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Abstract

Hypoxia and related oxidative stress are closely related to the development and treatment of hepatocellular carcinoma
(HCC). However, the mechanism mediated by hypoxia in HCC has not yet been elucidated. Here, we found multifunction
scaffold protein p54™/NONO exerted pleiotropic effects to regulate hypoxia transcription signals, thereby enhancing the
progression of liver cancer. Extensive analysis of clinical data demonstrated that NONO was significantly upregulated and
represented as a poor prognostic indicator of HCC. The crucial role of NONO in driving angiogenesis and glycolysis, two
well-known cancer phenotypes mediated by hypoxia, was examined in vitro an in vivo. Mechanistically, NONO interacted
with and stabilized both HIF-1 and HIF-2 complexes thus activating the transcription of hypoxia-induced genes. Besides,
NONO bound pre-mRNA and subsequent mRNA of these genes to facilitate them splicing and mRNA stability,
respectively. Thus, NONO knockout seriously disrupted the expression of a cluster of HIF-1/2 targets and impeded hypoxia-
enhanced progression in HCC. In conclusion, NONO functioned as a multipurpose scaffold that interacted with HIF-1/2
complex and their downstream transcripts to facilitate the expression of hypoxia-induced genes, allowing malignant
proliferation, indicating that NONO might be a potential therapeutic target for HCC.

Introduction

Hepatocellular carcinoma (HCC) is the fourth most com-
mon cause of cancer-related death with increasing incidence
worldwide [1]. The high mortality of liver cancers reflects
the general ineffectiveness of current HCC therapies. It is
generally believed that hypoxia plays important roles in
hepatocarcinogenesis, HCC progression and re-occurrence
after chemotherapy [2]. In fact, liver is originally vulnerable
to hypoxia, which is attribute to the lower oxygen tension in
the hepatic sinusoid while high metabolic rate of hepato-
cytes [3]. What’s more, secondary hypoxia resulted from
common pathophysiological factors (e.g., viral infection,
toxic substances exposure or inflammation) induces pro-
found epigenetic/genetic alternations in hepatocytes [4].
These risk factors lead to repetitive-injury of hepatocytes
and ultimately progress to HCC. The common therapeutic
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regimens of HCC include surgical resection, chemotherapy
(e.g., sorafenib), interventional chemotherapy [e.g., trans-
catheter arterial chemoembolization (TACE)], and radia-
tion. However, hypoxia or ischemia always accompanies
and then follows these HCC therapies and heavily affects
the therapeutic outcomes. In addition, hypoxic responses to
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therapy have important prognostic value for HCC [5, 6].
Therefore, deciphering the hypoxia-mediated mechanism of
HCC will benefit a lot.

The best studied mechanism of response to hypoxia
involves hypoxia inducible factors (HIFs). And HIF-1a and
HIF-2a are well-characterized players in HCC hypoxic
responses, which are stabilized and dimerized with HIF-1p
to activate a multitude of genes. These target genes are
involved in multiple aspects of tumorigenesis, including
glucose metabolism, proliferation, cancer stem-like prop-
erties, angiogenesis, invasion, and metastasis [7]. Conse-
quently, the activation of HIF-1/2 pathways are associated
with aggressive tumor phenotypes and poor clinical prog-
nosis. It is rational to add HIF-1/2 inhibitors to the cancer
treatment regimens but the design of specific HIF-1/2
inhibitor is very challenging due to the complex upstream
regulation and intertwined mechanisms. During the last
decades, lots of HIF-1/2 inhibitors have been identified, but
no selective HIF-1/2 inhibitor has been clinically approved,
and parallelly, some approved drugs have demonstrated
indirect inhibition for HIF-1/2 [8, 9]. Therefore, further
research is needed to unravel the extensive complexity of
HIF-1/2 regulation and develop a more precise anti-cancer
treatment.

Although the transcriptional mechanism of HIF-1a/p and
HIF-2a/B in activating hypoxia-inducible genes is prominent,
other mechanisms are necessary to be coordinated that ensure
swift and robust adjustment of protein expression levels in
response to hypoxia. To regulate and integrate these multiple
components and pathways throughout gene regulation, the
cell needs factors that can bridging DNA, RNA, and protein.
One such example of bridging proteins is the “multi-
functional” Drosophila behavior/human splicing (DBHS)
family. DBHS proteins possess both protein—protein and
protein—nucleic acid binding sites that enable them to behave
as a “molecular scaffold”. And DBHS proteins are frequently
identified engaging in almost every step of gene regulation,
including but not limited to transcriptional regulation and
RNA processing [10]. A total of 54 kDa nuclear RNA- and
DNA-binding protein/Non-POU-domain-containing octamer
binding protein (p54™*/NONO), one member of DBHS
family, dysregulated in many types of cancers [11]. Our
previous work demonstrated that NONO was upregulated in
breast cancer and stimulated lipogenesis by interacting with
and stabilizing sterol regulatory element-binding protein 1
(SREBP1) [12]. Soon afterwards Benegiamo et al. identified
that NONO played a pivotal role in regulating the rhythmicity
of genes involved in nutrient metabolism and maintaining the
cellular energy homeostasis in the liver [13]. However, little is
known about the functional role and the molecular mechan-
ism of NONO in hypoxia-associated HCC progression.

In our study, we found NONO functioned as a multi-
purpose scaffold that tethered HIF-1/2 complex and
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transcripts of their targets to facilitate the transcription in
response to hypoxia stimulus. We also found that NONO
upregulated in HCC and was an adverse prognostic pre-
dictor for HCC. Given its significance in the HIF-1/2 sig-
naling pathway, NONO might be a potential therapeutic
target for HCC.

Results
NONO is a prognostic biomarker for HCC

To assess the clinical significance of NONO in cancer
progression, we queried the Oncomine database and found
NONO widely upregulated in different types of cancer
(normal versus cancer), including hepatocellular carcinoma
(HCC) (Figs. 1A and S1A). The RNA sequencing data of
The Cancer Genome Altas (TCGA) from Gene Expression
Profiling Interactive Analysis (GEPIA) platform also
showed up-regulation of NONO positively correlated with
poor overall survival rates in several types of cancer (Fig.
S1B). In HCC patients with higher pathological grade and
more advanced tumor stage, NONO mRNA levels were
apparently increased (Fig. 1B, C). High-level of NONO in
liver cancer was significantly related to poor overall survi-
val or poor disease-free survival (Fig. 1D). In addition, we
examined the relationship between NONO protein level and
clinicopathological characteristics of 37 HCC sample.
Consistent with previous NONO mRNA changes, we found
the NONO protein level in HCC tissues was higher than the
corresponding matched non-tumor tissues (Fig. 1E, F), and
the NONO protein expression was also positively correlated
with higher pathological grades or advanced tumor stages
(Fig. 1G, H and Table 1). Survival analysis showed that
patients with high NONO protein levels have a worse
prognosis than patients with low NONO protein levels (Fig.
1I), representing as an independent prognostic indicator.
These data indicate that NONO plays an important role in
the progression of HCC.

NONO exerts oncogenic activities in HCC in vitro and
in vivo

To clarify the oncogenic mechanisms of NONO in HCC,
RNA sequencing (RNA-seq) was performed in HepG2 cells
with NONO knockdown. The expression profiling data
showed that there were 437 differentially expressed genes
(fold change>1.5, P<0.05, and FDR <0.05), including
171 upregulated and 266 downregulated genes in total
(Figs. 2A and S2A). GSEA analysis and GO enrichment
analysis showed that NONO regulated the signal transduc-
tion networks related to angiogenesis and hypoxia response
and cell membrane organization (Fig. 2B, C). KEGG
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Fig. 1 NONO is upregulated in HCC tissues and predicts poor
prognosis. A Comparison of NONO mRNA expression between
normal liver tissue (n=220) and HCC (n=225) from Oncomine
dataset. B, C The mRNA level of NONO in different tumor grades (B)
and TNM stages (C) of HCC. D Kaplan—Meier analysis showed ele-
vated NONO mRNA was associated with both poor overall survival
(OS) and disease-free survival (DFS) in HCC from GEPIA portal. E
The expression of NONO protein between normal liver tissue and

analysis for differently expressed mRNAs demonstrated
that NONO was closely associated with multiple cancer
pathways (Fig. 2D), including MAPK pathway, PI3K/Akt

HCC (left) or in 31 paired HCC tissues (right) was analyzed by IHC.
F Representative HE (left) and IHC (right) images of NONO
expression in HCC and paired adjacent normal liver tissue. Scale =
100 uM (x200). G, H The protein level of NONO in different tumor
grades (G) and TNM stages (H) of HCC. I The effect of NONO
protein on 5-year survival rate of HCC patients was analyzed by
Kaplan—Meier analysis.

pathway, HIF-1 pathway and Jak/STAT pathway. Next, we
validated the NONO-related cancer phenotype in HCC
cells. In the absence of NONO expression (Fig. S2B), the
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tube-forming ability of HCC cells was reduced, and vice
versa (Fig. 2E). In addition,
NONO (Fig. S2C) evidently reduced glycolytic capacity of
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HCC cells (Fig. 2F). Further, we used PET tracer [**Gal-
NODAGA-RGD and "®F-FDG PET tracers were used to
evaluate angiogenesis and glycolysis in vivo, respectively.

we observed that silencing
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<« Fig. 2 NONO exerts oncogenic activities in HCC in vitro and

in vivo. A The volcano plot showed the differentially expressed genes
(DEGs) (fold change>1.5, p<0.05) in HepG2 cell with NONO
knockdown by siNONO#1. B-D GSEA (B), GO (C) and KEGG
pathway (D) analysis showed the differentially expressed genes
(DEGs) were enriched in hypoxia response, angiogenesis, pathway in
cancer, HIF-1 signaling pathway, etc. E Tube-formation assay was
performed using HUVECs incubated with indicated condition med-
iums (CMs), less tube-formation was observed in NONO-KO groups
(above) and more was found in NONO-OE groups (below). F The
quantification of extracellular acidification rate (ECAR) was measured
by Seahorse XF assays in Huh7 cells with NONO knockdown by
SINONO#1. G %Ga-RGD micro-PET/CT (left) and *F-FDG (right)
images of living nude mice were conducted 4 weeks after injection.
Images showed obvious decrease uptake of *®*Ga-RGD and *F-FDG
in NONO knockout group (left armpit) compared with the control
group (right armpit). H The volume and weight of subcutaneous
tumors were significantly diminished upon NONO knockout (n =9).
I The xenografts were subjected to H&E and IHC staining with anti-
NONO, ki67 and CD31 antibodies. Scale bar = 100 um (x200). The
quantification of NONO and ki67 staining of subcutaneous tumors
(n=6) was analyzed. According to the staining status of CD31,
microvascular densities were statistically analyzed (n = 6).

The subcutaneous tumors formed by NONO knockout cells
showed decreased uptake of [68Ga]—NODAGA—RGD and
BE.FDG (Fig. 2G) with smaller tumor volumes and lower
tumor weights (Fig. 2H), indicating impaired angiogenesis
and glycolysis. Consistently, NONO expression was highly
correlated with the maximum standard uptake value
(SUV pmax) in HCC patients who received '®F-FDG PET/CT
imaging preoperatively (Fig. S2D). IHC staining of tumor
tissue indicated that NONO-silenced tumors had lower ki-
67 and CD31 expression (Fig. 2I). Altogether, these results
indicated that NONO promoted HCC tumorigenesis in vitro
and in vivo.

NONO activates HIF-1/2 transcriptional network

Based on NONO’s involvement in the regulation of hypoxia
signaling pathways, we further analyzed the relationship
between NONO and hypoxia responsiveness. There were
four putative HIF-1 binding sites in NONO promoter region
(Fig. S3A). However, the expression of NONO did not
significantly change by neither hypoxia stimulus (Fig. S3B,
C) nor HIF-1o/200 knockdown (Fig. S3D), indicating the
HIF-1 binding sites in the NONO promoter appeared to be
non-functional. Importantly, the levels of hypoxia-inducible
genes including angiogenesis (VEGFA), metabolism
reprogramming (GLUT1, LDHA, ENOI1, CA9), mito-
chondrial function (BNIP3), invasion (L1CAM) and
metastasis (LOXL2) were reduced upon NONO knockout
(Fig. 3A, B). Immunohistochemistry analysis of mouse
subcutaneous tumor (Fig. 3C) and HCC samples (Fig. 3D)
showed low NONO expression had lower HIF-1a, HIF-2a,
GLUT1 and VEGEF expression, indicated that NONO was
closely related to the HIF transcription network. What’s

more, HIF-1a (r =0.39, p = 3.6e-15) and HIFs target genes
VEGF (r=0.41, p =4.4e-16), GLUT1 (r=0.38, p = 1.9e-
14), LDHA (r =04, p =4.4e-16), ENO1 (r=0.44, p =0),
and LOXL2 (r=0.33, p=9.7e-11) showed a positive
correlation with the expression of NONO in the TCGA
HCC provisional cohort (Fig. 3E), further confirming our
findings. Ectopic expression of HIF-la (3.90-fold) or
NONO (1.68-fold) alone increased the transcription activity
of HIF-1, while the co-expression of HIF-laa and NONO
synergistically enhanced promoter activity (7.02-fold; Fig.
3F). And NONO knockout resulted in a significant reduc-
tion in HIF-1 transcriptional activity (Fig. 3G). Similar
results were obtained from the effect of NONO on the
transcriptional activity of HIF-2a (Fig. 3H, I). We further
analyzed whether NONO was directly involved in the HIF-
mediated gene transcription process through CUT&RUN.
The results showed that hypoxia-induced recruitment of
NONO to promoter of a subset of the HIF-1/2 target genes
(Fig. 3J). In summary, these data indicate that NONO
enhances the transcriptional activity of HIF-1/2 and serves
as a key regulator of the HIF transcription network.

Hypoxia strengthens the interaction between NONO
and HIF-1/2

Since NONO function as multifunctional scaffold protein
by interacting with other proteins (including transcription
factors), we hypothesized whether NONO regulates HIF-1/
2 transcription activity through direct interaction with HIF-
1/2. A series of protein—protein interaction assays based on
co-immunoprecipitation and proximal ligand analysis
showed that NONO has a robust interaction with HIF-1q,
HIF-2a, HIF-1f and their central integrated co-activator
CBP/p300 (Fig. 4A-F). It suggested that NONO activated
the HIF-1/2 transcription network by interacting with HIF-1
complex and HIF-2 complex. In addition, hypoxia can
significantly promote the interaction between NONO and
HIF-1a/p, HIF-2a/B, but CBP/p300 expression did not show
a similar effect (Fig. 4A-F). To evaluate the docking con-
formation of above protein complex, we used ZDOCK web
server to perform protein—protein molecular docking. The
ZDOCK scores for docking model were 1748.6, 1642.2,
1687.9, 1744.2 for HIF1a/1B-NONO, HIF2a/1B-NONO,
CBP-NONO, p300-NONO respectively, suggesting a
favorable and stable binding status (Fig. 4G). Considering
DBHS protein rarely function alone as showed from
structural and biological data, we wondered whether the
other of DBHS members also involved in the HIFs complex
and found SFPQ and PSPCI1 slightly associated with HIF-
la (Fig. 4H), obviously interacted with HIF-1p (Fig. 4I) and
significant interaction between SFPQ and HIF-2a (Fig. 4J).
Collectively, NONO and also other DBHS members inter-
act with both HIF-1 complex and HIF-2 complex.

SPRINGER NATURE
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NONO stabilizes HIF-1 complex and HIF-2 complexes

To further explore how these factors interacted function-
ally, we delineated the structural determinants for the
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association between NONO and HIF-1a, HIF-2«. First co-
immunoprecipitation assays were performed with a series
of HIF-1a truncated fragments. We found that the PAS
domain was necessary for their interaction (Fig. 5A).
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Fig. 3 NONO is required to activate HIF-1/2 transcriptional net-
work. A, B HepG2 cells (A) and Huh7 (B) with NONO knockout or
not were treated with 1% O, for 24 h. Then mRNAs were extracted
and quantified by RT-qPCR with indicated primers. C, D The IHC
staining of NONO and HIF-1a, HIF-2a, their shared targets (GLUT]I,
VEGF) were showed in the representative IHC images of sub-
cutaneous tumor tissue (C) and HCC samples (D). E The Spearman
correlation co-efficient were derived from GEPIA platform to show the
correlation between NONO and HIF-1a, HIF-2a, GLUT1, LDHA,
VEGF, ENO1, LOXL2. F-I Luciferase reporter plasmid inserted with
four hypoxia-response elements (4 x HREs) was used in dual lucifer-
ase reporter assay. The dual luciferase reporter assays in HepG2 with
NONO-overexpressing (F, H) or NONO-knockout (G, I) were pre-
sented as relative value with normalization against Renilla-Luc
activity. F, H The luciferase reporter plasmid and Renilla luciferase
plasmid were co-transfected with empty vector, NONO and HIF-1a
(F) or HIF-2a (H) into HepG2 cells for the reporter assay.
G, I Similarly, reporter assays were performed in NONO-knockout
HepG2 cells transfected with HIF-1a (G) or HIF-2a (I) plasmids for
24 h, followed by hypoxia (1% O,) or normoxia treatment for 24 h. J
Lysate from HepG2 cells with hypoxia treatment (1% O,, 24 h) were
subjected to CUT&RUN assay. CUT&RUN assay products were
quantified by qPCR with the indicated pairs of primers.

Since the PAS domain is responsible for functional
dimerization, we then investigated the effect of NONO on
HIF-1 complex formation. Knockout of NONO sig-
nificantly reduced the interaction between HIF-la and
HIF-1p but CBP/p300 was not (Fig. 5B-D), thus resulted
in decreasing ability of HIF-la to bind to the promoter
sequence of its target genes (Fig. SE). The same method
was applied to map HIF-2a domain required for NONO
and found the TAD of HIF-2a responsible for the inter-
action with NONO (Fig. 5F). Since TAD was critical
function domain for HIF-2a transactivation, we specu-
lated NONO may regulate the interaction of HIF-2a and
CBP/p300. As expected, the interaction between HIF-2a
and p300 was reduced in the absence of NONO but the
stability of HIF-2a/1p complex wasn’t affected (Fig.
5G-I). In addition, we found that both HIF-1a and HIF-2«
were associated with the coiled-coil domain of NONO
(Fig. 5J). To further explore functional relevance of the
HIF-10/NONO, HIF-2a/NONO interaction, the full-
length and deletion mutant NONO (aal-274) were over-
expressed in NONO-KO cells. Compared with full-length
of NONO, the ability of HIFs binding-deficient mutant
NONO (aal-274) to induce HIFs target genes was
severely impaired (Fig. 5K). Taken together, NONO, as a
co-activator of HIF-1/2, promotes the HIF-1/2 transcrip-
tion network by regulating the dimerization of HIF-1
complex and the transactivation of HIF-2 complex.

NONO facilitates the splicing mature and stabilizes
hypoxia-induced genes

Transcription and RNA processing are intimately inter-
connected [14]. As previously reported, transcriptional
activation by NONO involves not only the interaction with

transcription factor, but also the binding and processing of
the nascent RNA transcript. Therefore, we performed RNA
immunoprecipitation-sequencing (RIP-seq) to identify the
NONO-associated transcriptomes in HepG2 cells under
normoxia and hypoxia. The number of transcripts bound by
NONO significantly increased upon hypoxic stimulation
(Fig. 6A). Most identified RNAs were mature RNA (53.4%)
and pre-mRNA (35.9%), with some noncoding RNAs
(10.7%). And about 60.41% of NONO binding sites were
within exons (Fig. 6B). GO enrichment analysis of biolo-
gical processes and KEGG enrichment analysis demon-
strated these mRNAs bound by NONO enhanced under
hypoxia were enriched in HIF-1 pathway, response to
hypoxia, glycolysis, etc. (Fig. 6C, D). In silico analyses
showed that putative binding-site motifs were significantly
GC-enrich (Fig. 6E). RIP quantitative RT-PCR were con-
firmed the binding of NONO to these mRNAs later,
including GLUT1, HK2, LDHA, ENO1, PGK1, VEGFA
(Figs. 6F and S4A). The reduced stability of these tran-
scripts in NONO knockout cells was verified by RT-qPCR,
using actinomycin D to inhibit transcription (Fig. 6G).
Previous studies show NONO as spliceosome-associated
protein and is important for pre-mRNA splicing. We found
snRNA U6 bound by NONO was increased upon hypoxia
stimulation, suggesting splicing activity of NONO may
enhanced under hypoxia (Fig. 6H). What’s more, pre-
mRNA of above transcripts bound by NONO were
enhanced after hypoxia treatment (Fig. 6I). Next, we
explored whether NONO involved in splicing mature of
above transcripts. We measured their expression after
hypoxia treatment in NONO-KO cell and its control.
Compared with normoxia, the ratio of cas9 and NONO-KO
group in intron was higher under hypoxia, suggesting that
NONO regulated these genes transcriptionally upon
hypoxia stimulus. Importantly, the ratio in mRNA was also
increased under hypoxia and the extent of increase was
higher than changes in intron, demonstrating that NONO
regulated these genes post-transcriptionally in response to
hypoxia stress (Fig. 6J). These results showed NONO
promoted the expression of HIF targets by post-
transcriptional regulation.

Hypoxia-mediated tumor phenotypes can be
overcome by NONO knockout

Since  NONO played important role in cell hypoxia
response, we detected whether NONO affected hypoxia-
mediated tumor phenotypes. We observed glycolysis (Fig.
7A, B) and angiogenesis (Fig. 7C) ability were failed to
enhance under hypoxia in NONO knockout cell. Con-
sistently, the ability of colony formation enhanced by
hypoxia was not significantly strengthened in NONO
knockout cell (Fig. 7D). As we known, hypoxia governs the
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Fig. 4 The interaction between NONO and HIF-1/2 was enhanced
under hypoxia. A-E In situ proximity ligation assay (PLA) on Hep3B
cells demonstrated the interaction between NONO and HIF-1a (A),
HIF-1p (B), HIF-2a (C), CBP (D), and p300 (E) under normoxia or
hypoxia. Positive PLA signals showed HIF-1a/NONO complex (A),
HIF-1p/NONO complex (B), HIF-2a/NONO complex (C), CBP/
NONO complex (D), or p300/NONO complex (E) which were shown
as red clusters, and cell nuclei were counterstained with blue. Scale
bar = 10 um (x63). F HepG2 cells were transfected with HA-tagged
NONO plasmid for 24 h, followed by hypoxia (1% O,) or normoxia
treatment for 24 h. Finally, cells were collected to immunoprecipitated
with anti-HA antibody, loaded for western blotting with anti-HIF-1a,
HIF-2a, HIF-1f, and CBP/p300 antibodies. IgG as negative control.

metastatic potential of multiple primary cancers [15]. We
wondered if hypoxia-enhanced cell migration was depen-
dent on the expression of NONO. Compared with control
group, NONO knockout impeded hypoxia-induced cell
migration (Fig. 7E) and NONO overexpression

SPRINGER NATURE

G Computational docking models for human NONO (green) and HIF-
la (red), HIF-1p (blue), HIF-2a (purple), CBP (yellow), p300 (cyan)
were predicted using ZDOCK. H, J The interaction between DBHS
proteins and HIF-1a (H) or HIF-1p (I) or HIF-2a (J) in HepG2 cells
was also determined by performing PLA (upper panel) and Co-IP
(lower panel). For PLA assays, protein complexes were presented as
red clusters, and cell nuclei were showed as blue ovals. Scale bar =
10 um (x63). For Co-IP assays, cells were co-transfected with HA-
tagged DBHS plasmids and Flag-tagged HIF-1a (H) or HIF-2a (J) for
48 h. Then cells were collected, immunoprecipitated with anti-HA
antibody, loaded for western blotting with indicated antibodies. IgG as
negative control.

synergistically enhanced hypoxia-induced cell migration
(Fig. 7F). In addition, sorafenib resistance was acquired
partly attributed to hypoxic microenvironment [16]. We
observed NONO knockout enhanced the growth inhibition
effects of sorafenib, which were more pronounced under
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Fig. 5 NONO stabilizes HIF-1 complex and HIF-2 complex.
A HepG?2 cell lysates were incubated with GST-fusion proteins of the
indicated fragments of HIF-1a in GST pull-down assays. B, C The
effect of NONO on the stabilization of HIF-1a/p complex (B) and HIF-
1a/CBP complex (C) in Hep3B was determined by performing PLA in
the presence or absence of NONO. Protein complexes were presented
as red clusters, and cell nuclei were showed as blue ovals. Scale bar =
10 um (x63). D Huh7 cells with NONO knockout or not were treated
with 1% O, for 24 h, then was collected to be immunoprecipitated with
anti-HIF-1a antibody, finally loaded for western blotting with indi-
cated antibodies. IgG as negative control. E Lysate from Huh7 cell
with NONO knockout or not treated with 1% O, treatment for 24 h
was subject to CUT&RUN assay. CUT&RUN assay products were
quantified by qPCR with the indicated pairs of primers. F HepG2 cell
lysates were incubated with GST-fusion proteins of the indicated
fragments of HIF-2a in GST pull-down assays. G, H The effect of

NONO on the stabilization of HIF-2a/p complex (G) and HIF-2a/p300
complex (H) in SMMC-7721 was determined by performed PLA in
the presence or absence of NONO. Protein complexes were presented
as red clusters, and cell nuclei were showed as blue ovals. Scale bar =
10 um (x63). I HepG2 cells were transfected with HA-tagged HIF-2a
for 48 h, then cell lysates were collected to incubate with HA-tagged
beads. The presence of HA-tagged HIF-2a or endogenous p300 pro-
teins were analyzed by immunoblotting. IgG as negative control.
J HepG2 cell was transfected with Flag-tagged HIF-1a (left) or HIF-
2a (right) plasmids for 48 h, then cells were collected and incubated
with indicated fragments of NONO in GST pull-down assays.
> K HepG2 cells with NONO-knockout were transfected with empty
vector, full-length of NONO or truncated mutant (aal-274 or aa275-
471) for 24 h, followed by hypoxia treatment (1% O,) for 24 h. Finally,
the relative expression of HIF-1/2 target genes were determined by
RT-qPCR.
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hypoxia compared with normoxia (Fig. 7G). To further
understand the role of NONO in chemoresistance, sorafenib
resistant (SR) HCC lines were established and CCK-8 assay
was performed for drug resistance evaluation. As shown in
Fig. 7H, resistant cells showed great improvement of sor-
afenib resistance after NONO knockdown. In addition, we
observed that either single knockout of NONO or sorafenib

SPRINGER NATURE

treatment could inhibit tumor growth. More importantly, the
combination of NONO knockout and sorafenib treatment
resulted in the most significant inhibition of tumor growth
(Fig. 71, J), suggesting NONO knockout enhanced the
therapeutic efficacy of sorafenib in vivo. Altogether, NONO
knockout can reverse hypoxia-mediated malignant pheno-
types of HCC.
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Fig. 6 NONO facilitates the splicing mature and stabilizes
hypoxia-induced genes. A Number of transcripts bound by NONO
under normoxia and hypoxia in HepG2. B Distribution of NONO RIP-
sequencing peak annotation for different regions. C, D Gene enrich-
ment of biological process (C) and enriched KEGG pathways (D)
analysis for the NONO-bound mRNA. E Significantly enriched RNA
motifs among the RIP-seq. F Lysate from HepG2 cells after 1% O, or
Cocl, (100 uM) treatment for 24 h was subjected to RIP assay, then
RIP assay products were extracted by trizol. The mRNA bound by
NONO were quantified by RT-qPCR with the indicated pairs of pri-
mers. G HepG2 cells under hypoxia were treated with actinomycin D
(2uM) and harvested at the indicated time points, then RNA was
extracted from these cells and quantified by RT-qPCR with the indi-
cated pairs of primers. H, I Lysate from HepG2 cells after 1% O, or
Cocl, (100 uM) treatment for 24 h was subjected to RIP assay, then
RIP assay products were extracted by trizol. The snRNA U6 (H) and
pre-mRNA (I) bound by NONO were quantified by RT-qPCR with the
indicated pairs of primers. J HepG2 cells with NONO knockout or not
were treated with hypoxia (1% O,, 24 h) or normoxia. The expression
ratio of Cas9 and NONO-KO group in intron and mRNA of indicated
genes were determined by RT-qPCR.

Discussion

The solid cancer progression is always accompanied with
tumor hypoxia. Several advanced human cancers share
HIF-1/2 activation as a final common pathway [7].
Hypoxic cells counter stress by referring to stimulus-
varying regulatory network of gene expression. These
molecular changes allow cells to adapt the stress by
broadening the source of oxygen via angiogenesis and
economizing oxygen consumption through a shift to
glycolysis rather than oxidative metabolism. Here, we
showed multipurpose molecular scaffold NONO tran-
scriptionally and post-transcriptionally regulated the
expression of hypoxia-induced genes by protein—protein
and protein—nucleic acid interactions, respectively. The
roles of NONO were determined by our in vitro and
in vivo experiments that demonstrated it as the angio-
genesis- and glycolysis-promoting effector (Fig. 8). Col-
lectively, our results suggested NONO functioned as a
potential prognostic and therapeutic marker of HCC and
inhibition of NONO may help the disease management.
As molecular scaffold, DBHS proteins associate with
multiple transcription factors and act bifunctionally as
positive and negative transcriptional regulators. However,
transcriptional activation by DBHS proteins appears to be
driven by NONO. And transcriptional activation by NONO
is always involved in a synergistic interaction with other
activators [10]. We previously found NONO interacted with
SREBPIa, the core transcription factor involved in lipid
biogenesis, thus contributing to the lipogenesis of breast
cancer [12]. Here, we showed that NONO interacted with
HIF-1a/2a and associated with the promoters of HIF-1/2
targets, playing a critical role in the expression of hypoxia-
induced genes. As we known, transcription of hypoxia-

responsive genes is not solely dependent on HIF-1/2a
binding and other transcriptional co-factors are also
required to achieve maximal transcription activation in
response to hypoxia, such as NONO we found. This part
was fully confirmed by the evidence that co-expressing
NONO and HIF-1a/HIF-2a synergistically enhanced the
HIF-1/2 reporter activity. DBHS members were reported to
interact reciprocally and always be fundamentally dimeric
in past literature [10], our study showed that all of them
involved in HIF-1 while only NONO, SFPQ interacted with
HIF-2. Actually, H Choudhry et al. reported hypoxia-
induced paraspeckle in HIF-2a-dependent manner was
important for tumorigenesis [17]. Paraspeckle consists of 40
paraspeckle-associated proteins and structural backbone
long noncoding RNA NEATI, is a multifunction nuclear
structure that sequesters transcriptionally active proteins and
RNA transcripts to regulate gene expression. Both SFPQ
and NONO are essential for the formation and integrity of
paraspeckle [18, 19]. These data suggest that NONO may
function as paraspeckles in the transcription regulation
during hypoxia and further study needs to explore the
function of paraspeckle in stimulus response. Mechan-
istically, we found the C-terminal end of NONO was
responsible for its interaction with both HIF-1a and HIF-2a,
which was showed as an extended o-helical “arm” pro-
jecting out from the main structure body in molecular
docking model. The C-terminal end of NONO is char-
acterized by high charge and provides an interface for
dimerization and oligomerization [20]. Therefore, over-
expression of truncation of this coiled-coil region failed to
rescue HIF-1/2 targets expression in NONO knockout cells.

As for another important aspect of molecular scaffold,
DBHS proteins exert typical function of RNA binding
protein (RBP) based on their highly conserved tandem N-
terminal RNA recognition motifs (RRMs), including tran-
script splicing, polyadenylation and stabilization, even
location and translation. Mainly in the past two decades,
RBPs have already earned the right to be in the spotlight,
which attribute to their pivotal roles in post-transcriptional
events and promising translation potential [21, 22]. While
conventional anti-cancer therapies usually target one path-
way at a time, targeting key RBP would affect more than
one cancer hallmark and thus inhibiting cancer to the
greatest extent. What’s more, the disruption RBP-RNA
interactions by using small-molecule inhibitors or oligonu-
cleotides have been already achieved, with favorable func-
tional outcomes [23-25]. Meanwhile, synthesis of RBP that
combines effectors domain with RNA binding domains
(RBDs) to modulate a subset of cancer-associated tran-
scripts is becoming a tangible reality [26]. Numerous ori-
ginal researches have showed NONO exerted oncogenic
activity as a versatile RBP. Kim et al. found NONO bound
and stabilized the mRNA of STATS3 thus contributing to the
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growth and chemotherapy resistance of triple-negative
breast cancer (TNBC) [27]. Hu et al. demonstrated
NONO promoted HCC progression via alternative splicing
of bridging integrator 1 (BIN1) [28]. Here, we showed that
NONO bound a cluster of HIF-1/2 targets under hypoxia
and facilitated their splicing and enhanced subsequent
mRNA stability. Like almost half of RBPs, NONO
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associates with RNA sites are also apparently “non-spe-
cific’, as putative binding-site motifs are different from
previous studies. This “non-specificity” could be explained
by various factors such as RBP/RNA concentration, RBP
affinity distribution, rate constants for RNA substrate
binding/dissociation, and RBP synergistic co-factors [29].
This binding feature enables conformational flexibility and
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Fig. 7 Hypoxia-mediated tumor phenotypes can be overcome by
NONO knockout. A, B Extracellular acidification rate (ECAR) of
HepG2 (A) and SMMC-7721 (B) cells with NONO knockout or not
were determined by Seahorse XF assays after treating with Cocl,
(100 uM) for 24 h or not. C In vitro tube formation assays incubated
with condition medium from indicated cells. The number of branch
points quantified by image J. D The cell viability HepG2 cells with
NONO knockout or not under hypoxia or normoxia was determined by
colony formation assay. E The wound-healing assay in SMMC-7721
cell with NONO-KO or not was determined after hypoxia or normoxia
treatment. The area of wound healed was measured by image J. F The
wound-healing assay in Huh7 cell with NONO-overexpressing or not
was determined after hypoxia or normoxia treatment. The area of
wound healed was measured by image J. G HepG2 cells with NONO
knockout or not were treated with sorafenib at indicated concentration
for 48 h in the presence or absence of oxygen, then the cell viability
was determined by CCK-8 assay. H Enhanced response to sorafenib
due to NONO knockdown was observed in sorafenib-resistant Hep3B
(left) and Huh7 (right). The ICs, of each treatment is presented. I The
volume and weight of subcutaneous tumors in different treatment
groups was determined (n = 10). J Mice bearing tumors xenografts
were treated as described in “Materials and Methods”. Curves of tumor
growth in each group were measured.

adaptability to different structures but also brings disruption
RBP-RNA interaction challenge. To sum up, the mechan-
ism that NONO allows the integration the above-mentioned
transcription events with these RNA processing machi-
neries, which termed “Co-transcriptional RNA processing”,
makes mRNA production temporally and spatially con-
venient [14]. This molecular mechanism may ensure cells
efficiently and promptly produce the precise repertoire of
stress-responsive factors.

Interestingly, we found four HIF-1 binding sites in
NONO promoter but all appeared to be non-functional.
Gregg L. Semenza et al. previously reported that hypoxia
response elements (HREs) in ALDA and ENO1 promoters
were functionally-essential HIF-1 binding sites, but other
HIF-1 binding sites in the same genes made no contribu-
tion to the hypoxic response, indicating that presence of
HIF-1 binding site was necessary but not sufficient for
HRE function. Several mechanisms might involve in
functional and non-functional HIF-1 sites: (i) Location of
site; (ii) Relative binding affinity; (iii) Binding of con-
stitutive factors; (iv) Bipartite structure of HREs [30]. Our
results showed NONO also regulated biological pheno-
types of HCC, interacted with HIFs complex or hypoxia-
induced transcripts under normoxia. In addition to low
oxygen, HIFs are also regulated by many other stimuli
(e.g., cytokines, metabolic intermediates, and cell growth
signals), which is commonly referred to as “pseudohy-
poxia” [31]. Therefore, the effect of NONO on biological
phenotypes was more likely HIF-dependent rather than
hypoxia-dependent.

With roles in almost every step of gene regulation, it is
not surprising that abnormal expression of NONO results

in malignant transformation of normal cells. To date,
emerging evidences have demonstrated that NONO was
frequently overexpressed in various cancer and is an
independent prognostic factor for some cancers [11].
Although NONO is functionally characterized and has
profound impact on tumorigenesis in a spectrum of cancer
types, only few has been fully characterized. Here, we
described how NONO functioned as an oncogene in HCC
progression. However, Xie et al. showed NONO inhibited
lymphatic metastasis of bladder cancer [32]. Interestingly,
NONO upregulated in ER (+) while decreased in ER (—)
breast tumor [33]. It seems that the precise function of
NONO depends on cell-type, exogenous stimuli, interac-
tion partners, its own modification status even the time of
day. Future study needs to take these elements into
consideration.

As mentioned earlier in this article, many scientists
struggled to target HIF-1/2 pathways but gained little.
Cancer cells can still survive by compensatory enhanced
activation of other pathways. For decades, directly targeting
the downstream targets of these pathways such as GLUT]1
and LDHA have been long recognized as potential treatment
[34, 35]. However, it is still a critical question that how to
simultaneously target multiple oncogenes to overcome drug-
resistance to some degree. Now targeting such multipurpose
protein is expected to break through the bottleneck. Kim
et al. revealed auranofin as NONO inhibitor in TNBC by
drug screening [27]. Auranofin is a safe and effective oral
medicine of rheumatoid arthritis over 30 years and is
recently reported as a potent anti-cancer agent through
increasing cellular oxidative stress and inducing apoptosis
[36]. Sorafenib was the only effective first-line drug
approved for HCC. Sorafenib improved median overall
survival but about 30% patients showed inherent or acquired
drug resistance [37]. Our data showed NONO knockout
enhanced the therapeutic efficacy of sorafenib. Recently,
Kessler et al. showed an induction of paraspeckles in
sorafenib-resistant HCC and purposed paraspeckle-
associated protein NONO, PSPCI1, and RBM14 might be
promising targets [38], which strengthened our view about
the importance of NONO in sorafenib resistance of HCC.

It’s been almost 30 years from NONO first identified from
Hela cells [39]. Now we have a sound framework to reliably
investigate this remarkably adaptable and versatile protein.
However, our understanding of the precise mechanistic detail
of the NONO under specific biological process is still not
adequate. Better comprehension of the definite mechanism of
NONO during the tumor-specific physio-pathological pro-
cesses will make it therapeutically invaluable.

In summary, our study has revealed NONO functions as
a multifunctional scaffold that assembles HIF-1 and HIF-2
protein complexes to activate transcription and interacts
with subsequent transcripts of HIF-1/2 targets to facilitate
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Fig. 8 Schematic mechanism of NONO in hypoxia-enhanced progression of HCC. Schematic illustration of mechanisms for the expression
regulation of hypoxia-induced genes by NONO thus enhancing angiogenesis and glycolysis.

their splicing and stability, which endow cancer cells with
powerful adaptability and viability in hypoxia micro-
environment. Therefore, NONO might be a potential ther-
apeutical target for HCC.

Materials and methods

Cell lines and cell culture

See Supplementary information for details.

siRNA, plasmid and transfection

See Supplementary Information for details. The sequence of
siRNA oligos were listed in Table S1. The vectors of
plasmids were summarized in Table S2.

Lentivirus packaging and screening knockout cells

See Supplementary Information for details.
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RNA sequencing
See Supplementary Information for details.
RNA immunoprecipitation and RIP-seq

See Supplementary Information for details. PCR primers for
RIP assays were listed in Table S3.

mRNA stability assay
See Supplementary Information for details.
CUT&RUN assay

See Supplementary Information for details. PCR primers for
CUT&RUN assay were listed in Table S4.

Proximal ligand assay

See Supplementary Information for details.
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Table 1 Analysis of correlation between NONO and clinic parameters
of hepatocellular carcinoma.

Characteristics All cases Low High P value

Participants 37 10 27

Age (years) 0.9023
<50 18 5 13
250 19 5 14

Gender 0.7975
Female 3 1 2
Male 34 9 25

HBYV infection 0.0029
Negative 15 8 7
Positive 22 2 20

Hepatocirrhosis 0.7091
Negative 9 2 7
Positive 28 8 20

AFP (ng/mL) 0.8085
<20 16 4 12
220 21 6 15

Tumor size (cm) 0.0456
<5 16 7 9
>5 21 3 18

BE_FDG SUV 0 0.0095
<5.3 16 8 8
5.3 21 2 19

TNM <0.0001
I 2 2
I 10 7 3
I 23 1 22
v 2 0 2

Grade 0.0011
1 4 4 0
2 26 6 20
3 7 0 7

GST pull-down assay

See Supplementary Information for details.
Molecular docking

See Supplementary Information for details.
Animal experimentation

See Supplementary Information for details.
Patient samples

See Supplementary Information for details.

Tube formation assay

See Supplementary Information for details.

Extracellular acidification rate (ECAR) and oxygen
consumption rate (OCR) assays, cell counting kit-8 and
colony formation, Wound-healing assay, Co-IP, Western
blot, real-time quantitative PCR, Dual luciferase reporter
assay, and immunohistochemistry were as described pre-
viously [40, 41]. All antibodies were listed in Table S5. The
primers for RT-qPCR were summarized in Table S6.

Statistical analyses
See Supplementary Information for details.
Data availability statement

Raw sequencing and processed RNA-Seq data from our
study are not publicly available due to other unfinished
researches but are available from the corresponding author
on reasonable request.
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