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Abstract: The use of 2-pyridyl oximes in metal complexes chemistry has been extensively investigated
in the last few decades as a fruitful source of species with interesting magnetic properties. In this work,
the initial combination of pyridine-2-amidoxime (pyaoxH2) and 2-methyl pyridyl ketoxime (mpkoH)
with isonicotinic acid (HINA) and 3,5-pyrazole dicarboxylic acid (H3pdc) has provided access to
three new compounds, [Ni4(INA)2(pyaox)2(pyaoxH)2(DMF)2] (1), [Co5(mpko)6(mpkoH)2(OMe)2

(H2O)](ClO4)6 (2), and [Co5(OH)(Hpdc)5(H2pdc)] (3). 1 displays a square-planar metal topology,
being the first example that bears simultaneously HINA and pyaoxH2 in their neutral or ionic
form. The neighbouring Ni4 units in 1 are held together through strong intermolecular hydrogen
bonding interactions, forming a three-dimensional supramolecular framework. 2 and 3 are mixed-
valent Co4

IIICoII and Co2
IIICoII

3 compounds with a bowtie and trigonal bipyramidal metal topology,
accordingly. Direct current and alternate current magnetic susceptibility studies revealed that the
exchange interactions between the NiII ions in 1 are ferromagnetic (J = 1.79(4) cm−1), while 2 exhibits
weak AC signals in the presence of a magnetic field. The syntheses, crystal structures, and magnetic
properties of 1–3 are discussed in detail.

Keywords: coordination polymers; metal complexes; carboxylates; magnetic properties; pyridyl
oximes; nickel; cobalt

1. Introduction

Polynuclear metal complexes are hybrid metal–organic compounds, in which metal
ions are held together through inorganic or organic ligands forming discrete species of zero
dimensionality [1–4]. The synthesis and characterisation of such species have attracted an
immense research interest the recent decades due to their potential applications in the envi-
ronmental, biomedical, technological and industrial field [5–14]. In particular, polynuclear
metal compounds often display unique structural features and combine physical properties
(magnetism, luminescence, etc.) that cross the boundaries between a variety of research
areas, including bioinorganic chemistry, drug discovery, catalysis, molecular magnetism,
and others. In regard to the latter, the discovery that the paramagnetic metal complexes
have the potential to possess magnetic properties in the absence of an external magnetic
field at very low temperature, i.e., exhibiting single molecule magnetism (SMM) behaviour,
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marked the commencement of a new era in the field of molecular nanomaterials [5–7]. The
magnetic behaviour of SMMs results from the combination of a large ground spin state (S)
with a large and negative easy-axis type of magnetoanisotropy as measured by the axial
zero-field splitting parameter, D. Such species often display extraordinary properties at the
nanoscale level, e.g., quantum tunnelling of magnetisation and quantum phase interference,
and they are excellent candidates in data storage devices applications, quantum computers,
imaging, etc. [15–20]. On the other hand, metal complexes with small magnetic anisotropy
have the potential to be used as magnetic refrigerants in magnetic refrigeration, which is
an environmentally friendly technique for refrigeration at ultra-low temperatures [8–10].

The connection of metal complexes through polytopic organic linkers leads to the
formation of coordination polymers. In the case of 1D coordination polymers consisting of
paramagnetic building units, strong exchange interactions might be present along the chain,
which gives rise to another family of magnetic materials, namely single-chain magnets
(SCMs) [21–23]. SCMs are excellent candidates for applications similar to those of SMMs;
furthermore, they have been investigated as molecular ferromagnets, synthetic metallic
conductors, non-linear optical or ferroelectric materials [24–26]. As the dimensionality
of the network increases, the accessible porosity of the material increases too, leading
to porous coordination polymers known as metal–organic frameworks (MOFs) [27–29].
MOFs are of special interest as they display appealing structural features, such as large
surface area and tuneable porosity, which make them suitable for the adsorption of large
guest molecules. The porosity is often combined with magnetism and/or another physical
property, e.g., photoluminescence, etc. The synergistic effect between different properties
may enhance the performance of such species in applications related to sensing, catalysis,
drug delivery, spintronics, photonics, etc. [30–37].

The structural and physical properties of the discrete metal complexes and coordi-
nation polymers are strongly affected by the nature of the metal ion(s) and the ligand(s)
present in their structures. The organic linkers possess suitable sites for metal coordination,
and they provide the desirable stability through the formation of hydrogen bonding, π–π
stacking, and other intermolecular interactions. Such interactions are significant, and they
are even more profound when metal complexes are linked to form coordination polymers
or MOFs, as they can introduce structural flexibility and affect the MOF selectivity toward
specific guest molecules [38]. One family of ligands that has been intensively explored for
the synthesis of metal compounds with interesting magnetic properties is the 2-pyridyl
oximes; 2-pyridyl oximes have the general formula (py)C(R)NOH (Scheme 1), with the
electronic properties and functionality of the R group playing a crucial role on the coordi-
nation properties of the ligands. (py)C(R)NOH have been key “players” in several areas
of single-molecule and single-chain magnetism, as they tend to link a large number of
metal ions, favouring also the presence of ferromagnetic exchange interactions between the
metal centres [39–49]. Although the employment of 2-pyridyl oximes has led to significant
breakthroughs in the areas of molecular magnetism, their use in the field of MOFs remains
limited. To this end, our group has been investigating the ligand blend 2-pyridyl oximes
(e.g., pyridine-2-amidoxime and 2-methyl pyridyl ketoxime) and polycarboxylates, which
has led to the isolation of the first 2-pyridyl oxime-based MOFs, and several coordination
polymers [50–52]. Some of the MOFs display unprecedented metal topologies and metal
ion encapsulation capability. A representative such example is [Cu4(OH)2(pma)(mpko)2]n,
pma4− = the tetra-anion of 1,2,4,5-benzene tetracarboxylic acid, and mpko− = the anionic
form of 2-methyl pyridyl ketoxime, which exhibits a good FeIII adsorption capacity; in-
terestingly, the magnetic properties of the latter are strongly related to the amount of the
encapsulated FeIII ions [52].
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With the above in mind, we decided to explore further the reaction mixture of 2-
pyridyl oximes and polycarboxylic acids, and, in particular, we introduced isonicotinic
acid (pyridine-4-carboxylic acid) [53–65] and 3,5-pyrazole dicarboxylic acid [66–85] to the
reaction system (Scheme 1). Both carboxylic acids have been extensively investigated
in the field of coordination compounds, and they have been proven a fruitful source of
discrete metal complexes and coordination polymers; [53–85] yet their combination with
oximic ligands remains unexplored. Herein, we report three new Ni4 (1), CoIII

4CoII (2), and
CoIII

2CoII
3 (3) complexes from this ligand combination. The syntheses, crystal structures

and magnetic properties of these compounds have been studied, revealing that 1 is a
ferromagnet being the first example bearing both pyaoxH2 and HINA. 3 displays an
unprecedented {CoII

3(µ3-OH)}7+ planar unit which can be used as a model for the study of
spin frustration in triangular CoII

3 systems.

2. Results and Discussion
2.1. Synthetic Discussion

Our group has been exploring the employment of 2-pyridyl oximes in combina-
tion with polycarboxylic acids toward the synthesis of new metal compounds. The lat-
ter involved experiments with the use of benzene-1,4-dicarboxylic acid, benzene-1,3,5-
tricarboxylic acid and benzene-1,2,4,5-tetracarboxylic acid [50–52]. The initial promising
results prompted us to explore further this reaction system by using different carboxylic
ligands, such as isonicotinic acid (HINA) and 3,5-pyrazole dicarboxylic acid (H3pdc). To
this end, a wide range of experiments was conducted, aiming at studying the effect of dif-
ferent synthetic parameters (temperature, presence/absence or kind of base, metal ratio of
the reactants, metal sources, etc.) on the identity and crystallinity of the isolated product(s)
and the yield of the reaction.

The reaction mixture of Ni(ClO4)2·6H2O/pyaoxH2/HINA (2:4:1.5) in DMF at 110 ◦C
gave a dark brown solution from which dark brown crystals of [Ni4(INA)2(pyaox)2(pyaoxH)2
(DMF)2] (1) were subsequently isolated in good yield. The stoichiometric equation of the
reaction that led to the formation of 1 is represented in Equation (1).

4Ni(ClO4)2·6H2O + 4pyaoxH2 + 2HINA + 2DMF + 8Et3N DMF→
[Ni4(INA)2(pyaox)2(pyaoxH)2(DMF)2] + 8ClO4

− + 8HNEt3
+ + 24H2O

1

(1)

The kind of base and/or metal source does not have any impact on the identity of the
isolated compound, but it affects its crystallinity. The next step included the replacement of
NiII by CoII/III wishing to shed light on how the type of the metal ion affects the identity
of the product. Similar reactions that led to 1 were performed by using a CoII source
instead of Ni, which, in their vast majority, led to the isolation of previously reported
single-ligand CoII MOFs based on INA− [53,54]. Likewise, the use of mpkoH instead of
pyaoxH2 provided access to compounds that contain INA−. This prompted us to perform
reactions with an excess of the oximic ligand, which led to the new mixed-valent cationic
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pentanuclear compound [CoIII
4CoII(mpko)6(mpkoH)2(OMe)2(H2O)](ClO4)6 (2), while the

use of H3pdc in the place of HINA led to the isolation of the new neutral pentanuclear
compound [Co5(OH)(Hpdc)5(H2pdc)] (3). The stoichiometric equations of the reaction that
describe the formation of 2 and 3 are shown in Equations (2) and (3).

5Co(ClO4)2·6H2O + 8mpkoH + O2 + 4NaO2CMe + 2MeOH→
[Co5(mpko)6(mpkoH)2(OMe)2(H2O)](ClO4)6 + 4Na+ + 4ClO4

− + 4MeCO2H + 31H2O
2

(2)

5Co(O2CMe)2·4H2O + 6H3bdc + 1/2O2 + 10Et3N DMF→
[Co5(OH)(Hpdc)5(H2pdc)] + 10HNEt3

+ + 10MeCO2
− + 20H2O

3

(3)

2.2. Description of Structures

Representations of the molecular structures of 1–3 are shown in Figures 1–3. Selected
interatomic distances and angles are listed in Tables S1–S3.
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1 crystallizes in the monoclinic space group P21/c. Its structure is based on neutral,
centrosymmetric [Ni4(INA)2(pyaox)2(pyaoxH)2(DMF)2] units (Figure 1) that are held to-
gether through strong hydrogen bonding interactions forming a 3D network (Figure S1).
The Ni4 compound in 1 is composed of two distorted octahedral (Ni1 and its symmetry
equivalent) and two square planar NiII atoms (Ni2 and its symmetry equivalent), which
are connected through two η1:η1:η1:µ pyaoxH-, and two η1:η1:η1:η2:µ3 pyaox2- ligands
(Scheme 2). The coordination sphere in Ni1 and Ni1’ is completed by one terminally ligated
DMF molecule and one monodentate INA− ion. The four metal centres in 1 are co-planar.
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Figure 1. Representation of the molecular structure of 1. Colour code: Ni, green; N, blue; O, red; C, 
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Scheme 2. The coordination modes of the pyaox2− and pyaoxH− ligands in 1.

The carboxylate group of the deprotonated INA− ligand forms strong intermolecular
hydrogen bonding interactions with the neutral and/or deprotonated amino groups from
neighbouring Ni4 species: (N7···O1 = 2.848 Å, H7B···O1 = 2.029 Å, N7-H7B···O1 = 158.92◦;
N7···O2 = 3.005 Å, H7A···O2 = 2.197 Å, N7-H7A···O2 = 156.46◦; N4···O1 = 3.053 Å,
H1N4···O1 = 2.186 Å, N4-H1N4···O1 = 171.52◦). These intermolecular interactions along
with the fact that that neighbouring Ni4 units are in close proximity (Ni1 . . . Ni2 = 7.7 Å)
result in the formation of a three-dimensional supramolecular network. The N7-H7A···O2
and N4-H1···O1 H-bonds favour the formation of a 2D supramolecular network (Figure S2),
whereas the Ni4 complexes lie roughly on the same plane and each complex is surrounded
by six neighbouring Ni4 units in a hexagonal topological arrangement. Neighbouring 2D
planes are arranged in a parallel fashion, being interconnected through the N7-H7B···O1
H-bond, leading to the formation of a 3D supramolecular network (Figure 1, right), which
can be described as a pseudo 3D polymer or as a 3D supramolecular framework. It is worth
mentioning that 1 displays significant thermal stability (Figure S3), which is a result of its
pseudo-polymeric nature. In particular, there is a mass loss of ca 2% below 100 ◦C, which
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can be attributed to adsorbed humidity; this is then followed by a plateau with the step at
350 ◦C corresponding to the compound breakdown.

The tetranuclear {Ni4} single-decker core of compound 1 has been found previously
as a fundamental building unit in a couple of multiple-decker based polynuclear Ni com-
plexes. Being composed by three and four {Ni4} layers/deckers, respectively, Ni12 and Ni16
complexes can be assumed as the trimer and the tetramer version of 1 [40,41]. Both Ni12
and Ni16 are ferromagnets bearing a high-spin ground state of S = 6 and S = 8, respectively.
Ferromagnets are a special category of magnetic materials with their properties being
derived by the ferromagnetic exchange coupling among the paramagnetic centres. They are
candidates for interesting potential applications, such as spintronics, magnetic coolers, etc.

2 crystallizes in the triclinic space group P−1. Its structure consists of [CoIICoIII
4(mpko)6

(mpkoH)2(OMe)2(H2O)] metal complexes and ClO4
- counterions (Figure 2). The five metal

ions are held together through four η1:η1:η1:µ mpko- and two η2:η1:η1:µ3 mpko- ions,
forming a distorted bowtie topology. Furthermore, two µ-MeO- ions bridge the CoIII ions,
i.e., Co3 and Co5, and Co1 and Co4, respectively. Alternatively, the structure of 2 can be
described as consisting of a central {CoII(mpko)4(H2O)}2+ unit on both sides of which are
located two dinuclear {CoIII

2(mpko)3(mpkoH)}3+ moieties.
Co1 and Co3–Co5 are six-coordinate with an octahedral coordination geometry. Co2 is

five-coordinate displaying trigonal bipyramidal geometry (τ = 0.77) [86]. The coordination
spheres of Co1 and Co3 are completed by two neutral chelate mpkoH ligands, while one
terminally ligated H2O molecule completes the coordination sphere of Co2. The Co5 cations
in 2 are in proximity with the shortest metal···metal distance between the neighbouring Co5
units being 6.537 Å (Co3···Co5). The crystal structure of 2 is stabilised through strong in-
tramolecular hydrogen bonding interactions between the terminally ligated water molecule
(O22, donor) and the oximic groups (O6, O15), which act as acceptors: O22···O6 = 2.589
Å, H6···O22 = 2.041 Å, O6-H6···O22 = 123.75◦; O22···O2 = 2.644 Å, H2···O22 = 2.052 Å,
O2-H2···O22 = 128.87

3 crystallizes in the monoclinic space group I2/a consisting of mixed-valent pentanu-
clear compounds [CoIII

2CoII
3(OH)(Hpdc)5(H2pdc)] (Figure 3, left). The five metal centres

in 3 are held together through a µ3-OH- ion and six η1:η1:η1:η1:µ carboxylate ligands. The
former link Co2, Co3 and Co5, forming a plane above and below of which the remaining
two metal ions are located; hence, the structural core of 3 possesses a trigonal bipyramidal
metal topology with the distance of Co1 and Co4 from the equatorial plane being 3.848 Å
and 3.896 Å, correspondingly (Figure 3, right).

Co1 and Co4 are six-coordinate with an octahedral coordination geometry. Co2, Co3
and Co5 are five coordinate displaying trigonal bipyramidal geometry (τ = Co2, 0.83; Co3,
0.76; Co5, 0.77) [86]. The Co5 molecules in 3 are relatively in close proximity with the
shortest metal···metal separation between the adjacent Co5 units being 7.937 Å (Co4···Co4).
3 is the first example of a Co compound bearing H3pdc in its neutral or anionic form, being
also one of the highest nuclearity discrete metal complexes with this ligand.

2.3. Magnetism Studies

Direct current magnetic susceptibility measurements (DC) were carried out on samples
of 1, 2 and 3 in the 2–300 K temperature range and under a field of 0.03 T (1.28 MHz), and
they are plotted as χMT vs. T plot. (Figure 4). The χMT values at room temperature (2.30,
1.95 and 4.31 cm3 mol−1 K for 1, 2 and 3, respectively) are very close to the theoretical
spin-only value of 2.00, 1.875 and 5.625 cm3 mol−1 K corresponding to two NiII, one CoII

and three CoII non-interacting cations, respectively.
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Complex 1 is a tetranuclar NiII system, in which Ni2 and Ni2’ present a square-planar
geometry being diamagnetic, hence, magnetically, the molecule behaves as a dinuclear
NiII complex. The χMT vs. T curve for 1 shows a weak ferromagnetic interaction between
the NiII paramagnetic cations, reaching a value of 2.96 cm3 mol−1 K at 9 K; then, there is
an abrupt decay until it reaches to a minimum value of 1.64 cm3 mol−1K at 2 K, due to
weak intermolecular interactions or anisotropy effects. The curve has been fitted using the
Hamiltonian Ĥ = −2J (SNi1·SNi1’) + DSz + ΣµgeffHS yielding in the best fitting values of
J = 1.79(4) cm−1, Dion = 2.48(2) cm−1 and g = 2.20 using PHI software [87]. This is in perfect
agreement with previously reported multiple decker Ni complexes based on Ni4 layers
that exhibit similar magnetic exchange pathways [40,41].

Complex 2 is a pentanuclear Co compound with only one paramagnetic CoII being
present in the molecule; thus, it behaves as a mononuclear compound. The χMT decay when
lowering temperature is due to the axial zero field splitting of the CoII cation evaluated as
Dion = 47.7(7) cm−1 and g = 2.085(2). The relatively high value of D parameter agrees with
the trigonal bipyramid distorted environment. Alternate-current (AC) measurements were
performed in the 1–1488 Hz frequency range, and weak tails were observed (Figure 4, right)
in the presence of a magnetic field of 0.2 T, which is indicative of the single-ion magnetism
behaviour for 2. However, this AC response is too weak to extract any relaxation parameter.

Complex 3 possesses an uncommon magnetic core: usually, µ3-OR cobalt trimers
present a defective-cubane topology, whereas 3 is a µ3-O tricobalt complex where the oxo
donor and the three cobalt atoms are co-planar, defining a triangular arrangement of cations
with the three Co-O-Co bond angles being very similar (~120◦). A CCDC search does not
reveal any similar structure for which the magnetic study has been performed, and it makes
complex 3 a quite interesting study case for the spin-frustrated CoII triangle. The χMT curve
for 3 reveals an antiferromagnetic coupling between the three CoII cations; it continuously
decreases with decreasing temperature until it reaches the value of 0.200 cm3 mol−1 K at
2 K. The used Hamiltonian was Ĥ =−2J (SCo2·SCo3+ SCo3·SCo5+ SCo2·SCo5) + DSz+ΣµgeffHS,
yielding in the fitting parameters J = −14.18(1) cm−1, g = 2.075(3) and D = 10.55(4) cm−1.

3. Materials and Methods
3.1. Materials, Physical, and Spectroscopic Measurements

All the manipulations were performed under aerobic conditions using materials
(reagent grade) and solvents as received. Nickel(II) perchlorate hexahydrate (CAS: 13520-
61-1), Isonicotinic acid 99% (CAS: 55-22-1), 3,5 pyrazole dicarboxylic acid monohydrate
97% (CAS: 303180-11-2), Cobalt(II) acetate tetrahydrate 98% A.C.S.(CAS: 6147-53-1) and
cobalt(II) chloride hexahydrate 98% (CAS: 7791-13-1) were obtained as received from Sigma-
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Aldrich. Dimethylformamide > 99.5% HPLC grade (68-12-2) was purchased from Fluka
and triethylamine (CAS: 121-44-8) was obtained from Sigma-Aldrich. mpkoH and pyaoxH2
was prepared as described elsewhere [88,89]. WARNING: Perchlorate salts are potentially
explosive; such compounds should be used in small quantities and treated with utmost care at
all times.

Elemental analysis (C, H, N) was performed by the in-house facilities of the National
University of Ireland Galway, School of Chemistry. Solvothermal synthesis was performed
in a Binder oven. IR spectra (4000–400 cm−1) were recorded on a Perkin-Elmer Spectrum
400 FT-IR spectrometer. Powder X-ray diffraction was performed with an INEL X-ray
diffractometer EQUINOX 0000 using Cu Ka radiation (λ = 1.54178 Å, 35 kV, 25 mA). Ther-
mogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were carried
out in open aluminium crucibles using an STA625 thermal analyzer (Rheometric Scien-
tific, Piscataway, NJ, USA) with nitrogen being purged in ambient mode. Solid-state,
variable-temperature and variable-field magnetic data were collected on single crystals
of each sample using an MPMS5 Quantum Design magnetometer operating at 0.03 T in
the 300–2.0 K range for the magnetic susceptibility and at 2.0 K in the 0–5 T range for
the magnetization measurements. Diamagnetic corrections were applied to the observed
susceptibilities using Pascal’s constants.

3.2. Compound Synthesis
3.2.1. Synthesis of [Ni4(INA)2(pyaox)2(pyaoxH)2(DMF)2] (1)

Ni(ClO4)2·6H2O (0.073 g, 0.20 mmol) and Et3N (114 µL, 0.80 mmol) were added in
5 mL of pyaoxH2 (0.054 g, 0.40 mmol) in DMF in a glass vial with a plastic lid. The resultant
solution was put in an oven and heated at 110 ◦C for 1 h during which time the colour of
the solution turned dark brown. Then, 5 mL of HINA (0.018 g, 0.15 mmol) were added,
and the vial was placed in the oven for a further 48 h. After 2 days, X-ray quality dark red,
block-shaped crystals of 1 were observed. The crystals were collected by filtration, washed
with DMF and acetone and dried in air. Yield 43%. Anal. Calc. for 1: C, 43.13; H, 3.96; N,
19.16 Found: C, 43.87; H, 4.01; N, 19.41%. IR data, Figure S3: ν (cm−1) = 3299 d, 3155 d,
1648 sh, 1600 sh, 1584, 1548 s, 1479 s, 1455 w, 1412 s, 1381 w, 1355 s, 1313 w, 1304 w, 1276 w,
1262 w, 1231 w, 1213 w, 1181 m, 1155 m, 1132 w, 1098 m, 1058 m, 1027 m, 1018 m, 953 m,
864 m, 833 w, 801 m, 781 s, 762 w, 750 w, 731 w, 707 m, 681 s, 669 m, 657 w.

3.2.2. Synthesis of [Co5(mpko)6(mpkoH)2(OMe)2(H2O)](ClO4)6 (2)

Sodium acetate trihydrate (0.027 g, 0.2 mmol) and 2-pyridyl ketoxime (0.027 g, 0.2 mmol)
were dissolved in 15 mL MeOH in a glass vial with a plastic lid. The solution was stirred
on a hot plate for 10 min. Co(ClO4)2·xH2O (0.073 g, 0.2 mmol) was then added and the
solution turned dark red; it was left under stirring for 30 min further after which it was
filtered. The solution was left in an open vial for slow evaporation, and after 2 days, dark
red X-ray quality single crystals were observed. Yield 45%. Anal. Calc. for 2.: C, 36.86; H,
3.98; N, 7.68% Found: C, 36.52; H, 4.23; N, 7.16%. IR data, Figure S4: ν (cm−1) = 3532 w,
3420 w, 3146 w, 3060 w, 3000 w, 1750 w, 1752 w, 1632 w, 1602 s, 1575 w, 1528 s, 1475 s, 1440 s,
1379 w, 1302 w, 1263 w, 1185 s, 1074 s, 1028 w, 992 w, 931 w, 883 w, 822 w, 774 s, 749 m,
695 s, 655 m.

3.2.3. Synthesis of [Co5(OH)(Hpdc)5(H2pdc)] (3)

Method A: H3pdc (0.034 g, 0.20 mmol), pyaoxH2 (0.054 g, 0.40 mmol) and Et3N
(10 µL mL, 0.07 mmol) were dissolved in 5 mL of DMF in a glass vial with a plastic
lid. Co(CH3COO)2·4H2O (0.024 g, 0.10 mmol) was added, and the vial was placed in the
oven at 110 ◦C for 24 h, after which the solution turned brown–pink and X-ray quality
purple needles of 2 were formed. The crystals were collected by filtration, washed with
DMF and acetone and dried in air. Yield 90%. Anal. Calc. for 3: C, 29.13; H, 1.14; N, 13.59%.
Found: C, 28.74 H, 1.19; N, 13.29%. IR data: ν (cm−1) = 3544 w, 3421 w, 3124 w, 3040 w,
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2791 w, 2476 w, 1622 s, 1602 s, 1494 m,1468 m,1438 w,1412 w, 1371 s, 1306 s, 1259 s, 1097 w,
1059 m,1011 s, 888 w, 841 s, 815 m, 802 w, 777 s, 662 w.

Method B: Method A was followed with the only difference being the omission of
pyaoxH2 from the reaction mixture. The sealed vial was placed in the oven at 110 ◦C, and
after one day, crystalline purple needles of 2 were observed. Yield: 80%

Method C: Method A was repeated but using CoCl2·6H2O (0.023 g, 0.10 mmol) instead
of Co(CH3COO)2·4H2O. The vial was left in the oven at 110 ◦C, and after one day, crystalline
purple needles of 2 were observed. Yield: 90%. The product in Methods B and C was
identified as 2 by IR spectral comparison with material obtained in method A (Figure S5)
and unit cell determination.

3.3. Single-Crystal X-ray Crystallography

Single-crystal diffraction data for 1 were collected in an Oxford Diffraction Xcalibur
CCD diffractometer using graphite-monochromatic Mo-Kα radiation (λ = 0.71073 Å) at
room temperature. Single-crystal diffraction data for 2 and 3 were collected in an Oxford-
Diffraction SuperNova diffractometer equipped with a CCD area detector and a graphite
monochromator utilising Mo-Kα (for 2) and Cu-Kα radiation (for 3). The structures were
solved using SHELXT and [90] embedded in the OSCAIL software [91]. The non-H atoms
were treated anisotropically, whereas the hydrogen atoms were placed in calculated, ideal
positions and refined as riding on their respective carbon atoms. Molecular graphics were
produced with DIAMOND [92]. We note that crystal twining occurs in 2, which affects the
quality of the structure. We carried out many experiments in order to grow single crystals
of better quality; however, this has not been achieved. We collected three sets of data using
two different diffractometers and used the best set to solve the structure.

Unit cell data and structure refinement details are listed in Table 1. The crystal
structures have been deposited with the Cambridge Crystallographic Data Centre (CCDC
2180525-2180527), and they can be accessed, free of charge, by filling out the application
form at https://www.ccdc.cam.ac.uk/structures/.

Table 1. Crystallographic data for complexes 1–3.

Complex 1 2 3

Empirical formula C44H44N14Ni4O10 C116H128Cl9Co10N32O60 C30H6Co5N12O25
Formula weight 1163.77 3838.85 1229.12
Crystal system Monoclinic Triclinic Monoclinic

Space group P21/c P-1 I2/a
a (Å) 11.6069 (5) 11.28230 (10) 19.1464 (8)
b (Å) 12.4541 (5) 15.2083 (2) 29.8272 (10)
c (Å) 18.1577 (9) 23.9909 (4) 23.4279 (7)
α (o) 90 84.1200 (10) 90
β (o) 107.901 (5) 86.0130 (10) 92.567 (3)
γ (o) 90 88.3410 (10) 90

V (Å3) 2497.7 (2) 4083.91 (9) 13,365.9 (8)
Z 2 1 8

ρcalc (g cm−3) 1.547 1.561 1.222
µ (mm−1) 1.554 1.229 1.014

Measd/independent
reflns (Rint)

4549/3473 (0.0492) 14,336/11,846 (0.0301) 11,879/6538
(0.0431)

Parameters refined 326 1020 649
GoF (on F2) 0.981 1.041 0.956

R1
a (I > 2σ(I)) 0.0453 0.0939 0.0818

wR2
b (I > 2σ(I)) 0.1181 0.2691 0.2478

(∆ρ)max/(∆ρ)min (e Å−3) 0.644/−0.788 3.867/−2.563 0.715/−0.374
a R1 = Σ(|Fo|-|Fc|)/Σ(|Fo|). b wR2 = {Σ[w(Fo

2-Fc
2)2]/Σ[w(Fo

2)2]}1/2.

https://www.ccdc.cam.ac.uk/structures/
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4. Conclusions

The combination of 2-pyridyl oximes (pyridine-2 amidoxime, H2pyaox; 2-methyl
pyridyl ketoxime, Hmpko) with isonicotinic acid (HINA) and 3,5-pyrazole dicarboxylic
acid (H3pdc) provided access to three new NiII and CoII/III metal complexes. Among
them, [Ni4(INA)2(pyaox)2(pyaoxH)2(DMF)2 (1) is a planar centrosymmetric tetranuclear
compound that can be characterised as a pseudo-polymer due to the strong hydrogen
bonding interactions between the neighbouring discrete units. It is the first reported metal
compound that bears both pyaoxH2 and HINA in their neutral or anionic form. 2 is a
pentanuclear CoIII

4CoII complex with a bowtie topology, while 3 is a CoIII
2CoII

3 complex
with a trigonal bipyramidal metal topology. The three CoII cations in 3 are co-planar
with the bridging µ3-OH- ion providing a unique spin frustration model for triangular
CoII

3 systems.
The magnetic properties of 1–3 have been studied and revealed that there are ferro-

magnetic interactions between the two paramagnetic NiII ions in 1 (J = 1.79(4) cm−1), which
is in accordance with previously reported multiple decker Ni12 and Ni16 compounds based
on Ni4 repeating units [40,41]. 2 displays weak AC signals in the presence of a magnetic
field, while in the case of 3, the dominant exchange interactions between the metal ions
are antiferromagnetic. 3 is a unique example of a OH-centred triangular CoII

3 system in
which all the Co atoms and the OH- are co-planar; hence, it is an interesting case study for
spin frustration.

Although the isolation of a compound that contains both a 2-pyridyl oxime and
isonicotinic acid (HINA) has been successfully achieved in the case of 1, this has not
been the case for 3,5-pyrazole dicarboxylic acid (H3pdc). Further studies that include the
optimisation of the reaction conditions that will favour the presence of both ligands in
the same metal complex, e.g., full deprotonation of ligands, nature of metal ion, etc., are
currently in progress and will be reported in the near future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/molecules27154701/s1, Table S1. Selected interatomic distances (Å) and angles for 1; Table
S2. Selected interatomic distances (Å) and angles for 2; Table S3. Selected interatomic distances (Å)
and angles for 3; Figure S1. The 2D supramolecular network in 1 coming from the arrangement
of Ni4 clusters through H-bonding interactions (left), and the arrangement of two parallel 2D
supramolecular planes (right); Figure S2. TGA-DTG (top) and DSC curves (bottom) of compound 1;
Figure S3. IR spectrum of compound 1; Figure S4. IR spectrum of compound 2; Figure S5. IR spectra
of compound 3: crystals from method A, top; crystals from method B, middle; crystals from Method
C, bottom; Figure S6. Powder XRD patterns of compound 1: experimental powder pattern, top;
simulated, bottom.
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