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Background.  Many long noncoding RNAs (lncRNAs) have important roles in biological processes. The lncRNA HULC was found to 
be upregulated in human hepatoma tissues. HULC is thought to be involved in multiple steps of hepatoma development and progression; 
however, the relationship between HULC and hepatitis C virus (HCV) infection, which is a leading cause of hepatoma, remains unclear.

Methods.  We examined the effect of HCV replication on HULC expression and the underlying mechanism using cell culture 
systems. Subsequently, we tested the effect of HULC suppression and overexpression on HCV replication. Finally, we examined the 
impact of HCV eradication on HULC expression using human liver tissue and blood samples.

Results.  HCV replication increased HULC expression in cell cultures. A promoter assay showed that an HCV nonstructural pro-
tein, NS5A, increased HULC transcription. HULC suppression inhibited HCV replication; conversely, its overexpression enhanced 
HCV replication. These effects on HCV replication seemed to occur by the modification of HCV translation. Measurements from 
human liver and blood samples showed that HCV eradication significantly reduced HULC levels in the liver and blood.

Conclusions.  HCV infection increases HULC expression in vitro and in vivo. HULC modulates HCV replication through an 
HCV internal ribosome entry site–directed translation step.
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Hepatitis C virus (HCV) is a positive-stranded RNA virus that 
belongs to the Flaviviridae family. Persistent infection of the 
human liver with HCV can cause chronic hepatitis and cir-
rhosis, which are frequently followed by hepatocellular carci-
noma (HCC) [1]. Therefore, antiviral treatments that eliminate 
HCV from an infected liver are expected to reduce the mortality 
of liver-related diseases due to HCV infection. Currently, treat-
ment with highly effective direct-acting agents against HCV can 
result in a sustained virologic response (SVR) rate that is close 
to 100% [2]. Although HCV elimination by direct-acting agents 
reduces the risk of HCC, even after achieving an SVR, HCC 
can develop in an HCV-eliminated liver [3–6]. The mechanisms 
by which HCV promotes hepatocarcinogenesis remain poorly 

understood; in addition, a prediction of HCC occurrence after 
SVR is important for the effective surveillance of HCC in large 
numbers of HCV-eliminated patients.

Transcripts consist of 2 forms of RNA, namely, coding RNA 
and noncoding RNA; noncoding RNA is further divided into 
small noncoding RNA and long noncoding RNA (lncRNA). 
The functions of small noncoding RNAs, such as small inter-
fering RNA (siRNA) or microRNA (miR), have been analyzed 
in more depth than those of lncRNAs. For example, the liver-
specific miR-122 interacts directly with the 5′-untranslated 
region (UTR) of HCV and positively modulates HCV replica-
tion [7]. LncRNAs generally possess a cap structure at the 5′-end 
and poly A tail at the 3′-end and are >200 nucleotides in length. 
Recently, many lncRNAs have been identified and reported to 
have important roles in biological processes, such as differenti-
ation, apoptosis, development, and immune responses [8–11]. 
Furthermore, roles for several lncRNAs, such as lnc-Lethe [12], 
CSR32/EGOT [13], lncR 8 [14], and lncRNA-32 [15], in HCV 
infection/replication have been reported and some of these 
lncRNAs work by modifying host antiviral responses.

HULC is an lncRNA that was identified from analysis of 
HCC in humans and was found to be upregulated in HCC tis-
sues [16]. HULC is reported to be involved in multiple steps 
of hepatocarcinogenesis and HCC progression; accordingly, 
HULC levels in the blood and liver are reported to be useful 
for the diagnosis and detection of HCC or the prediction of 
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prognosis after treatment [17, 18]. In addition to HCC, the 
importance of HULC in the progression or diagnosis of other 
cancers, such as pancreatic [19], colon [20], and stomach [21] 
cancer, has been suggested.

The relationship between HCV infection and HULC expres-
sion remains unclear. In this study, we clearly demonstrated 
that HULC is transcriptionally upregulated by HCV infection 
in an HCV cell culture model. In addition, we found that the 
increased expression of HULC positively modulates HCV rep-
lication by enhancing HCV translation. We also showed that 
HULC expression is significantly reduced in human liver and 
blood after the successful eradication of HCV.

MATERIALS AND METHODS

Human Samples

We extracted total RNA from liver biopsies of 19 patients. All 
patients were treated with pegylated interferon (IFN) α2a/b-
containing regimens and achieved an SVR. The patients had 
undergone a liver biopsy prior to antiviral treatment and after 
viral elimination. Total RNA was extracted from the liver sam-
ples as described previously [22].

A total of 228 HCV genotype 1b HCV-infected patients were 
treated with asunaprevir and daclatasvir in Kanazawa University 
Hospital and its associated hospitals belonging to the Hokuriku 
Liver Study Group. Blood samples were taken and stored by 
using the PAX gene before antiviral treatment and at 24 weeks 
after finishing antiviral treatment. Total RNA was extracted 
with a PAXgene Blood RNA Kit (Qiagen, Hilden, Germany).

Informed consent was obtained from all patients, and ethics 
approval for the study was obtained from the Ethics Committee 
for Human Genome/Gene Analysis Research at Kanazawa 
University Graduate School of Medical Science.

Other methods used in this study are described in the 
Supplementary Data.

RESULTS

HULC Expression Is Upregulated by HCV Infection and Replication

We examined whether HCV infection could increase HULC 
expression in an HCV cell culture system. For this purpose, 
Huh-7.5 cells were infected with cell culture–derived HCV 
from HJ3-5 [23], a chimera of genotype 1a H77S and genotype 
2a JFH-1, at different multiplicities of infection (MOIs) of 0.01, 
0.1, and 1. Total RNA was extracted every 24 hours from 24 to 
96 hours postinfection, and HCV RNA and HULC levels were 
quantified by reverse-transcription quantitative polymerase 
chain reaction (RT-qPCR). HCV RNA levels increased from 
24 hours postinfection in an MOI-dependent manner. While 
HULC expression was not altered at 24 hours postinfection, it 
started to increase from 48 hours postinfection in time- and 
MOI-dependent manners (Figure 1A). The increase of HULC 
levels by HCV infection was also observed in another Huh-7 
subline, FT3-7 (Supplementary Figure 1). In addition, we 

observed a 20-fold difference in HULC levels depending on 
HCV infection in RNA-seq analyses (Supplementary Figure 
2). We further investigated HULC expression in HCV-stably 
replicating Huh-7.5 cells by using HCV-replicon cells. Two 
subgenomic replicons derived from genotype 1b N [24] and 
M1LE [25, 26], and a full-genomic replicon from genotype 1a 
H77S [27, 28] were prepared by transfection of Huh 7.5 cells 
with the corresponding RNAs and subsequent selection of 
neomycin-resistant cells for 21 days (Figure 1B). As a control, 
neomycin-resistant cells were prepared by transfection with 
a neomycin-resistance gene-coding plasmid and subsequent 
treatment with neomycin. We quantified HCV RNA and HULC 
levels by RT-qPCR in these replicon cells. While HCV RNA 
was detected at different levels in these replicon-containing 
cells, HULC was also detected in these cells at a higher level 
than in the neomycin-resistant cells lacking an HCV replicon 
(Figure 1C). Furthermore, Huh-7.5 cells harboring the M1LE 
replicon were treated with 5  µM sofosbuvir, a nucleotide an-
alogue NS5B polymerase inhibitor, to inhibit HCV replica-
tion or 0.5% dimethyl sulfoxide  (DMSO) without neomycin. 
HCV RNA levels decreased sharply and became undetectable 
at day 6 after starting sofosbuvir treatment. HULC levels also 
quickly decreased at the same time with sofosbuvir treatment. 
In DMSO-treated cells, HCV RNA and HULC levels increased 
until day 4 and gradually decreased thereafter (Figure 1D). This 
result showed a good correlation between HULC and HCV 
RNA expression. These findings clearly show that HCV infec-
tion enhances HULC expression in vitro. The upregulation of 
HULC in HCV-infected liver was also observed in a human-
liver chimeric mouse model (Supplementary Figure 3).

Poly(I:C) Does Not Increase HULC Expression and HULC Is Not an 

Interferon-Stimulated Gene

Next, we investigated the mechanism by which HCV infection 
or replication increases HULC expression. HCV replication is 
known to produce double-stranded RNA, which induces the 
expression of many IFN-stimulated genes (ISGs). We examined 
whether poly(I:C), a mimic of double-stranded RNA, could 
increase HULC expression by transfection of Huh-7.5 cells with 
poly(I:C). Because Huh-7.5 cells have a deficit in ISG induction 
upon poly(I:C) stimulation due to a mutation in RIG-I [29], we 
overexpressed wild-type RIG-I via plasmid transfection. The 
expression of exogenous RIG-I was confirmed by Western blot-
ting (Supplementary Figure 4A), and the cells were transfected 
with poly(I:C). Poly(I:C) transfection induced ISG expression, 
including IFIT-1, OAS2, MX1, and IFN-β, in wild-type RIG-I–
overexpressing cells, but not in empty vector-transfected cells 
(Supplementary Figure 4B); however, Poly(I:C) transfection did 
not affect HULC levels in empty vector-transfected or wild-type 
RIG-I–overexpressing cells. (Figure 2A). We also examined the 
possibility that HULC could be induced by IFN. For this pur-
pose, the messenger RNA (mRNA) levels of 2 ISGs, MX1 and 
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Figure 1.  Upregulation of HULC expression by hepatitis C virus (HCV) replication in cell culture. A, Huh-7.5 cells were infected with cell culture-derived HCV of HJ3-5 at 
multiplicities of infection (MOIs) of 0.01, 0.1, and 1 or mock. Total RNA was extracted at 24, 48, 72, and 96 hours postinfection. HCV RNA, HULC, and 18S ribosomal RNA 
(rRNA) levels were quantified by reverse-transcription quantitative polymerase chain reaction (RT-qPCR), and the levels of HCV RNA and HULC were normalized to those of 
18S rRNA, and further normalized to the relative HULC level of mock at 24 hours, which was set to 1. Error bars show the standard deviation from 3 independent experiments, 
and the differences of means among each condition were analyzed by 2-way analysis of variance (ANOVA). B, Schematic representation of full-genomic and subgenomic 
replicons. Neo-R, neomycin resistance gene. C, Huh-7.5 cells harboring each replicon were established after selection with 0.5 mg/mL G418 for 21 days, and total RNA 
was extracted. The levels of HCV RNA, HULC, and β-actin were quantified by RT-qPCR, and HCV RNA and HULC levels were normalized to those of β-actin. Differences in 
the means were analyzed by one-way ANOVA. D, Huh-7.5 cells harboring the M1LE replicon were treated with 5 μM sofosbuvir or 0.5% dimethyl sulfoxide (DMSO) without 
neomycin. HCV RNA, HULC, and 18S rRNA levels were determined by RT-qPCR every other day, and HCV RNA and HULC levels were normalized to the level of 18S rRNA. 
*P < .05, **P < .01, ***P < .001.
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OAS2, and HULC were determined following IFN-α2b and 
IFN-λ3 treatment. While both ISGs were upregulated by IFN-
α2b and IFN-λ3, HULC was not (Figure 2B). These results indi-
cate that HULC is not an ISG.

NS5A Protein Increases HULC Transcription

Subsequently, we examined whether HCV protein could 
increase HULC expression. Because HULC was upregulated 
by subgenomic and full-genomic replicons (Figure 1B and 1C), 
we speculated that HCV nonstructural proteins (NS3, NS4A, 

NS4B, NS5A, and NS5B) could increase HULC levels. To test 
this hypothesis, we overexpressed the nonstructural proteins 
individually in Huh-7.5 cells and confirmed their expression by 
Western blotting (Supplementary Figure 5). RT-qPCR analysis 
indicated that only NS5A overexpression significantly increased 
HULC expression (Figure 3A). We further examined the effect 
of HCV infection on HULC transcription. For this purpose, we 
introduced 2 HULC promoter regions, which are located ap-
proximately 400 and 900 nucleotides upstream from the tran-
scription start site of HULC [30, 31], into the pGL3-Basic vector 
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Figure 2.  HULC is not an interferon (IFN)–stimulated gene. A, Huh-7.5 cells were transfected with a plasmid encoding N-terminal FLAG tagged RIG-I or the corresponding 
empty vector, and 24 hours later, they were transfected with 1 μg/mL poly(I:C) or mock. Total RNA was extracted 9, 24, and 48 hours after poly(I:C) transfection. HULC and β-
actin messenger RNA (mRNA) levels were determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). HULC expression was normalized to β-actin 
mRNA expression, and the normalized RNA levels from poly(I:C)-transfected cells were further normalized to those from mock-transfected cells at each time point and plasmid 
transfection. B, Huh-7.5 cells were treated with IFN-α2b or IFN-λ3 at the indicated concentrations and total RNA was extracted. The mRNA levels of MX1, OAS2, and 18S 
ribosomal RNA (rRNA) were quantified by RT-qPCR, and MX1 and OAS2 mRNA levels were normalized to those of 18S rRNA. NT indicates nontreatment.
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Figure 3.  HULC is transcriptionally upregulated by NS5A. A, Huh-7.5 cells were transfected with plasmids encoding NS3, NS4A, NS4B, NS5A, and NS5B from genotype 
1a H77S.3 or empty vector (EMV). At 72 hours after transfection, total RNA was extracted, HULC and β-actin levels were quantified by reverse-transcription quantitative 
polymerase chain reaction, and HULC levels were normalized to those of β-actin. Furthermore, the relative HULC levels from plasmid-transfected cells were normalized to 
the relative HULC levels from EMV-transfected cells, which were set to 1. The differences of means between EMV-transfected cells and each NS protein-encoding plasmid 
were analyzed by one-way analysis of variance (ANOVA). B, The promoter regions of HULC, which are located approximately 400 and 900 nucleotides upstream from the 
transcription start site of HULC, were introduced into the pGL3-Basic vector encoding a firefly luciferase gene whose expression was regulated by the introduced HULC pro-
moter regions, to create HULC-400 and HULC-900, respectively. Those plasmids were transfected into Huh-7.5 cells with a reporter plasmid containing a Renilla luminescent 
reporter gene. At 24 hours later, the cells were infected with cell culture–derived hepatitis C virus from HJ3-5 at multiplicities of infection (MOIs) 0.2 and 1 or mock. At 48 
hours postinfection, firefly and Renilla luciferase activity was measured, and firefly luciferase activity was normalized to that of Renilla. Furthermore, activity was normalized 
to the activity of pGL3-Basic-transfected or mock-infected cells, which was set to 1. The differences of means at each condition were analyzed by 2-way ANOVA. C, Huh-7.5 
cells were transfected with pGL3-Basic, HULC-400, or HULC-900 and then transfected with plasmids encoding NS3, NS4A, NS4B, NS5A, or NS5B from genotype 1a H77S.3 or 
EMV. At 48 hours after transfection, firefly and Renilla luciferase activity was measured, and firefly luciferase activity was normalized to that of Renilla. Furthermore, activity 
was normalized to that from pGL3-Basic-transfected cells for each nonstructural protein-coding plasmid, which was set to 1. The differences of means between pGL3-Basic 
and HULC-400 or HULC-900 at each NS protein overexpression were analyzed by 2-way ANOVA. ***P < .001.
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encoding a firefly luciferase gene whose expression is regulated 
by the introduced HULC promoter regions. By using these plas-
mids, we examined the effect of each viral protein on HULC 
promoter activity. When we infected Huh-7.5 cells, which had 
already been transfected with pGL3-Basic and pGL3 containing 
the 2 HULC promoter regions, with HCV at mock, MOI 0.2, 
and MOI 1, HCV infection significantly increased HULC pro-
moter activity in an MOI-dependent manner for the 400 nucle-
otide- and 900 nucleotide-containing plasmids (Figure 3B). We 
further examined the ability of each nonstructural protein to 
increase HULC promoter activity. When we overexpressed the 
nonstructural proteins individually in Huh-7.5 cells, which had 
already been transfected with pGL3-Basic and pGL3 containing 
the 2 HULC promoter regions, NS5A overexpression increased 
HULC promoter activity (Figure 3C). These data suggest that 
NS5A can increase the transcription of HULC.

HULC Knockdown Suppresses HCV Replication

We examined the role of HULC, which is upregulated by 
HCV infection, in HCV replication. To suppress HULC ex-
pression, we designed 3 different siRNAs (si-HULC-1, -3, 
and -4) targeting HULC and confirmed the effective suppres-
sion of HULC by all 3 siRNAs in FT3-7 cells; the suppressive 
effect of si-HULC-3 was the most prominent among them 
(Supplementary Figure 6). To monitor HCV replication easily, 
we used HJ3-5/GLuc2A [32], in which the Gaussia luciferase 
(GLuc)–coding sequence, fused at its C terminus to the foot and 
mouth disease virus 2A autoprotease, was inserted between p7 
and NS2 of HJ3-5. FT3-7 cells were initially transfected with 
HJ3-5/GLuc2A RNA, and at 48 hours later, they were trans-
fected with si-HULC-1, -3, -4, or control siRNA (si-CNT). 
GLuc activity was then measured every 24 hours until 96 hours. 
From 48 hours after siRNA transfection, GLuc activity started 
to be lower in the cells transfected with siRNAs to HULC com-
pared with those transfected with si-CNT or mock. At 72 and 
96 hours after transfection, GLuc activity was 27%–43% lower 
in cells transfected with siRNAs to HULC compared with 
those transfected with si-CNT (Figure  4A). The suppression 
of HCV replication by siRNAs to HULC was also observed in 
Huh-7.5 cells (Supplementary Figure 7). The suppressive effect 
of si-HULC-3 on HCV replication was the most prominent 
among the siRNAs to HULC, which was consistent with the 
strong suppressive effect of si-HULC-3 on HULC expression. 
We also examined the effect of HULC suppression on cell pro-
liferation by a WST-8 assay. HULC suppression by siRNA did 
not affect cell proliferation at 72 hours after siRNA transfec-
tion; however, a slight (~10%) decrease was induced at 96 hours 
(Supplementary Figure 8). We also performed a similar exper-
iment by using HJ3-5, which does not contain a GLuc-coding 
sequence. Following transfection of FT3-7 cells with HJ3-5 
RNA, they were transfected with siRNAs to HULC or si-CNT, 
and then at 72 and 96 hours later, Western blot, RT-qPCR, and 

a focus-forming unit assay were performed. Western blot anal-
ysis showed that all siRNAs to HULC suppressed the expression 
of HCV core protein at 72 and 96 hours (Figure 4B). RT-qPCR 
showed that all siRNAs to HULC suppressed HCV replication 
by 18%–53% compared with si-CNT (Supplementary Figure 
9). A focus-forming unit assay showed that HULC suppression 
reduced infectious virus production (Figure 4C). The Western 
blot, RT-qPCR, and focus-forming unit assay also showed that 
the suppressive effect of si-HULC-3 on HCV replication or in-
fectious virus production was the most prominent among the 3 
siRNAs to HULC. Si-HULC-3 inhibited HCV replication in a 
dose-dependent manner (Supplementary Figure 10), and this 
suppressive effect was also observed for genotypes 1a and 1b 
(Supplementary Figure 11).

HULC Enhances Hepatitis C Virus Replication Through Its 5′ Region

We next examined the effect of HULC overexpression on HCV 
replication. To express HULC exogenously, we subcloned 
HULC complementary DNA into the vector pBapoCMV, in 
which HULC is expressed under the control of the cytomegalo-
virus promoter. We transfected Huh-7.5 cells with this HULC-
coding vector or an empty vector, and at 48 hours later, the cells 
were transfected with HJ3-5/GLuc2A RNA. GLuc activity at 8 
hours after transfection was significantly higher in the HULC-
overexpressing cells than in the empty vector-transfected cells. 
At 48 hours and 72 hours, the HULC-overexpressing cells 
showed much higher GLuc activity than the empty vector-
transfected cells (Figure 5A). A WST-8 assay showed that HULC 
overexpression did not alter cell proliferation (Supplementary 
Figure 12). These results indicate that HULC enhances HCV 
replication.

HULC Regulates HCV Translation

The enhancement of GLuc activity by HULC overexpression 
at 8 hours after transfection (Figure 5A) suggested that HULC 
could regulate the HCV internal ribosome entry site (IRES)–
mediated translation step, because the transfected HCV RNA 
would not be amplified at this early time point; thus, GLuc 
activity at 8 hours reflects the levels of translated HCV pro-
teins, rather than amplified HCV RNA. To examine the ef-
fect of HULC on translation directed by HCV IRES, we used 
2 nonreplicating RNA genomes: one was a mini-genomic 
RNA sequentially containing HCV 5′-UTR, GLuc, and HCV 
3′-UTR [33], and the other was an HCV full-genomic RNA 
containing the GLuc-coding sequence located between p7 and 
NS2 with the catalytic center GDD motif of NS5B mutated to 
AAG (Figure 5B) [32]. Huh-7.5 cells were transfected with the 
HULC-coding vector or an empty vector. At 48 hours later, 
they were transfected with mini-genomic or full-genomic HCV 
RNA, and GLuc activity was measured at 12 hours later. HULC 
overexpression enhanced GLuc activity in the mini-genomic 
and full-genomic HCV RNA-transfected cells compared with 

412 • JID 2022:226 (1 August) • Kitabayashi et al

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa325#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa325#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa325#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa325#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa325#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa325#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa325#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa325#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa325#supplementary-data


the empty vector-transfected cells (Figure  5C, left). We also 
examined the effect of HULC suppression by siRNA on HCV 
translation. Huh-7.5 cells were transfected with si-HULC-3 
or si-CNT. At 48 hours later, they were transfected with 

mini-genomic or full-genomic HCV RNA, and GLuc activity 
was measured at 12 hours later. HULC suppression reduced 
GLuc activity in the mini-genomic and full-genomic HCV 
RNA–transfected cells compared with the si-CNT–transfected 
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cells (Figure  5C, right). We examined the effect of HULC 
overexpression and knockdown on cap-dependent translation 
and encephalomyocarditis virus IRES-mediated translation 
with the same method as that used for HCV IRES-mediated 
translation. We found that neither HULC overexpression nor 
knockdown had an effect on these translations, except HCV 
(Supplementary Figure 13). These results suggest that HULC 
specifically regulates HCV IRES-mediated translation.

HULC in Human Liver and Blood

The data from Huh-7.5 cells, FT3-7 cells, and the human-liver 
chimeric mouse model clearly showed that HCV infection 
and replication increase HULC levels; however, it was unclear 
whether HCV infection could increase HULC expression in 
human liver. Therefore, we examined whether HCV eradication 
by antiviral treatment could reduce HULC expression in human 
liver. A  total of 19 paired RNA samples from HCV-infected 
human liver were available from before antiviral treatment with 
pegylated IFN with or without ribavirin/telaprevir and after the 
eradication of HCV. The clinicopathological features of these 
patients are shown in Supplementary Table 1. When we com-
pared HULC levels in human liver before and after HCV eradi-
cation, its expression was significantly decreased in 16 patients 
(Figure 6A). We also measured HULC levels in blood samples 
taken from HCV-infected patients. Because HULC levels in 
blood were expected to be very low, there is a possibility that 
HCV RNA could affect the quantitation of HULC in blood. 
Therefore, we confirmed that the presence of HULC and HCV 
RNA did not affect the PCR quantification of each by meas-
uring serially diluted HCV- and HULC-encoding plasmids 
(Supplementary Figure 14). A  total of 213 paired RNAs from 
HCV-infected human blood were available that were taken be-
fore antiviral treatment with the NS3/4A inhibitor asunaprevir 
and the NS5A inhibitor daclatasvir, and after the eradication of 
HCV. When we compared HULC levels in human blood be-
fore and after HCV eradication, its expression was significantly 
decreased in most cases (Figure  6B). We also had RNA sam-
ples isolated from blood samples of 15 patients in whom HCV 
was not eradicated by this treatment. We compared HULC 
expression in the blood after antiviral treatment between the 
213 patients with successful HCV eradication and the 15 pa-
tients with unsuccessful HCV eradication. HULC expression 
was significantly higher in the blood of the HCV eradication–
failed patients compared with the successfully treated patients 
(Figure 6C). These results show that HCV eradication can re-
duce HULC levels in human liver and blood and suggest that 
HCV infection increases HULC expression in humans.

DISCUSSION

In this study, we showed that HULC expression is upregulated 
by HCV infection in cell culture and human-liver chimeric 
mouse models. In addition, HULC expression in human liver 

and blood was significantly reduced by HCV eradication. These 
results suggest that HCV infection increases HULC levels. 
Furthermore, increased HULC expression augmented HCV 
RNA replication by enhancing HCV IRES-directed translation. 
Although HULC upregulation by HCV was reported by Sharma 
et al using a cell culture model [34], our study clearly showed 
that it is also the case in humans. Furthermore, this is the first 
report showing that HCV IRES-directed translation is regulated 
by an lncRNA.

In the mechanism of HULC upregulation by HCV infection, 
HCV core protein was shown to increase retinoid X receptor 
(RXR) α–mediated transcription, which induces HULC tran-
scription [35]. In our study, HULC upregulation was observed 
in subgenomic replicon cells in which HCV core protein was 
absent, as well as in full-genomic replicon cells, suggesting 
that nonstructural proteins, as well as HCV core protein, 
could enhance HULC transcription. Furthermore, when we 
individually overexpressed nonstructural proteins, only NS5A 
overexpression increased HULC expression and HULC pro-
moter activity, suggesting that NS5A increases the transcrip-
tion of HULC. The mechanism of HULC upregulation has been 
examined in more depth for hepatitis B virus; HBx enhances 
the promoter activity of HULC through the transcription factor 
CREB [29]. Besides CREB, several transcription factors, such 
as RXR, Sp1, Sp3, and Sp4, are reported to upregulate HULC 
expression [35, 36]. In addition to transcriptional regulation, 
HULC is regulated by posttranscriptional destabilization via 
binding to IGF-2 mRNA-binding protein [37]. These studies 
suggest that HULC expression can be adjusted by various 
mechanisms. In a future study, we will clarify the mechanisms 
by which NS5A upregulates HULC promoter activity.

Sharma et al showed that HULC is upregulated during HCV 
infection and enhances HCV virus-particle release by increasing 
the number of lipid droplets (LDs) and promoting the associa-
tion of HCV core protein with LDs [34]. LDs are important for 
infectious virus production, mainly through HCV core protein 
[38, 39]. Furthermore, NS5A interacts with the LD-associated 
protein tail-interacting protein 47, which coats LDs and is in-
volved in their generation and turnover, and this interaction is 
important for HCV RNA replication [40]. Our results showed 
that HULC modulates HCV replication through an HCV IRES-
directed translation step; however, in addition to this, the ef-
fects of HULC on HCV replication observed in this study could 
also be due to its effect on LDs. Taken together, these findings 
indicate that HULC modulates HCV infection through several 
steps including infectious virus production, HCV RNA amplifi-
cation, and HCV IRES-directed translation.

Our results suggest that HULC regulates IRES-directed 
HCV translation. We speculated that HULC could interact 
directly with the 5′-UTR of HCV and modulate HCV IRES-
directed translation. An in silico analysis predicted a potential 
interaction between nucleotides 319–324 of HCV 5′-UTR and 
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nucleotides 163–168 of HULC (Supplementary Figure 15A). 
Although mutational analysis suggested they could interact via 
the predicted sites (Supplementary Figure 15B and 15C), it was 

difficult to prove that this interaction was crucial for the effect 
of HULC on HCV replication (Supplementary Figure 15D). 
Because HCV translation is regulated by many host factors, 
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HULC could alter the expression of such HCV translation–re-
lated host proteins, resulting in the modulation of HCV trans-
lation. These possibilities will be examined in future studies.

Increased HULC expression in malignant tissues has been 
observed in pancreatic cancer [19], gastric cancer [21], oste-
osarcoma [35], and colorectal cancer that metastasizes to the 
liver [20]. Notably, HULC levels in blood are a useful nonin-
vasive biomarker for the diagnosis and/or prognosis of HCC 
[18], and there is a strong correlation between the tissue and 
circulating levels of HULC [41]. We found that HULC expres-
sion in liver and blood was generally reduced by HCV erad-
ication; however, in several patients, HULC expression was 
not reduced or even increased by HCV eradication. HULC 
exerts its oncogenic functions by promoting many steps, in-
cluding cell survival, proliferation, colony formation, invasion, 
tumorgenicity, lipogenesis, epithelial-mesenchymal transition, 
and antigenicity, in several cancers, as summarized in a review 
article [42]. The multiple oncogenic features of HULC suggest 
the possibility that the patients whose HULC levels were not re-
duced after HCV eradication would have a higher risk of HCC 
occurrence. To test the hypothesis that HULC could be a useful 
predictive factor for HCC occurrence after HCV eradication, a 
prospective study is needed.

In this study, we clearly demonstrated that the oncogenic 
lncRNA HULC is upregulated by HCV infection in humans and 
in cultured cells. These results suggest crucial roles for HULC 
in hepatocarcinogenesis and cancer progression due to HCV 
infection.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
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