system and the tricarboxylic acid (TCA)
cycle, which are key metabolic pathways in the mito-
chondria. Dysfunctional SDH resulting from genetic or
epigenetic alterations can contribute to various path-
ologies, including cancer [19]. The molecular mecha-
nisms underlying tumorigenesis include the increased
generation of reactive oxygen species (ROS) and the
disruption of mitochondrial function during apoptosis
[20]. On the other hand, dysfunctional SDH leads to
succinate accumulation, which in turn affects the activ-
ity of the prolyl hydroxylase (PHD) enzyme that cata-
lyzes the hydroxylation of hypoxia inducible factor
(HIF). Impaired PHD activity disrupts the binding be-
tween HIF and von Hippel-Lindau tumor suppressor
protein (pVHL) and subsequently leads to HIF degrad-
ation via the ubiquitin-proteasome pathway [21]. The
development of paragangliomas is often associated
with the pseudohypoxia state caused by the
stabilization and activation of HIF [22, 23]. Variants in
SDHD occur in most carotid paragangliomas, whereas
rarer SDHB variants result in aggressive disease and
metastasis [24–26].

Variants in other known paraganglioma/pheochromo-
cytoma-causative genes (e.g., RET, NF1, and IDH1) are
less common in CPGLs and are primarily observed in
sporadic ones. RET and NF1 are a proto-oncogene and a
tumor suppressor gene respectively; their protein prod-
ucts participate in the PI3K/AKT and RAS/MAPK path-
ways and mTOR signaling [27, 28]. Variants in RET and
NF1 lead to deregulation of these pathways and are be-
lieved to be critical drivers of tumorigenesis. Several var-
iants of IDH1 but not those of IDH2 were reported in
CPGLs [10, 16]. Inactivation mutations in IDH1 are
known to result in HIF accumulation and tumor devel-
opment under pseudohypoxia conditions [29]. Two po-
tential pathogenic variants in KIF1B were identified in
CPGLs [16]. KIF1B encodes a motor protein responsible
for organelle transport and cell division [30, 31]. Several
studies have demonstrated the involvement of KIF1B in
tumorigenesis and its tumor suppressor role [32–34]. A
study using rat pheochromocytoma cells indicated that
the effects of KIF1B in apoptosis are mediated by the
EglN3 prolyl hydroxylase pathway [35]. Variants
associated with CPGLs were detected in a group of
TP53-related genes [TP53BP1, TP53BP2 (ASPP2), and
TP53I13 (DSCP1)] that encode proteins involved in the
regulation of cell proliferation, DNA damage response,
and apoptosis. These proteins can act as tumor suppres-
sors by modulating p53 function and promoting apoptosis
[36–38]. The mutated ARNT (HIF1B) gene, which en-
codes an aryl hydrocarbon nuclear translocator, was
identified in CPGLs [16]. ARNT functions as a
co-factor for various transcription factors, including
HIF1A [39]. Aberrant ARNT expression can contrib-
ute to tumor growth via interactions with specific
transcription factors that regulate the expression of
multiple genes [40]. In addition, likely pathogenic var-
iants have been identified in MEN1, BAP1, BRAF,
BRCA1, BRCA2, CDKN2A, CSDE1, and FGFR3 in in-
dividual CPGLs [16]. The above findings indicated
high genetic inter-heterogeneity of these tumors.
Although recent studies identified several potential

mechanisms involved in paraganglioma pathogenesis,
further investigations are required to elucidate the mo-
lecular genetic basis of the paragangliomas with different
localizations and predispositions to be aggressive. More-
over, most reports focused on mutational status of the
genes associated with CPGLs. The functional effects of
germline or somatic mutations on gene expression in
paragangliomas remain poorly understood. Therefore,
the present study aimed to identify the potential causa-
tive genes associated with carotid paragangliomas. Using
exome data of CPGLs from previous study [16] and
RNA-Seq data, we evaluated the effects of somatic vari-
ants on gene expression profiles using the xseq probabil-
istic model. This approach allowed the identification
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of novel candidate genes and likely pathogenic variants
involved in the pathogenesis of CPGLs.

Methods
Patients and samples
Carotid paraganglioma samples were collected after
obtaining written informed consent from the patients in
the Vishnevsky Institute of Surgery. Pathological evalu-
ation was performed for all samples, and the minimum
percentage of tumor cells was 80%. The study was ap-
proved by the ethics committee from Vishnevsky Insti-
tute of Surgery and was conducted in accordance with
the principles outlined in the Declaration of Helsinki
(1964). Clinicopathologic characteristics of the CPGL
patients are presented in Table 1.

RNA extraction
Total RNA was extracted from 25 formalin-fixed
paraffin-embedded (FFPE) tissues of carotid paraganglio-
mas using a RNeasy FFPE Kit (Qiagen, Germany). RNA
concentration was measured on a Qubit 2.0 fluorometer
(Thermo Fisher Scientific, USA), and RNA quality was
assessed using an Agilent 2100 Bioanalyzer (Agilent
Technologies, USA).

Library preparation and transcriptome sequencing
The cDNA libraries were prepared using a TruSeq
Stranded Total RNA Library Prep Kit with Ribo-Zero
Gold (Illumina, USA) according to the manufacturer’s
instructions. Paired-end (2 × 100 bp) sequencing was
performed on an Illumina HiSeq 2500 Sequencing Sys-
tem (Illumina). RNA-Seq data have been deposited to
the NCBI Sequence Read Archive (SRA) under accession
number PRJNA476709.
Raw reads were subjected to quality control with

FastQC (http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/). Adapter sequences and low-quality reads
were removed using Trimmomatic [41]. Kallisto [42]
was used for pseudoalignment and quantifying

abundances of transcripts. Gene expression levels
were normalized using the TPM (transcripts per
million) method.

Whole-exome sequencing data
We analyzed exome data of carotid paragangliomas gen-
erated from a previous study [16]. In that study, exome
libraries were prepared using a Nextera Rapid Capture
Exome Kit (Illumina). High-throughput sequencing of
75 bp paired-end reads was carried out on a NextSeq500
System (Illumina) at a median sequencing depth of
300×. The raw sequence reads are available at the SRA
under the accession number PRJNA411769.
The quality of raw sequencing data was examined with

FastQC. Trimmomatic was used to trim low-quality
reads and adapter sequences. Reads were then mapped
to the reference human genome (GRCh37/hg19) using
BWA-MEM [43]. SAMtools software [44, 45] was ap-
plied for removing of duplicate reads, sorting, merging,
etc. Freebayes [46] was used for variant calling; VCF files
were processed with submodules from vcflib (https://
github.com/vcflib/vcflib#vcflib). SnpSift from the SnpEff
toolbox [47] was used for annotation of genomic vari-
ants; the HGMD, OMIM, ClinVar, dbSNP, dbNSFP,
COSMIC, ConsensusPathDB, 1000 Genomes Project,
and ExAC databases were used as additional re-
sources. Pathogenicity of all variants was assessed in
silico using the SIFT [48], PolyPhen2 [49], Mutation-
Taster [50], and LRT [51] algorithms. PhastCons [52]
and PhyloP [53] methods were used to analyze the
evolutionary conservation of regions harboring the
target variants.
Using exome and transcriptome data from the same

carotid paragangliomas (25 samples), we evaluated the
impact of somatic loss-of-function variants on gene
expression profiles using xseq [54]. The xseq model
evaluates the posterior probability of the mutation in-
fluence in a certain gene on the expression profiles of a
number of genes, including itself (cis-effect) and associ-
ated genes (trans-effect). The output of xseq consists of
P(Fg,m) and P(Dg) values, where P(Fg,m) is the prob-
ability that an individual mutation in gene g in an indi-
vidual patient m influences expression within that
patient, and P(Dg) is the probability that a recurrently
mutated gene g influences gene expression across the
population of patients [54].

Validation of variants by Sanger sequencing
Potential pathogenic variants identified using xseq were
selected and validated by Sanger sequencing. Amplifica-
tion was carried out in 20 μL final reaction volume using
a Tersus PCR Kit (Evrogen, Russia). Nested-PCR was
performed to amplify the two variants (c.2706-7855G >
A and c.2706-7798delA) in the CSP1 gene. For the first

Table 1 Clinicopathologic characteristics of the CPGL patients

Characteristic Total, n

Gender

Male 5

Female 20

Age (years)

≤ 50 13

> 50 12

Family history of paragangliomas

Yes 1

No 1

N/A 23
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round of amplification, the outer primers (F: 5′-GGAG
GCTGAGGCGGGCAGATC-3′ and R1: 5′-CACC
ATTCTCCTGCCTCAGCCTCT-3′) producing a 181 bp
product were used. PCR products from the first
step were diluted at 1:1000 and subsequently amplified
using the inner primers (F: 5′-GGAGGCTGAGGCGG
GCAGATC-3′ and R2: 5′- GTAGCTGGGACTAC
AGGCGCCT -3′) to produce a 154 bp fragment. PCR
and nested-PCR were performed using the following
amplification profile: initial denaturation step at 95 °C
for 3 min; 35 cycles of denaturation at 95 °C for 30 s, an-
nealing at 60–65 °C for 30 s, and extension at 72 °C for
60 s; and a final extension of 72 °C for 5 min. All PCR
products were subjected to 2% agarose gel electro-
phoresis and visualized using a Gel Doc XR+ Gel
Documentation System (BioRad, USA) with GelRed
DNA stain (Biotium, USA). Primer sequences are
listed in Table 2.

Results
Using the xseq model, we estimated the probability that
potential loss-of-function somatic variants (frameshift,
nonsense, and splice-site variants) impact gene expres-
sion in individual patients [P(F) value] and across the

population of patients [P(D) value]. The essential first
step was the identification of somatic variants. In the
study, we analyzed previously collected data from carotid
paraganglioma patients. Tumor samples were collected
over a span of more than 20 years in the Vishnevsky
Institute of Surgery; no blood samples were obtained
from the same patients to date. Thus, data from the
1000 Genomes Project and ExAC databases were used
to exclude germline variants. Variants with more than
1% frequency in these databases were excluded from
the analysis. We identified 16 genes (MYH15, CSP1,
MYH3, PTGES3L, CSGALNACT2, NMD3, IFI44,
GMCL1, LSP1, PPFIBP2, RBL2, MAGED1, CNIH3,
STRA6, SLC6A13, and ATM) whose somatic variants
can influence their gene expression. These genes had
maximum P(F) and P(D) values ranging from 0.51 to
0.99 and from 0.32 to 0.99 respectively. Based on the
criteria, MYH15, CSP1, and MYH3 were considered to
have significant cis-effect of somatic variants on gene
expression and were proposed as candidate genes asso-
ciated with carotid paragangliomas.
To analyze all potential somatic loss-of-function vari-

ants in MYH15, CSP1, and MYH3, novel filter conditions
were set for variants derived from the 1000 Genomes

Table 2 List of primers used for validation of the variants

Gene Variant Primer sequence (5′→ 3′) Product size (bp)

CPS1 c.2706-7855G > Aa F: GGAGGCTGAGGCGGGCAGATC
R1: CACCATTCTCCTGCCTCAGCCTCT
R2: GTAGCTGGGACTACAGGCGCCT

181
154

c.2706-7798delAa

c.2706-7745C > G F1: GAG ACC ATC CTG GCT AAC ACG GTG AAA C
R1: GTC TCG CTC TCT CTC CCA GGC TG

195

p.Gly1382Ser/c.4144G > A F: CTAAAACTCACACTCACCATAGAAGG
R: AGATTCCATGCTGACAGAAAACAAC

276

p.Arg1748Gln/c.5243G > A F: TCTCTTCTGCATTTTGACACTCCTG
R: TTTCTTTAGAACACAAGCCTCCTCAG

113

MYH15 p.Glu1811Lys/c.5431G > A F: ACTGTCAAGCCCTCATGATTACC
R: AAGAACTGAAGAAGAAGCAAGACAC

190

p.Ala1003Val/c.3008C > T F: TTCTTCTTAGGTTAAAAACCTTACTGAGG
R: GTTTGCTCTTGGTTTTGTTCAAAG

167

MYH3 p.Ala1198Thr/c.3592G > A F: TGACCCGCTGCAGGTTG
R: CGTCACCTCCACGCAGATAG

176

p.Ala1604Thr/c.4810G > A F: TCAGGTCCCCCTCCATCTTC
R: GAGCAGCTGAAGAGGAACTACC

118

p.Ala1752Thr/c.5254G > A F: CTCATGCAGCTCCAGAGTGAGG
R: GGCTTTAATGCAATGCAATCCCG

141

p.Ile264Thr/c.791 T > C F: CAAACACAGGACTCTCTTTCAAACTG
R: GCCATGGTAGAATCTGGTCTCC

182

p.Met798Val/c.2392A > G F: GAGCTCATGTCTGAACAAAGACCC
R: CTTCTGCCCCATAAGGTGTTCTTC

184

p.Ser1240Leu/c.3719C > T F: CAGGTTTCAATGACCACGGAGT
R: GGAGAAGGAGAAGAGCGAGTTC

142

p.Thr442Ile/c.1325C > T F: GATCTGGAACACAAACACAGGACTC
R: GGGCCATGGTAGAATCTGGTC

195

aAmplification of fragments carrying two variants (c.2706-7855G > A and c.2706-7798delA) in the CSP1 gene was performed using nested-PCR
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Project and ExAC; in particular, variants with frequen-
cies of 2% or less were used in the analysis. Predictions
using the SIFT, PolyPhen2, MutationTaster, or LRT al-
gorithms indicated that the MYH3 gene was predomin-
antly enriched in likely pathogenic variants (Table 3).
The PhastCons and PhyloP values for these variants
were also high, indicating strong evolutionary conserva-
tion. However, several variants were frequently identi-
fied in the carotid paraganglioma samples and appear
to be germline ones. These variants were excluded from
the sample set, and the cis-effects were measured
again using xseq. In this case, only MYH15 was char-
acterized by variants that can result in gene expres-
sion alterations [average P(F) value – 0.66; and P(D)
value – 0.68].

All identified variants were validated by Sanger
sequencing.

Discussion
Using integrative analysis of whole exome and RNA-Seq
data from a representative sample set, we identified
novel potential causative genes in carotid paraganglio-
mas. We employed methods based on the calculation of
the posterior probability of a mutation to influence gene
expression. From the set of 16 candidate genes, somatic
loss-of-function variants in three genes, namely CPS1,
MYH15, and MYH3, were found to significantly alter
their gene expression levels.
CPS1 encodes carbamoyl-phosphate synthase 1, a

mitochondrial enzyme that mediates the first step of the

Table 3 Likely pathogenic variants in MYH15, CSP1, and MYH3

Gene rs ID
number

GenBank Coordinate Nucleotide
change

Amino acid
change

Genotype/
number
of
samples

Predictions

SIFT PolyPhen2 MutationTaster LRT

CPS1 – – Chr2:
211494571

c.2706-
7855G > A

– Het/2 N/A N/A N/A N/A

– – Chr2:
211494681

c.2706-
7745C > G

– Het/1 N/A N/A N/A N/A

– – Chr2:
211494618

c.2706-
7798delA

– Het/1 N/A N/A N/A N/A

– NM_001122633.2 Chr2:
211539650

c.4144G >
A

p.Gly1382Ser Het/2 Tolerated Benign Disease-
causing

Deleterious

MYH15 rs56118396 NM_014981.1 Chr3:
108112954

c.5243G >
A

p.Arg1748Gln Het/4 Tolerated Benign Disease-
causing

N/A

– Chr3:
108110666

c.5431G >
A

p.Glu1811Lys Het/1 Deleterious Probably
damaging

Disease-
causing

N/A

MYH3 rs34088014 NM_002470.3 Chr17:
10542709

c.3008C > T p.Ala1003Val Het/2 Tolerated Benign Disease-
causing

N/A

rs61735358 Chr17:
10541497

c.3592G >
A

p.Ala1198Thr Het/1 Tolerated Possibly
damaging

Disease-
causing

N/A

rs201488879 Chr17:
10535939

c.4810G >
A

p.Ala1604Thr Het/1 Deleterious Possibly
damaging

Disease-
causing

N/A

rs34393601 Chr17:
10534960

c.5254G >
A

p.Ala1752Thr Het/3 Deleterious Possibly
damaging

Disease-
causing

N/A

rs763347751 Chr17:
10550688

c.791 T > C p.Ile264Thr Het/1 Deleterious Probably
damaging

Disease-
causing

N/A

rs746986821 Chr17:
10543684

c.2392A >
G

p.Met798Val Het/1 Deleterious Benign Possibly
disease-
causing

N/A

rs551363957 Chr17:
10541370

c.3719C > T p.Ser1240Leu Het/1 Deleterious Benign Disease-
causing

N/A

rs769788909 Chr17:
10547753

c.1325C > T p.Thr442Ile Het/1 Tolerated Benign Possibly
disease-
causing

N/A

SIFT scores range from 0 to 1, and variants with SIFT scores less than 0.05 are considered deleterious. SIFT scores ranging from 0.05 to 1 are predicted to be
tolerated variants
The PolyPhen-2 scores range from 0 to 1. Variants with scores ranging from 0 to 0.15 in this range are predicted to be benign. Variants with scores ranging from
0.15 to 0.85 are potential damaging, whereas values above 0.85 have higher probability of being damaging variants
MutationTaster p-values (probability) range from 0 to 1. P-values close to 1 indicate pathogenicity (disease-causing)
LRT is a likelihood ratio test. LRT scores range from 0 (neutral) to 1 (deleterious)
Het heterozygous genotype
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urea cycle [55]. Germline variants in CPS1 cause rare
autosomal recessive disorders called
carbamoyl-phosphate synthetase I deficiency (CPSID)
[56]. Recent studies have indicated that CPS1 is primar-
ily expressed in liver tissues and participates in the con-
version of ammonia to urea in hepatocytes in humans.
However, several studies have demonstrated the involve-
ment of CPS1 in carcinogenesis. Alterations in CPS1
were identified in malignant glioma [57]. CPS1 expres-
sion has been associated with the initiation and progres-
sion of colorectal cancer [58]. Hypermethylation of
CPS1 accompanied by its downregulated expression was
detected in hepatocellular carcinoma [59]. On the other
hand, CPS1 overexpression was observed in rectal, lung,
and cervical cancers and was correlated with poor progno-
sis [60, 61]. In lung adenocarcinoma cells, inhibition of
CPS1 expression was found to reduce tumor growth [61,
62]. Our current findings revealed that CPS1 is a potential
causative gene in carotid paragangliomas. The variants in
CPS1 can influence its expression level. Both genetic and
epigenetic factors influence the expression of CPS1, con-
sistent with previous studies and our current findings.
Similar to the development of inherited CPSID, variants
identified in CPS1 can be assumed to cause CPS1 inactiva-
tion, thereby leading to CPGLs. In turn, CPS1 variants
could lead to alterations in the urea cycle and accumula-
tion of toxic ammonia, which is normally converted to
urea. The brain is known to be highly sensitive to the ef-
fects of excess ammonia. Ammonia can be transported
through the cell membranes in many cell types, including
cells of the nervous tissue. In vitro studies have demon-
strated that the presence of glutamate and ammonium is
necessary for lactate release in astrocytes and glial cells
[63]. In turn, extracellular lactate is associated with malig-
nant transformation and can regulate cancer-related sig-
naling pathways (e.g., NF-kB/IL-8, HIF1, and PI3K/Akt/
mTOR/Bcl-2), angiogenesis, and ATP production, which
in turn influence cell proliferation and migration [64–66].
Such molecular mechanism may be responsible for the
development of CPGLs in some cases.
Variants in MYH3 and MYH15 were additionally dem-

onstrated to exert cis-effects on gene expression in carotid
paragangliomas. MYH3 and MYH15 belong to the highly
conserved myosin heavy chain (MYH) family that encode
heavy chains of myosins [67]. Myosins are motor proteins
consisting of heavy and light chains and are involved in
various types of cellular movements resulting from actin-
myosin interactions. In muscle cells, myosin and actin fila-
ments form myofibrils; in non-muscle cells, myosins were
demonstrated to participate in various biological pro-
cesses, such as transport of cellular organelles, chromo-
somal segregation, actin organization, plasma membrane
tension, endocytosis, cell division, and cell motility [68, 69].
Expression of MYH genes varies in human tissues. MYH3

is expressed during the early stages of development in skel-
etal muscles, and its expression decreases after birth,
whereas MYH15 expression is exclusively detected in adult
extraocular muscles [70, 71]. Data from the Human Prote-
ome Atlas (HPA, https://www.proteinatlas.org/) indicate
that the peak expression of the MYH3 protein is observed
in the heart and skeletal muscles, esophagus, prostate, and
seminal vesicle. MYH15 is expressed in the brain, lungs,
small intestines, and testes. The Cancer Genome Atlas
(TCGA, https://cancergenome.nih.gov/) project, which
contains RNA-Seq data from various types of cancer, indi-
cate that MYH3 and MYH15 are expressed in almost all tu-
mors at the lowest levels. Slightly elevated mRNA level of
MYH3 gene was found in head and neck cancer with aver-
age fragments per kilobase million (FPKM) 3.3 in a set of
499 samples. However, MYH15 proteins are expressed in
glioma, urothelial and colorectal cancers (HPA data). In
addition, proteome studies revealed deferential expression
of MYH15 in early onset dementia, an atypical frontotem-
poral lobar degeneration (aFTLD) [72].
Variants in these genes were observed in different

diseases. Variants in MYH3 were detected as benzo(a)-
pyrene exposure-genomic alterations in lung cancer
patients [73]. Germline variants in MYH3 are associated
with distal arthrogryposis syndromes [distal arthrogrypo-
sis type 1, Freeman-Sheldon syndrome (DA2A), and
Sheldon-Hall syndrome (DA2B)], multiple pterygium
syndrome (MPS), and spondylocarpotarsal synostosis
syndrome (SCT) [74–77]. These disorders are character-
ized by skeletal anomalies and multiple congenital con-
tractures in the limbs, thereby indicating an essential
role of MYH3 in bone development. Variants in MYH15
were reported to be associated with higher risk for
non-cardioembolic stroke and ischemic stroke [78, 79].
In the present study, we identified several likely patho-
genic variants in MYH3 and MYH15 in carotid paragan-
gliomas, and most of these variants were found to be
located in MYH3. Currently, the direct roles of MYH3
and MYH15 in normal cellular processes and the devel-
opment of various pathologies, including cancer, remain
unclear. Moreover, only few studies in literature have
reported the involvement of MYH3 and MYH15 in
tumorigenesis. Therefore, variants identified in MYH3
and MYH15 are likely to affect the function of MYH
proteins and are potentially associated with carotid para-
gangliomas. However, further studies are required to
elucidate the mechanisms by which MYH3 and MYH15
can promote tumor pathogenesis.

Conclusions
In the present study, we identified several novel genes,
namely CPS1, MYH15, and MYH3, associated with ca-
rotid paragangliomas. These results contribute to a better
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understanding of the molecular mechanisms behind the
pathogenesis of CPGLs.
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